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Abstract3

Artificial neural networks (ANNs) have been developed, implemented and tested on the basis of a four-year-long experimental4

data set, with the aim of analyzing the performance and clinical outcome of an existing medical ward, and predicting the effects5

that possible readjustments and/or interventions on the structure may produce on it. Advantages of the ANN technique over6

more traditional mathematical models are twofold: on one hand, this approach deals quite naturally with a large number of7

parameters/variables, and also allows to identify those variables which do not play a crucial role in the system dynamics; on the8

other hand, the implemented ANN can be more easily used by a staff of non-mathematicians in the unit, as an on-site predictive tool.9

As such, the ANN model is particularly suitable for the case study. The predictions from the ANN technique are then compared and10

contrasted with those obtained from a generalized kinetic approach previously proposed and tested by the authors. The comparison11

on the two case periods shows the ANN predictions to be somewhat closer to the experimental values. However, the mean deviations12

and the analysis of the statistical coefficients over a span of multiple years suggest the kinetic model to be more reliable in the long13

run, i.e., its predictions can be considered as acceptable even on periods that are quite far away from the two case periods over14

which the many parameters of the model had been optimized. The approach under study, referring to paradigms and methods of15

physical and mathematical models integrated with psychosocial sciences, has good chances of gaining the attention of the scientific16

community in both areas, and hence of eventually obtaining wider diffusion and generalization.17

c© 2015 Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation (IMACS).18
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1. Introduction 1

Over the past decade there has been an increasing interest in mathematical models that describe and analyze com- 2

plex structures and processes such as interacting systems of human beings. It is not infrequent that mathematical 3

theories that are well-known in some research areas strongly contribute to the creation of new methods and perspec- 4

tives even in fields remote to those that motivated their introduction. This is the case of the so-called artificial neural 5

networks (ANNs), which in recent years have been applied as a statistical data
∧
modeling tool to atmospheric sciences

∧
6

[23,45,1,30], energy systems [28,26,38,16], experimental and clinical medicine [6,43,3,48,31,44,20,19,4,37], medical 7

diagnosis [29,5,7,41], and a huge variety of other settings. An ANN is a mathematical/computational model inspired 8

by the structure and functional aspects of biological neural networks. It consists of an interconnected group of artificial 9

nodes, or neurons, arranged in three or more layers: the first layer consists of input data, and the last layer contains the 10

outputs; in addition, there are one or more hidden layers that process the information and establish the correspondence 11

from the inputs to the outputs. The ANN is characterized by the interconnection pattern between different layers of 12

neurons, i.e., mathematically speaking, by the activation functions that convert each neuron’s weighted input to its out- 13

put. The network is an adaptive system that changes its structure based on external or internal information that flows 14

through it during the learning process. In particular, in the so-called supervised learning, one uses a (sufficiently large) 15

set of example pairs (x, y) with n inputs, x = (x1, . . . , xn) and p outputs, y = (y1, . . . , yp), and the aim is to find the 16

activation function in the allowed class that matches the examples. Mathematically, this is essentially often reduced to 17

an optimization problem aiming at minimizing the absolute or averaged squared error between the network’s output 18

and the target value, y, over all the example pairs. The network training is achieved through a trial-and-error process, 19

in which the network learns how to reproduce the correct outputs from the given inputs by adjusting the statistical 20

weights on the connections between layers (Feed-forward/Back-propagation method) [15]. See Fig. 1.
∧

Q3 21

Motivation. In Refs. [35,36] the authors have proposed a generalized kinetic model to describe the time evolution of 22

a variable related to the quality and/or climate of a medical unit. The work was originally motivated by the analysis 23

of experimental data collected for over 10 years in an in-patient psychiatric unit (located in San Pietro Vernotico, 24

Brindisi—Italy) under the direct responsibility of Dr. A.V. Serio, within the framework of a regional research project 25

for monitoring and improving the quality of the service. The authors conceptualized the medical ward as a semi-closed 26

system having two populations: patients and medical staff. The dynamics of the service, and the mutual relations 27

among the individuals depend strictly on the “quality” that is offered (or that is perceived as being offered) by the 28

service, i.e., on the social climate that is established. The experimental data are both quantitative and qualitative, 29

and include: (i) monitoring a variable called Ward Atmosphere (atmosphere, for brevity), which refers generically 30

to the social climate and is well-known in the specialized medical and psychosocial literature since the 1950s 31

(see [53,50,47,46,39,40,49,51]); (ii) presence of medical operators and staff; (iii) critical events (elopes, episodes 32

of aggressiveness or violence, accidents); (iv) positive and negative events (visits, social activities, leaves of absence; 33

troublesome admissions, such as for patients on compulsory sanitary treatment or at their first hospitalization); (v) flux 34

data (input/output of patients). The atmosphere, in particular, has been measured 3 times a day since January 2001, 35

according to a color code synthetically described in Table 1.Q4 36

In order to allow numerical and statistical investigations on the collected data, the color code has been converted 37

into the ordered set of five positive integers {2, 4, 6, 8, 10}, and hence on an equal-interval (ordinal Likert) scale, with 38

