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Introduzione

Introduzione

Il mini-corso analizza il comportamento delle soluzioni statiche e dinamiche
di alcuni semplici sistemi nonlineari dipendenti dal parametro p.

Tali sistemi di equazioni alle derivate parziali si caratterizzano come
modelli delle oscillazioni verticali (bending) di travi con estremi fissati, in
cui non vengono trascurati gli effetti dovuti all’allungamento.

(modelli di Woinovsky-Krieger, Berger, ecc.).

In tal caso la nonlinearita ha carattere puramente geometrico:. ovvero
e presente anche quando il materiale che compone la trave si supponga
linearmente elastico (visco-elatico, termo-elastico).
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Equazione (adimensionale) dell’equilibrio per la trave elastica

"

1
) Guvvrs [p 0] - ( / 35u(€)|2d§) Dot = .
0

(2(0) = u(1l) = uz2(0) = uae(1) =0,

dove
o u = u(x) : [0,1] — R: deflessione verticale della trave;
° f rappresenta il carico verticale distribuito (adim.)
1
o (/O \8§u(§)|2d§) Ozzu rappresenta la nonlinearita geometrica
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Introduzione

Il parametro adimensionale p € collegato allo spostamento A imposto
all’'estremo destro della trave, ovvero al carico di punta ad esso applicato.

Il superamento di una certa soglia critica pg determina la biforcazione delle
soluzioni stazionarie (carico critico di Eulero).

Nel problema omogeneo (f = 0), quando p > pg, la soluzione inde-
formata diventa instabile e compaiono coppie (simmetriche) di soluzioni
stazionarie incurvate (buckling).

La determinazione del carico critico pg € complicata dalla presenza del
termine non lineare (in rosso). Ma soprattutto, vedremo che tale termine
produce una cascata di biforcazioni al crescere del parametro p.
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Buckling




Introduzione

Equazione delle vibrazioni verticali della trave elastica

1
0

u=u(z,t):[0,1] x RT — R: deflessione verticale della trave;
C.C. u(0,t) =u(1,t) = uz(0,t) = usx(1,¢t) = O,
C.L u(x,0) = uo(x), Ou(x,0)=ui(x).

In presenza di termini dissipativi, il parametro |p| determina anche il com-
portamento caotico della dinamica a lungo termine:

e se p < po, la soluzione indeformata € esponenzialmente stabile;
® Se p > po, esistono piu soluzioni stazionarie e la dinamica € caotica.
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Programma

1. Deduzione del modello evolutivo nel caso termoelastico
La trave & costituita da un materiale termo-elastico lineare

2. Modello visco-elastico
La trave e costituita da un materiale visco-elastico lineare

3. Analisi delle soluzioni stazionarie

4. Riduzione finito-dimensionale della dinamica del modello elastico
Proiettando la dinamica sul primo autovettore, |'equazione di evoluzione diventa ODE e
Si visualizza la prima biforcazione

5. Analisi della dinamica in un mezzo visco-elastico
La trave vibra in un mezzo che oltre ad una resistenza viscosa produce anche una reazione
elastica lineare: attrattori e risonanze
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1. The model

Part 1. The thermoelastic model
We first present a derivation of the following thermo-elastic system

p

1
< attu — a:z;a:ttu —I_ aa:xa:xu + 8:1;:1:9 + (p - / |a§u(€a )|2d£> a:mcu — f7
0

(3)

| 0t0 — 0220 — Oparu = g,
where
u=u(x,t): [0,1] x RT — R: vertical deflection of the beam;
0 =0(x,t):[0,1] x RT — R: vertical temperature gradient.
B.C. w(0,t) =u(1,t) = use(0,¢) = uza(1,t) =0, 0(0,¢t) = 0(1,t) =0,

I.C. uw(x,0) = uo(x), Su(x,0) =ui(x), 6(x,0)=60c(x),

11



1. The model

Solutions to problem (3) describes the mechanical and thermal evolution
(in the transversal direction) of an extensible thermoelastic beam of natural
length ¢ with hinged ends. The value of the parameter p depends on A.