2 corresponding to green and 10 corresponding to red. Whether individual Likert items can be considered as interval- 39

level data, or whether they should be considered merely ordered-categorical data is a subject of disagreement in the 40

mathematical and psychosocial scientific communities. Such items could be regarded only as ordinal data, because, 41

especially when using only five levels, one cannot assume that all pairs of adjacent levels are perceived as equidistant. 42

On the other hand, to treat it merely as an ordered set without specifying a distance could imply losing important 43

information. While extremely important when trying to model the dynamics of the system with a generalized kinetic 44

approach (see [36]), this issue is much less relevant (if relevant at all) in the proposed ANN approach. 45

The ultimate goal of any mathematical investigation of the system is to predict, on a short-time scale, the possible 46

outbreak of a crisis (orange/red ward atmosphere), and, on a long-time scale, the effects that specific planned or un- 47

planned readjustments of the structure may produce on it and on patients and staff in terms of stress and satisfaction. 48

Identifying variables, parameters and events that control the dynamics, and thus being able to propose an effective 49

mathematical model of the ward atmosphere and of its evolution is of the deepest importance from a social and 50
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Fig. 1. ANN schematics.

Table 1
The color code for the Ward Atmosphere.

green: everything is fine in the ward and there are no negative emotions in the staff.
blue: the behavior of one or more patients makes the staff feel uneasy.
yellow: the ward feels crowded, or there are patients in a more acute state, or behaving somewhat violently. The staff feels worried.
orange: the ward feels very crowded and one or more patients in critical conditions become problematic or aggressive, requiring some
exceptional intervention. The staff feels on alert (fearful, powerless, etc.).
red: it becomes necessary to restrain one or more patients, or to call for external help. The staff cannot withdraw.

health-care point of view (see, for instance, [52] for a recent study on how the ward atmosphere appears to mediate1

the associations between the physical and therapeutic characteristics of an inpatient ward and patient outcomes).2

Methodology. In this work, we have developed, implemented and tested artificial neural networks to ultimately predict3

the ward atmosphere in the medical unit described above. The greatest advantage of using ANNs as a nonlinear4

statistical data modeling tool, as opposed to more “traditional”
∧
modeling approaches or simple statistical data analysis,5

lies in the fact that the network can learn from experimental data, i.e., it can be trained to infer the most effective6

modeling functions from observations. This feature is particularly useful in applications such as the one proposed in7

this paper, where the complexity of the data makes the design of such functions by hand impractical. At the same time,8

in order for the trained network to be robust, one needs a very large amount of experimental data (known input/output9

sets), which is a distinguished feature of the proposed application, as described below.10

All the experimental data collected on a daily basis in the medical unit have been regarded as inputs/outputs of the11

network. The experimental outputs are vectors, whose values refer about the atmosphere measured in the ward during12

each of the three daily shifts. These values, in the reconstruction process, are used as a goal that the ANN must be13

able to simulate/reproduce. Therefore, only a small subset of them is used to initialize the ANN, and an even smaller14

subset to validate the most acceptable ones proposed by the initialization procedure. Specifically, for any given shift,15

the experimental output is identified with a 5-component binary vector whose components represent the 5 classes,16

namely, the 5 colors for the atmosphere. Each experimental output vector then has a 1 in the component of the class17

corresponding to the atmosphere recorded by the staff in that shift, and four 0s in all other components. For instance, if18

the atmosphere recorded for a given shift is “blue” (i.e., 4 in our Likert ordered scale), the corresponding output vector19

is y = (0, 1, 0, 0, 0). In this way, the simulated output computed by the ANN is a 5-component vector whose values20

represent the expected “probabilities” (in fact, only “likeliness”, in that sometimes the outputs turn out to have small21

negative values) that are suggested by the ANN as corresponding to the given input, and hence may be compared with22

the experimentally measured ones.23

The inputs, collectively a vector of 14 input data, are listed in Table 2. It is important to point out that the intrinsic24

dynamics of the ward is based on three shifts per day, with the morning and afternoon shifts lasting 7 h each (7am–2pm25

and 2pm–9pm, respectively), followed by the night shift which lasts 10 h. There are, therefore, two different time26

scales in the system, with some experimental data being recorded on a daily basis, and others (among which, notably,27

the outputs) during each shift, hence three times a day. The first issue in the input/output setup has been to uniformize28

them all to a shift-based time scale, which has been dealt with as described below.29

• The number of patients present in the medical unit is available per day, and it already accounts for the daily30

admissions and discharges; as an input value in the ANN, it is repeated for each of the three shifts during that day.31
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Table 2
Components of the INPUT vector of the ANN.

INPUT Description

1 Number of patients
2 Discharges
3 New admissions
4 Troublesome admissions: patients on compulsory hospitalization
5 Troublesome admissions: patients at first hospitalization
6 Troublesome admissions: patients from out of state
7 Troublesome admissions: patients from out of county
8 Staff members present during the shift
9 Social workers

10 Total number of positive events
11 Negative/critical events: elopes
12 Negative/critical events: accidents
13 Negative/critical events: aggressions
14 Negative/critical events: restraints

• Discharges and new admissions typically take place during the morning shift, therefore the corresponding input 1

values are taken to be 0 for shifts 2 and 3. 2

• Positive and negative events, as well as troublesome admissions, are also recorded on a daily basis, even though 3

some of them, such as positive events and troublesome admissions, regularly occur only during the day (shifts 1 4

and 2), and negative events can occur suddenly and, obviously, somewhat unexpectedly, both during the day and at 5

night. Nonetheless, the corresponding input values are repeated on each shift, assuming, based on experience, that 6

their effects persist the entire day, if not even longer. 7

• Since social workers, if any, are only present in the morning shift, their presence as input is attributed to the first 8

shift, and then taken to be 0 during shifts 2 and 3. 9

We have then implemented and trained ANNs by means of the Neural Network (NN) Mathematica package, using 10

the remarkably large experimental data set at our disposal almost 10,000 example pairs
∧
between January 2001 11

and December 2004, and: (1) identified the input variables that play the most significant role in the dynamics;Q5 12

(2) determined the most suitable activation functions that yield reasonable convergence time and robustness; (3) used 13

the trained ANN as a predictive tool on selected case periods, and compared its outcomes with the recorded outputs. 14

An optimization of the network architecture has been carried out to identify the number of neurons, nodes in the 15

hidden layers, network options, etc., in order to achieve the best balance between a satisfactory agreement during the 16

training phase and the simplicity of the implementation. The predictions from the ANN technique have finally been 17

contrasted and compared with the numerical simulations performed in [36], where a generalized kinetic approach 18

was considered. Advantages of the ANN technique are twofold: on one hand, this approach deals quite naturally 19

with a large number of parameters/variables, and also allows to identify those variables which are not relevant in the 20

convergence of the training process (these are expected to play a marginal role in the dynamics and can therefore be 21

ignored as inputs); on the other hand, the implemented ANN can be more easily used by a staff of non-mathematicians 22

in the medical ward, as an on-site predictive tool. 23

The paper is organized as follows. In Section 2 we describe the mathematical model. In Section 3 we illustrate the 24

outcome of the numerical simulations performed. In Section 4 we compare the outcome of the numerical simulations 25

with the experimental data and briefly discuss the statistical significance of the model. Section 5 is devoted to some 26

concluding remarks. 27

2. Description of the specific model 28

The ANN model which seemed more suitable to the specific problem is a Feed-forward network, which will be 29

described in some detail below. Based on the previous investigation performed by means of a generalized kinetic 30

approach [36], which clearly showed the system to be time-dependent, a plain Feed-forward network was anticipated 31

to be too simplistic to model the system with some accuracy. And, as a matter of fact, the predictions of a plain Feed- 32

forward network turned out to be quite unsatisfactory, way too “dull” to prove useful in order, for instance, to anticipate 33
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the possible outbreak of a crisis. In order to improve the description, we have then resorted to the use of “dynamic”1

neural networks, which have been implemented and tested on the system. A dynamic neural network is an ANN that2

utilizes networks such as Feed-forward networks or Radial Basis Function networks, and allows for the system to be3

time-dependent, i.e., for the output to depend not just on the corresponding input data, but also on the “history” of4

the system. Essentially, our dynamic neural networks model the system by constructing a Feed-forward ANN with5

suitably extended input vectors (regressors), where certain output values, 1 to 3 shifts before the one considered6

at each given time, are used as additional inputs. Since the dynamic ANNs implemented in this work are based7

upon Feed-forward networks, we will give below a description of the latter (in terms of training methods, options,8

etc.), and then in Section 2.4 we will explain how the dynamic networks (and the corresponding regressors) are built Q69

upon them.10

The process of data fitting uses the NeuralFit function of the NN package, in training both Feed-forward and11

dynamic networks. The object NeuralFit returns a list of two variables: (i) the trained network; (ii) the training record.12

Each ANN has first been initialized (when possible) over a period of 14 days (i.e., 42 shifts) from Jan 07 to13

Jan 20, 2001. The initialization is performed in order to start the actual training with network parameters which are14

already somewhat “tamed” and hence likely to speed-up the convergence of the training process, instead of a random15

initialization which is the default option of the NN package. The initialized ANN is then trained over 126 days (37816

shifts) from Jan 07 to May 12, 2001. Finally, the trained ANN is used to predict the atmosphere over two case periods,17

each lasting 28 days, carefully selected based on prototypical functioning of the medical service and of data collection18

procedures. The first case period runs from May 24 to June 20, 2001; the second one runs from Sep 13 to Oct 10,19

2001. In these runs the trained ANN is an actual predicting tool, since only input data and, for the dynamic networks,20

outputs from (up to) a day (three shifts) before the one considered (see Section 2.4) are provided to the network, and21

the predicted outputs are compared with the experimentally measured ones to analyze the performance of the trained22