Natural length ¢

Actual length £ 4+ A < /¢

12



1. The model

. ) ' A
A F Pin or hinge n !
[ i
‘ ,—[ Baam = : Baam Y
o =
7 I ' ;-Ftniler
(a) (c)
A
Rax A i . \IL
— y % ;
Hmr Hﬁ-
(b) (@) Boundary conditions

13



1. The model

e For a general value of p, the global dynamics of this problem has been
addressed in [5] where the existence of the global attractor is obtained
jointly with its optimal regularity (see Part 5).

e The static counterpart of (3) reduces to the single equation

1
Orzazt + (p - /O |(95u(§, )‘Qdf) Orzu = f + g, (4)

The buckled stationary states are scrutinized in [2,3] for a general value
of p € R and source f + g with a general shape (see Part 3).

14



1. The model

h h

At a generic point (z,y) € [0, 4] x [—5,5} of the vertical section of the beam

M(z,y,t) = W(x,y,t),U(x,y,t)), displacement vector field

O(x,y,t), absolute temperature field

_ e e2| _ 1 1, 1 T :
e = [521 522] =5 (VL (V) '] + 2(V)J) Vil  strain tensor.

Let
©p > 0 the reference-temperature value,

p >0 the reference mass density.

15



1. The model

e The stress-strain relation (see Carlson)

o— 011 o12| _ B
021 022 1+v

&

where [e® = a (© — O))1

E
Y tr(e)l]— e®| stress tensor
1—2v 1 —2v

is the thermal strain tensor,

E >0 is the Young's modulus

v € (0,1) s the Poisson ratio

a > 0, is the coefficient of thermal expansion
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The entropy density (per unit mass) (see Chadwick)

EFo Co
S= oy E) + 5(© = o),

where ¢, > 0 is the beam heat capacity at constant strain.

The Fourier law for the heat flux vector
qg = —koVO, ko > O.

The entropy balance equation (see Lagnese-Lions)

p@OoS=-V-q+opr

where r(x,y,t) is the heat supplied (per unit mass).

1. The model
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1. The model

It follows from the Gibbs relation and the internal energy balance,
e The Gibbs relation (see Carlson)
p(atg — @(9155) — Zdijatsij == O,
,J
where £ is the internal energy density (per unit mass).

e T he internal energy balance equation

p&gS — Zaijat&?ij + V. q—=—opr.

0]
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1. The model

e The approximation scheme (consistent with large deformations)

Geometrical nonlinearities, due to kinematics, are taken into account.
Kinematic assumptions

— the thinness of the beam: |h K ¢,

— the Kirchhoff hypothesis: any cross section remains perpendicular
to the deformed longitudinal axis of the beam,

— | W(x,y,t) = w(x,t) —you(z,t)|, |U(z,y,t) = u(x,t)| where

w(x,t) = W(x,0,t) and u(x,t) = U(x,0,1).
(rigorously justified in large deflection theory by Ciarlet)
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e T he approximation scheme

1. The model

Linearization of the temperature field and source with respect to the

transversal direction ( 2ly| < h < £ ).

T hermal assumptions

— | O(x,y,t) — ©o = ¥(z,t) +ybO(x,t) |, where

Wz, t) = O(z,0,t) — Og, and 6(x,t) = 0,©(x,0,1).

—|r(z,y,t) = go(x,t) +yg(z,t) |, where
go(x,t) = r(x,0,t), and g(z,t) = Iyr(z,0,t).

20




1. The model

e The approximation scheme (consequences)

E E
011 = S €11 — o [0(z,t) + yO(x,t)],
1—v — v
020 = 012 = 021 = O,
Fa«
S= ———¢c11 +w[¥(x,t) + yO0(x,t)]
p(l—v)

where

1
511(377y7t) — 8xTU(£C,t) - yaxxu(x7t) _I_ 5 |8$u(x7t)|2

i)

_ Ea?(1+4v) Cy
T a2 Te,
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From the entropy balance equation we obtain

e T he heat equations

( ko FEa 1 5 I,
<p ' Oow (1—-—v)w t[ w—l—2| u|] @owgo
0 — =0 9,,0 ba_
- zxV — rrtU =— .
\,0 ‘ Oow (1 -v)w ! @owg

B.C. 9(0,t) =9(,t)=0, 0(0,t) =0(¢,t) =0,
I.C. I(x,0) = Yo(x), 6O(x,0) = 0Og(x).