ANN. “Validated” ANNs have then been constructed, where one of the two case periods is used as the “validation” set,23

and the outputs are then predicted on the other case period. Each time, after the network has been trained, the validation24

set is used to calculate an error, and the training is stopped when the error on the validation set reaches a minimum.25

In other words, the error is minimized with respect to the training data and the obtained parameter estimates for the26

network are the ones that gave the best performance at some intermediate iteration during the training on validation27

data. The validation aims at preventing network overtraining, which can lessen its performance.28

In order to double-check the results provided by the NN package in the training, each ANN has been initialized and29

then trained in two different ways: (i) through the ARXNet instruction in the package, which builds the Feed-forward30

network automatically; (ii) “manually”, i.e., by means of a code implemented by the authors to perform the same31

operations. Similarly, in the prediction/validation processes the ANNs have been applied by means of the NetPredict32

instruction and, separately, manually. It is also worth mentioning that for all the numerical experiments the training33

has been repeated over the same period, yielding the same results.34

2.1. Feed-forward neural networks (FFNNs)35

A single-output FFNN is an artificial neural network that consists of hidden layers of neurons, with each neuron36

performing a weighted summation of inputs
{

x j
}n

j=1, and then passing these weighted summations through a37

nonlinear activation function (typically, a sigmoid: σ(x) = 1/(1 + e−x ), meant to saturate the outputs to values38

between 0 and 1 corresponding to each output):39

σ

(
n∑

j=1

w j x j + b j

)
.40

The output layer then performs another weighted summation on the output of the neurons in the hidden layer, and41

provides our real-values predicted output, yp. More specifically, the output corresponding to the given set of input42

data
{

x j
}n

j=1 is given by43

yp(θ) = g(θ, x) =
m∑

i=1

wiσ

(
n∑

j=1

wi, j x j + b j,i

)
+ b, (2.1)44
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where m denotes the number of neurons contained in the hidden layer, n is the number of inputs, and the set 1

{wi, j , b j,i , wi , b} contains all parameters of the network, which are, for ease of representation, expressed by θ in 2

g(θ, x). The parameters wi, j , i = 1, . . . , n, j = 1, . . . ,m and {wi }
n
i=1 are referred to as “weights”, while bi, j , 3

i = 1, . . . , n, j = 1, . . . ,m and b are the so-called bias parameters. In this work, ANNs with m = 0, 4, 7 neurons in 4

the hidden layer have been considered. 5

Once a set of inputs/outputs data are provided, the network undergoes a training process where the statistical 6

weights and bias parameters are iteratively adjusted, through a back-propagation algorithm, so that the outputs pro- 7

vided by (2.1) are within a prescribed tolerance from the “real” outputs of the system. 8

2.2. FFNN training methods and options 9

To consider a network successfully trained, the (suitably defined) error calculated at each iteration must be 10

sufficiently small, within some precision estimate typically provided by the user. In particular, for a single-output 11

ANN the Mean-Squared Error (MSE) is defined by: 12

VN (θ) =
1
N

N∑
i=1

(yi − g(θ, xi ))
2, 13

where N is the number of data points provided. Correspondingly, a Mean-Squared Error Function is defined as: 14

msef(ε) =
εT ε

lε
= VN (θ) 15

where ε = y − yp, i.e., the difference between the provided and generated output data members, also referred to as 16

the “prediction” error; lε denotes the length of ε. The generalization of the above definitions to multi-output ANNs, 17

where the output is a p-component vector, is straightforward. 18

Each set of parameters θ is adjusted at every iteration in such a way that the parameters are estimated by the 19

minimization of VN (θ). Specifically, the parameters are adjusted at each iteration as such: 20

θ i+1
= θ i
− µR ∇θVN (θ), (2.2) 21

where R is the direction matrix, andµ is a predefined scalar controlling the size of θ or the step-length. R is determined 22

in the training method chosen for or by the network. Starting with θ0, the network iteratively attempts to decrease the 23

MSE by incrementally updating θ along the negative gradient of the MSE. 24

Among the various training methods, the most common ones, i.e., the Levenberg–Marquardt (LM) method and the 25

Gauss–Newton (GN) method, have been used in this work. Comparison of the performances of both training methods 26

on both case periods has indicated the LM method as the most efficient of the two for the case study. Also, several 27

numerical experiments have been performed with different FFNN options used in the training, in order to identify the 28

most suitable options for the model. The key options resulted to be regularization and separability, which are briefly 29

discussed below. 30

Regularization. When setting the option Regularization to a positive value, the criterion function to be minimized by 31

the network in the training becomes: 32

W δ
N (θ) = VN (θ)+ δθ

T θ, 33

where δ is the regularization parameter specified. δθT θ is referred to as the regularization term, which acts as a spring 34

pulling less important parameters towards the origin and only marginally influencing those parameters important to 35

VN (θ). This process reduces the number of effective parameters. The choice of the regularization parameter δ is by 36

trial and error. 37

Separability. The separable algorithm fits the linear parameters in each step of the iterative training with the least 38

squares algorithm. Separable training can be used when a neural network is linear in some of the parameters, since 39

it gives a numerically better-conditioned minimization problem that is easier for the network to solve. The primary 40

focus of the separable algorithm is to minimize the criterion in the direction of the linear parameters in each iteration 41

so that the iterative training ‘follows’ down the valley to a minimum. 42
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Note that for neural networks, flexibility is specified by the number of hidden neurons. Deciding on the correct1

amount of flexibility is therefore a tradeoff between two primary sources of misfit. This is referred to as the2

bias–variance tradeoff. The are three ways to handle this occurrence:3

• Try different neural networks with various numbers of hidden neurons and test those networks on validation data;4

choose the best network.5

• Specify a regularization parameter greater than 0. This leads the network to minimize the regularized performance6

index as opposed to the original MSE. This type of regularization is usually referred to as weight decay in7

connection with neural networks.8

• By submitting validation data, one applies stopped search. In this case, the MSE is minimized with respect to the9

training data and the obtained parameter estimate is the one that gave the best performance at some intermediate10

iteration during the training on validation data.11

All of the above possibilities and combinations thereof have been explored in this work, and the predictions of the12

best performing resulting ANNs will be illustrated in Section 3.13

2.3. Dynamic neural networks14

A dynamic neural network is an artificial neural network that utilizes either FeedForward or Radial Basis Function15

networks and allows for the system to be time dependent, by combining FeedForward ANNs with time dependent16

input vectors called regressors. Generally speaking, the regressor is specified by three sets of indices: na, nb, nk ,17

where na refers to the number of lagged output values, nb refers to the number of lagged input values, and nk refers18

to the input delay relative to the output. For Single-Input, Single-Output (SISO) systems, na, nb, nk are given as three19

positive integers. For Multi-Input, Multi-Output (MIMO) systems, each one of them is a list with one component for20

each input or output, i.e., each individual lagged signal value is a vector of appropriate length. This means that instead21

of each input data set x(t) = (x1(t), . . . , x14(t)), a “regressor” is used, conveniently constructed on account of a set22

na, nb, nk in such a way that the input is nb-shifted, na-augmented, and then properly nk-paired with the output set23

y(t). In our specific problem, with 5 output values, na = {n1
a, . . . , n5

a} and for each t , the regressor t-set is constructed24

as follows:25

x(t) =
(
y1(t − 1), . . . , y1(t − n1

a), y2(t − 1), . . . , y2(t − n2
a), . . . , y5(t − 1), . . . , y5(t − n5

a),26

x1(t − n1
k), . . . , x1(t − n1

k − n1
b + 1), . . . , x14(t − n14

k ), . . . , x14(t − n14
k − n14

b + 1)
)
,27

and paired with the y(t + max(nb + nk) − 1). As mentioned above, y = (y1, . . . , y5) denote the outputs, and28

x = (x1, . . . , x14) denote the user provided inputs. In particular, we have then chosen the 5-plets and the two29

14-plets of values (na, nb, nk) as follows: nb ≡ (1, . . . , 1), nk ≡ (0, . . . , 0) and two different logics have been30

adopted for the lagged outputs: (i) n j
a = 1 for j = 1, . . . , 5, which corresponds to simply appending as an additional31

input the information on the atmosphere recorded during the shift prior to the one considered; (ii) n j
a = j − 1 for32

j = 1, . . . , 5, where the output information provided as additional input to the network goes from 0 to 4 shifts back,33

the further back the more negative the atmosphere. It should be noted that in all dynamic ANNs the actual input/output34

pairs considered in the training are n − max j n j
a , instead of n, as the pairs with i = 1, . . . ,max j n j

a would require35

using output information that might not be available to the user.36

Default predictions are one-step predictions, called “horizon” 1 (or h = 1, for shortness), and denoted by ŷ(t |t−1),37

i.e., predictions based on measured outputs up to time t − 1. This kind of prediction is similar to the mechanism that38

might be actually used in the ward. It is worth stressing the difference between setting the horizon h = 1 in the model,39

and setting the lagged output n j
a = 1 in the regressor, which corresponds to using the measured output values at the40

time previous time-step as additional inputs in the ANN. It is obviously interesting to check if a model is capable of41

performing predictions several time-steps ahead, that is, to increase the so-called prediction horizon. In this work, a42

three-step ahead (horizon 3, or h = 3) prediction ŷ(t |t − 3), where only past values up to t − 3 are given, has been43

considered. This is accomplished by using the estimate ŷ(t |t − 3) in place of the missing y(t − 1), y(t − 2) values for44

the normal one-step prediction. If the prediction horizon is infinity, it is said that the model is being used in simulation.45

Then, measured outputs are not used at all and all outputs in the regressor are replaced by model outputs.46
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Fig. 2. Dynamic FFNN prediction over the first case period (May 24–June 20, 2001) with the second case period used as validation. Output
likeliness for each class on the vertical axis are plotted vs each shift in the period. FFNN options: 7 neurons; no regularization; separable;
Levenberg–Marquardt training. (Left) with horizon = 1; (Right) with horizon = 3. (For interpretation of the references to

∧
color in this figure

legend, the reader is referred to the web version of this article.)