1. The model

(5)
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e The motion equations (variational derivation)

( E 1
p Opw — Oz 4 Ozw + — |(’9xu|2 —a(l4+v)9;, =0,
1 — 12 2
p h? Eh? FEah?
| PO Ty Gmettt T Jn g gy Onaaatl 5
1
— B Oy { lﬁxw + — |(‘9xu|2 —a(l1+ 1/)19] &Cu} = ﬁ
1 — 12 2

\

B.C. u(0,t) =u(¥l,t) = 0y,u(0,t) = Opu(f,t) =0 , and

w(0,t) =0, |w(l,t) = A

I.C. w(x,0) = uo(x), ul(x,0) = ui(x),

w(x,0) = wo(x), hw(x,0) = wi(x).

1. The model

(6)
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1. The model

e Isothermal case |0 =9 = 0/|:
the model reduces to the von Karman system.

( E 1
p h? Eh?
) POt = g Omattt o T3y Oraaat
E 1 2 pf
[ 1—12 {[ vt “'] “} h

B.C. u(0,t) =u(l,t) = 0yu(0,t) = Oppu(f,t) =0 , and
w(0,t) =0, |[w(l,t) = A

I.C. w(x,0) = uo(x), Oul(x,0) = ui(x),
w(x,0) = wo(x), hw(x,0) = wi(x).
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Axial displacements

w(f,t) =0

w(l,t) = A <0

25



1.1. Stationary solutions
static counterpart of the full system (5)-(6) is the BV problem

The

7\

( p
8:5;(;19 = — 9
kogo
P
61;3;9 = —— )
ko'

1
Oz {(%w + 5 1Opul® — a1 + V)ﬁ} =0,

12 1 2

9(0) = 9(¢) = 6(0) = 6(£) = 0
w(0) =0, w(t) = A

L 1(0) = u(l) = O0ppu(0) = Opzpu(f) =0

_12(1—12)p

1.1 The steady model

h3E

f
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1.1 The Steady Model

We note that the first two equations are uncoupled.

Then, performing a double integration and taking into account boundary
conditions, it follows

9(0) = 9a) = —2 [ [ somanse=% [ [ goimamce].

0

o) =0 = L[ [ [amanac—2 [ ["smanae].

L 0

27



1.1 The Steady Model

Focusing on the third equation, the quantity
1
M = d,w + 5 10pul® — a(1 4+ )0
is constant (i.e. independent of z).

Then, according to Woinovsky-Krieger (1950), we can replace it with
its wean value on (0,¢). By virtue of boundary conditions and previous
integrations, it follows

A1 5 a(l+v) [
M —7—|—2—€/0 |0zu(x)| da:—T/O Y(x) dx.
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1.1 The Steady Model

Accordingly, the full system takes the form

+ a(1 + v)J,

h3FE / ko

(9(z) = I(z)
0(z) = 0(x)
drw + % Opul? = | M
{
B2
w(0) =0, w(¥) = A

L u(0) = u(£) = Opeu(0) = Opgu(£) =0

12(1 —v?)p _l_a(l—l—l/)pg
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1.1 The Steady Model

In particular, the mechanical equilibrium is ruled by

12 12(1 — 12 1
- ( I/)pf+oz( +I/)pg

h3E ko

a:vmmazu -

1 [ 5 B
[—p—l—2—£/0 |0zu(z)] dx] Opal =

/\

1 _ 1 [f
O,w + — |c‘)f,3u|2 =a(l+v)d—p+ —/ |c'9g;u(m)|2 dz
2 20 /s

\

where given data are in blue and

/
p = _é_|_o‘(1—+’/)/ 9(z) da
; e/

The first equation is uncoupled and can be solved separately in order to
find stationary solution for « (cf. the single egn (4)).
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1.1 The Steady Model

As established in [2], no buckling occurs when
p < h?m?/12

e | A = 0| No buckling occurs when the mean value of 9 is “small”

1 12 3 h2 2
—/ I(x)dx < i :
¢ Jo 12a(1 4+ v)

e | A #* 0| The no-buckling condition reads

12
A > a(l+ V)/ O(x) dx — h2m20/12.
0

Unlike the purely mechanical case, buckling can even occur under axial
tension (A > 0) because of the thermal axial expansion.

31



1.2 A Reduced Model

1.2. A reduced dynamical model (Woinovsky-Krieger)

We remove the dependence on ¢ and w by means of

Kinematic and Thermal assumptions

K.1 — the axial velocity component is negligible: |0;w =0

(physically justified by the hinged ends)

T.1 — the temperature diffusion in the axial direction is negligible:

OrzV(x,t) =0
(physically justified by Zener in 1938)

T.2 — the external heat supply vanishes on the z-axis:

goEO.

32



1.2 A Reduced Model

The reduced system reads

/

E 1
8t{19— “ [wa—l——|8mu|2]}: 0|,
(1 -v)wp
ko Fo
p ot Oow (1 -v)w te @owg

Y

81 Oz {afpw + % 1Oul® — a(l + 1/)19} =0

p h? Eh? Eah?
P Oit'U 10 ttu+12(1_1/2) u +

B 9, { l&cw + % |c9xu|2 —a(l+ 1/)19] 3;1:1&} = -

X
\ 1_1/2
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1.2 A Reduced Model

e First equation

The constant quantity in ¢t is replaced by its initial value

1
¢(CC) = 190 — lax’wo —I— 5 |8xuo|2]
e [ hird equation

The constant quantity in x is replaced by its z-mean value

A 1 [ 5 a(l4+v) [*
Y(t) | = 74—@/0 |0zu(x,t)| dx—T/o I(x,t)dx.

34



1.2 A Reduced Model

The resulting system reads

( Ea 1
) - [‘%“’ T3 'a””“'zl =12
p Ol — o Ozat — o Ogattt = g
< 1@ow (1-—v)w Oow
Oaw + 5 |00l — a1 + )0 = (1)
\Pattu — pl_fiamttu + 12(i?h_2 VQ)ax:I;xacu + 12?;#121/) Ozal — 1 _EVQ ¢(t) Opztl = %

Here, the second and fourth equations (in 6 and u) are coupled toghether,
but are independent of the other variables (¢ and w), except for (t).
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1.2 A Reduced Model

In spite of its expression

P (1)

A1 [f 5
—_ — A 8x 7t d -
S+ o7 [ e do

a(l+v)

1

/O g 9(x, t)dz

1 (t) can be shown to depend on wu, only. Indeed, by taking the xz-mean
value of the first equation, the blue-boxed term reads

/O eﬁ(w,t)da:

_ /OE Bo(x)dz + szjlo‘_ » /Oe [

where upg and 1Yg are given initial data.

O, ) = |0u0(2)]?| da
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1.2 A Reduced Model

The reduced model (after some rearrangements)

2\

i

\

p@te —

P 8ttu —

Fo g g BY 4 = g
Oow (1—-v)w Oow
p h? Eh? Eoah?
1 Coattt 12(1 — 12) uT 12(1 — 1)
L ‘ 2 pf
- >\ )\ a g " d axm —_ —
g(l_y2)[0+ 1/O|£U(€ )| 5] u=

0 o 12 7
A —a(l+v) [/o Yo(x)dx — 2pw€]1 - /o |8xuo(a:)\2 dz,
1 a?(14+v)E  2va?(1+v)EQp+ pes(1 —v)(1 — 21/)_

pw(l—v)  a2(14v)EOg+ peu(l —v)(1 — 2v)

>0
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2. The VE model

Part 2. The viscoelastic model
A different strategy is devised for a viscoelastic beam with length /.
o/ natural reference length, o L =/+ A actual length
e Kirchhoff assumption

u(x, z,t) = —z0u(x,t)t + ul(x, t)k,
e Small strains

e = {e€} = %(Vu +Vu')

e Unidimensional strain

e(x,z,t) = €11(x, 2,t) = —20,u(x,t).

38



e [ he 1-D viscoelastic stress-strain constitutive relation

o(x,z2,t) = FE [e(:v, z,t) + /OOO g (s)e(x, z,t — s)ds|,

FE Young's modulus
g RT - RT relaxation measure kernel

Substituting the expression for ¢, we obtain

o(x,z,t) = —Ez lﬁmu(:c,t) —I—/ q'(8)0zu(x,t — s)ds
0

2. The VE model
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The bending moment of the cross section €2

M(x,t) = —/Qza(a:,z,t)dQ.