3. Numerical simulations 1

A large number of numerical simulations has been carried out, using dynamic FFNN, with various options, and 2

their predictions validated over the two case periods May 24–June 20, 2001 and Sep 13–Oct 10, 2001. 3

Output likeliness. In the numerical simulations the trained ANNs return the “likeliness” of outputs for each input in 4

the time series considered. Typical ANN outcomes for several choices of the network options are illustrated in Fig. 2, 5

where the 5 colored splines, plotted as functions of the shifts, represent the likeliness of the corresponding outputs: 6

e.g., the green spline gives the likeliness of an output/atmosphere corresponding to “green” or ‘2’ (cf Table 1), the 7

blue spline gives the likeliness of an output/atmosphere corresponding to “blue” or ‘4, and so on. It should be pointed 8

out that, although the 5 values for the likeliness are normalized to sum to 1, strictly speaking this likeliness cannot be 9

interpreted as a probability, as in some cases the ANN returns small negative values for it. While a cut-off could be in- 10

troduced to avoid this problem, in this work this issue has turned out to be of no practical importance in the further con- 11

version of the output likeliness into suitable averages that represent the estimate for the ward atmosphere on each shift. 12

As explained in Section 2, validated ANNs have also been constructed, where one of the two case periods is used 13

as validation set, and the outputs is predicted on the other case period. In the validated ANN, the error is minimized 14

with respect to the training data and the obtained parameter estimates for the network are the ones that gave the best 15

performance at some intermediate iteration during the training on validation data. 16

Moreover, in all the numerical simulations, predictions over the two case periods have been tested both as one-step 17

predictions, and with a prediction horizon equal to 3. 18

Predicted atmosphere. In order to compare the predictions of the model with the experimental data, it is necessary to 19

convert the output of the numerical simulations, i.e., the likeliness discussed above, into a single sequence of integer 20

values in the set {2, 4, 6, 8, 10} that represent the estimate for the ward atmosphere on each shift. A similar problem 21

had presented itself in the kinetic approach proposed in [36], whose outputs were generated as five probability density 22

functions over a suitably defined state variable for the two populations of patients and staff in the given period. In this 23

respect, the ANN approach is simpler to deal with in that there is no distinction in the ward population in patients 24

and staff, the system is considered as a whole and the likeliness of a given output atmosphere is given as a single 25

output vector. Conversely, some of the quantities identified in [36] as indicators/averages, whose discretizations could 26

be reasonably compared with the experimental data for the atmosphere, seems now to be unjustified. For instance, 27

the value Uc = αU c
1 + (1 − α)U

c
2 introduced in [36] as a suitable weighted average of “critical” mean activities for 28

operators and patients may be meaningful only if they are treated as two separate populations, which is not the case in 29

the ANN approach presented here. As a consequence, the indicators/averages based on Uc are not particularly useful 30

in the present setting. Nonetheless, other averages can be applied with only slight adjustments to the present model, 31

and in particular following the same logics as in [36], in this work the predicted atmosphere in a given shift has been 32

computed from the likeliness by means of the following algorithm: 33

U = N
5∑

j=1

u j yp( j) (3.1) 34
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Fig. 3. Atmosphere during the first case period, May 24–June 20, 2001. Green: Experimental data; Red: prediction of U from the ANN in Fig. 2
with horizon = 1, computed according to (3.1). (For interpretation of the references to

∧
color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 4. Atmosphere during the second case period, Sep 13–Oct 10, 2001. Green: Experimental data; Red: prediction of U from the ANN in Fig. 2
with horizon = 1, computed according to (3.1). (For interpretation of the references to

∧
color in this figure legend, the reader is referred to the web

version of this article.)

where yp( j) is the likeliness of class j provided as the output of the ANN in the shift considered, (u1, . . . , u5) =1

(0.1, 0.3, 0.5, 0.7, 0.9) are the “weights” attributed to each class, and N is the number of patients and staff members2

present in the ward during that shift. The weights are the same used in [36] to compute similar averages, and they have3

been chosen in order to emphasize the rarity of values 8 and 10 for the atmosphere. Next, following [36], in order4

to compare the preceding value U to the experimental data, which are Likert-ordered as explained in Section 1,5

a discretization of U has been considered, with threshold values chosen as those that appeared to provide good6

approximations to the experimental values for the atmosphere. Specifically, based on the variable U , the following7

estimate for the atmosphere has been considered:8

U∗ = 2 if 0.0 ≤ U < 1.7,
U∗ = 4 if 1.7 ≤ U < 2.5,
U∗ = 6 if 2.5 ≤ U < 5.0,
U∗ = 8 if 5.0 ≤ U < 6.0,
U∗ = 10 if U ≥ 6.0.

(3.2)9

Clearly, quantitative comparisons with experimental data are severely biased by the choice of the thresholds in the10

discretization, and only a careful a posteriori test may provide the best choice for their values. Nonetheless, if one is11

mainly interested in a qualitative estimate, then small differences in such choices may be ignored. As a matter of fact,12

a qualitative comparison between the estimates and the experimental values for the atmosphere turned out to be easier13

and more informative by looking directly at the “continuous” average, so only U are shown in Figs. 3 and 4
∧
for the14

two case periods.
∧

Q715

4. Comparison with experimental data and statistical significance16

In order to investigate the statistical significance of the model and to obtain a quantitative comparison, some global17

indicator has to be identified. To this aim, we first compute some straightforward mean square deviations between18

experimental and estimated values for the atmosphere. More specifically, the entire period of the analysis (January19

2001–December 2004) has been divided into 52 periods of 28 days each. Then, we denote by v j , j = 1, . . . , N the20

experimental value for the atmosphere at each shift j of the period, and by p j the ANN-simulated value, according21
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Fig. 5. Mean deviation Sd/Sv for the ANN outputs between January 2001 and December 2004 computed using the ANN in Fig. 2 with
horizon = 1.

Fig. 6. Mean deviation Sd/N for the ANN outputs between January 2001 and December 2004 computed using the ANN in Fig. 2 with horizon = 1.

to the algorithm listed above for U . Hence, N = 84 is the total number of evaluations per each of the periods under 1

consideration. We introduce square deviations: 2

Sd =
N∑

j=1

(
v j − p j

)2
, (4.1) 3

as well as the sums 4

Sv =
N∑

j=1

v2
j . (4.2) 5

The values of the deviations Sd/N and Sd/Sv are given by the polygonal lines in Figs. 5 and 6, where each point 6

corresponds to one of the aforementioned 52 periods. 7

Clearly, for both mean deviations illustrated in Figs. 5 and 6 there cannot be a “reference” graph; since they 8

represent deviations of the predicted atmospheres with respect to the experimental values, they are obviously expected 9

to be as small and “flat” as possible. 10

An alternative and somehow more sophisticated attempt of statistical analysis has been performed, in order to 11

compare the experimental values for the atmosphere with the estimates from the numerical simulations by means 12

of indicators that are well-known in the specialized psychological and social literature. In particular, the values of 13

the Pearson and Spearman correlation coefficients between the experimental data and two of the estimates above 14

have been evaluated and given in the following figures. As before, each point in Figs. 7–8 corresponds to one of the 15

aforementioned 52 periods. 16

Unlike Figs. 5–6, in Figs. 7–8, obviously, the agreement is expected to be better the larger the values of the 17

correlation coefficients. Even though it is questionable whether one can use linear statistics to compare these data, 18

we observe that for most periods the ‘small deviations’ and ‘large correlation’ approaches tend to agree. 19

Also, it should be pointed out that for most of the periods that we analyzed, the values obtained for the correlation 20

coefficients, from the point of view of psychosocial statistics are considered to indicate a remarkably good correlation 21

among the data. It is also clear that both correlations decrease over time, and more so towards the end of the time 22

frame considered in the analysis (2001–2004). 23
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Fig. 7. Pearson’s correlation coefficient for the values of the atmosphere predicting using the ANN approach.

Fig. 8. Spearman ρ correlation coefficient for the values of the atmosphere predicting using the ANN approach.

5. Comparison with the kinetic model1

Finally, we propose here a comparison between the predictions of the ANN approach illustrated in the previous2

sections and the ones obtained by the authors in [36], where a (generalized) kinetic model had been developed with3

the aim of analyzing the ward atmosphere of the same medical unit. Generalized kinetic models transfer the method-4

ology developed for systems of a great number of interacting particles (such as Boltzmann and Vlasov equations, with5

direct interactions among the particles or mean field terms and external forces [17]) to various other fields of research,6

such as traffic dynamics (see, for instance, the review paper [11]), cellular dynamics (see, among others, [18,9,10,7

13,11]), social and population dynamics [27,14,32,11,24] and biological systems in general [8,11]. Various models8

of the classical mathematical kinetic theory have been investigated and generalized in several contexts, [22,2]. The9

interested reader can find thorough reviews of the theory and applications of generalized kinetic models in [25,12,11].10

Under certain simplifying assumptions, the kinetic model in [36] was ultimately reduced to a sequence of correlated11

initial value problems for a system of 10 coupled, nonlinear, nonlocal ordinary differential equations for the proba-12

bility variables. The equations depended on a (fairly large) set of physical parameters that refer, at a “mesoscopic”13

scale, about the nature and frequency of the direct interactions among the actors (patients and staff) in the medical14

unit, as well as the effect of external positive or negative events, workload, and social terms (which specify how the15

individuals are affected by the overall ward state). The tuning of model parameters so as to best fit the experimental16

data had been performed over the same two case periods considered in this work.17