Hence,

M(x,t) = EI lamu(q;,t) —I—/ g’ (8)O0pu(z,t — s)ds| ,
0

I=/22d§2
Q

is the moment of inertia of the cross section.

where

2. The VE model
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2. The VE model

If a distributed lateral load F(z,t) is applied to the beam, the balance
equation at equilibrium can be written as

OpaM (x,t) = 0, T (x,t) + F(x,1), (7)

The shearing stress 1" can be expressed in terms of the axial force N by
T(xz,t) = N(x,t)0u(x,t).

The lateral load F' can be decomposed into the sum of the inertia force
and an external load

F(z,t) = pf(z) — pOuu(z,t). (8)

where p > 0 is the mass per unit of length
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2. The VE model

In order to consider the extensibility of the beam a specific form of the
axial force N is needed. To this end, we assume (cf. Woinovsky-Krieger)

N(CB)t) = No + Nl(t)a

EA|Q2
o No = £| | applied axial load (A = axial displacement)
FE|
. mw=2 / Dy, ) Pdy

N1 is the extra-tension which takes into account the beam elongation

E|Q 1 [f
No + N1(t) = % (A + 5/ |3mu(y,t)\2dy)
0
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2. The VE model

In conclusion, by setting

El EA|QQ E|2 EI
w="2L p=E2K BRI = By,
P pt 2pt p

the motion equation (7)-(8) transforms into

Y

00 V4
O + o Opprzth — / 1(8)Ozzazu(t — s)ds + [p — 7/ |0zu(y, t)|2dy] Orzu = f.
0 0

e >0,

e p can be either negative (traction) or positive (compression).

Remark. The static counterpart of the VE model looks like eqn (4)
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3. Finite-D reduction

3. Finite-dimensional reduction
Statics. From eqgn. (4), the static BV problem reads

{axmxxu + (p - fol |8§u(£7 )|2d§> Opath = q,
w(0) = u(f) = Opzu(0) = Oppu(¥) =0

where g = f 4 g. It can be recast into the abstract form

Au — (p— [[ull}) AY?u = g (9)

~

e uc H?NH} (weak solution)
® A=0u: DA)={pc€ H* ©(0) = p(£) = 0120(0) = Oup(¢) = 0}
o A2=_-9,, D(AY?) ={pec H?: ¢(0) = p(¥) =0}

44



3. Finite-D reduction

A:D(A) € H— H is a strictly positive selfadjoint operator. Then
o H =DA), |ul.=1A"%|, VA1 |ull?2 < [lull?,.
o Ay =1, AYV2=X1v1,  ||[v1ll2 = (1, AV%1) = Vg

Ean (9) can be reduced to an algebraic egn by projection on the subspace
spanned by the first eigenfunction ; of the operator A. Letting

u(z) = vipi(z),

in the homogeneous case (¢ = 0) we obtain

VArv(vVAr—p+ v/ Av?) =0

i)

— VA
° p<\/A1|: v=0; o (p>\VA1|l: v=0,v== p—\/)\_l
1
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3. Finite-D reduction

Dynamics. From eqgn (2), the damped dynamic IBV problem reads

rﬁttu ~+ Opzzzu + Oiu + (p — fol |Ocu(§, .)\ng) Oral = (¢,
u(0,t) = u(1,t) = urpe(0,t) = upa(1,¢) =0

\u(zc, 0) =uo(x), Ou(x,0) = ui(x)

It can be recast into the abstract Cauchy problem

opu + Au + Oyu — (p — HuH%)Al/Qu =q, t>0,
uw(0) = ug, AHu(0) = u1,

N\

(10)

on the product Hilbert space
H = H? x H?
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3. Finite-D reduction

Ean (10) can be reduced to an ODE by projection on the span of the first
eigenfunction ; of the operator A. Letting

u(z) = v(t) Y1(x),

in the homogeneous case (¢ = 0) we obtain

b+ 0+ VArv(VAdL —p+ vV A0?) =0

Letting x = v/ A1 v, it looks like a damped Van der Pol equation

provided that

p> VA

R I A

and then 2 = vX1(p— VA1) >0
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Conserved dynamics. The Van der Pol equation

b =e%x — 23

Elastic (nonconvex) potential energy

1 1
V(z) = Zz* — 2222

4 2
Total energy conservation
1 1 1
—3? — ez + a2t =F
2 2 4
Stationary points (z = 0)
xr=20, r = *e