First of all, it is instructive to look at the predictions of the two models for the atmosphere over the two case18

periods. Fig. 9 shows a comparison of predicted vs experimental values for the atmosphere over the two case periods,19

as obtained from the ANN validated over the second period and considered in the previous sections, and from the20

kinetic approach.21

The corresponding deviations Sd/Sv and Sd/N for the kinetic model and the ANN model are shown in Fig. 10.22

Finally,
∧
Pearson’s and

∧
Spearman’s ρ correlation coefficients are contrasted in Fig. 11.23

By comparing the results of the kinetic and ANN approach on the two case periods (with the second period24

chosen as validation), it appears that the ANN predictions are somewhat closer to the experimental values, a result25

certainly achieved with less mathematical effort. However, the mean deviations and the analysis of the statistical26

coefficients over a span of multiple years suggest the kinetic model to be more reliable in the long run, i.e., its27

predictions can be considered as acceptable even on periods that are quite far away from the two case periods over28

which the many parameters of the model had been optimized. Obviously, the assumption that the model parameters29

in the kinetic approach, as well as the trained ANNs, should provide meaningful predictions over extended periods of30

time, such as several months or even years, is questionable. As a matter of fact, within the extended period January31

2001–December 2004 several phases have been identified in the system, when the medical service was characterized32
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Fig. 9. Predicted vs experimental values for the atmosphere on the two case periods. In both figures: experimental (green); kinetic model (orange),
ANN (purple). (For interpretation of the references to

∧
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Sd/Sv (top) and Sd/N (bottom) for the kinetic model (orange) and ANN (purple). (For interpretation of the references to
∧
color in this

figure legend, the reader is referred to the web version of this article.)

by distinct functioning patterns. These, in principle, might require different trained ANNs, or at least a more specific 1

and detailed analysis. However, as in the case of the kinetic model, it turns out that the observed phases can be put in 2

correspondence with overall organizational changes in the service, and are evident only on a very long time scale. For 3

example, the poorer performance of the ANN as a predicting tool in the last several months of 2004, which had also 4

been clearly observed in the kinetic model, could be explained and somewhat expected on the basis of the functioning 5

pattern of the medical unit. It is indeed remarkable that the two approaches exhibit such striking similarities, both for 6

the mean deviations and for the correlation coefficients. 7

Obviously both models present certain advantages with respect to one another, mathematically as well as from 8

the point of view of the psychosocial investigation, which in our opinion make them both worth pursuing further. On 9

one hand, the kinetic approach has allowed a separate investigation of the climate of the two populations even in the 10

absence of separate measurements/experimental data for the corresponding atmospheres. Importantly, this accounts 11

for the somewhat different nature of the corresponding climate, which for patients is related to their well-being and 12

behavior, while for the medical staff it is mostly expressed in terms of the stress they are subject to in performing their 13
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Fig. 11.
∧
Pearson’s (top) and Spearman’s ρ correlation coefficient (bottom) for the kinetic model (orange) and ANN (purple). (For interpretation of

the references to
∧
color in this figure legend, the reader is referred to the web version of this article.)

tasks. Moreover, the kinetic model seems to be able to provide more reliable long-term predictions. On the other hand,1

by conceptualizing the service as a whole, and reducing the number of measurements one needs to account for, an2

ANN approach is in a sense more “economical”, both mathematically and from the point of view of the psychosocial3

analysis, and it is certainly easier to be implemented and used by a staff of non-mathematicians in the unit, as a (short-4

term) on-site predictive tool. A more in-depth comparison between different ANNs and kinetic models is currently5

being pursued, and it will be the subject of a future publication.6

6. Concluding remarks7

The major outcome of this work is a trained artificial neural network that can be used as a descriptive and predictive8

tool (possibly even by properly trained staff members in the medical ward) to help determine which parameters/events9

most deeply influence the quality of the ward, and which adjustments, on different time scales, may help improve the10

ward climate. What makes the present work particularly meaningful is that it relies on a large set of experimental11

data to which one can contrast and compare the predictions of the mathematical model, as well as the chance12

to develop strategies for improving the collection of new experimental data which can be inferred as a result of13

this work. For example, the collection of all input data utilized in this model (as listed in Table 2) on every shift,14

instead of once a day, as well as recording the atmosphere felt by patients and staff as separate measurements, might15

improve the performance of the network. Also, a detailed analysis of the statistical weights associated with the ANN16

implemented and tested in this model might be effective in suggesting which inputs, playing a minor role in the17

system dynamics, can be ignored without much loss. As a matter of fact, the data collection is still ongoing, and the18

previous mathematical investigation proposed by the authors has suggested refinements of the data collection process,19

which have been since then put in place in the unit, and which we plan to use in future developments of this study.20

Finally, a possible improvement of the model might rely on a more sophisticated algorithm for the reconstruction of21

the atmosphere based on the likeliness output of the various classes.22
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