3. Finite-D reduction

e x = 0 is globally stable when ¢ = 0, unstable when ¢ > 0.

e x — +¢ are locally stable when € > 0

48




3. Finite-D reduction

Y

-1,25

The conserved dynamics

1,25 15 x
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3. Finite-D reduction

N

The conserved dynamics |e = 1 |. In red the separatrix curve.
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3. Finite-D reduction

Dissipative dynamics. The damped Van der Pol equation

i+ i =’z — 23

Energy dissipation
d (.5 220,14 .2
— | —e“x —x = 22 <0
i (@
Stationary points (¢ = 0)
x =0, r = *e¢
Stability:

e x = 0 is globally exponentially stable when ¢ = 0,
unstable when ¢ > 0.

e x = *£¢ are locally exponentially stable when € > 0
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The damped dynamics |e = 1|

In red the unstable manifold connecting the steady states (attractor)
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Basins of attraction |e =1
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4. Longtime behavior

Part 4. Longtime behavior of solutions

Our goal now is to scrutinize the global longtime behavior of the IBVP

( 1
8ttu + 8a:xa:xu + aa:xe + (p - / |8§u(£a )|2d£) axxu — f7
0

010 — 0220 — Ozztu = g,

0(0,t) =6(1,t) =0, (11)
u(0,t) = u(1,t) = uzz(0,1) = uaa(1,t) =0,

0(z,0) = bo(x),

|\ u(z,0) =uo(z), Owu(x,0)=ui(z).

7\

for all p € R. For the sake of simplicity we neglect | O,.¢1u |.
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4. The Abstract Setting

e T he abstract setting
We consider the abstract Cauchy problem
Opu + Au — A2 — (p— ||u|\%)A1/2u =f t>0,
0,0 + AY20 4+ AYV29, =g, t> 0, (12)
u(0) = ug, Ou(0) =wu1, 6(0) =0,
on the product Hilbert space
H=H’xHxH

— (H, {-,-), || - |]) is a real Hilbert space
— A:D(A) € H — H a strictly positive selfadjoint operator:

H" =D(A"*), ull. = A%, VAl < Jlullfy
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Remark. Problem (11) is just a particular case of (12).
(11) can be obtained from (12) by setting
— H=1°(0,1), H' = H}(0,1), H? = H?(0,1) n H}(0, 1)

4. The Abstract Setting

— D(Oraaz) = {w € H*(0,1) : w(0) = w(1) = w”(0) = w"(1) = 0}.

— AY2 = _§,., joint with

— D(—0,) = H?(0,1) N HA(0, 1).
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4. The Abstract Setting

Proposition 1. (Non autonomous case)
Assume that

f€LiocRY H), g€ Ligco(RY, H) + L (RT, H™).
For all z = (uo,u1,00) € H, the problem (12) admits a unique solution
(u(t), Oru(t), 8(t)) € C(RT,H)
which continuously depends on the initial data.
We define the solution operator S(t) € C(H,H), Vt > 0, as

z = (uo,u1,00) — S(t)z = (u(t), Omu(t),0(t)).

Proposition 2. (Autonomous case)
When both f and g are time-independent, then S is a strongly continuous

semigroup.
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4. The Absorbing Set

For any given z = (ug,u1,60) € H, we define the nonlinear energy as

£t = Z1SO=I+ 5 (@i ~p)°

Multiplying the first equation of (12) by d;u and the second one by 6, we
obtain the energy identity

S92 = (O, )+ (0,9). (13)

Proposition 3. The nonlinear energy £ is bounded by an increasing func-
tion of the norms of initial-data.

For every T > 0, there exist a positive increasing function 9O such that

E(t) < 9r(£(0)) vt € [0,T].
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4. The Absorbing Set

Theorem 4. (Absorbing set) Let f € H, and g € H-1. Then, there exists
Ro > 0 such that in correspondence of every R > 0, there is

to =to(R) >0 E(t) < Ro, Vit > to,
whenever £(0) < R. Both Rgp and tg can be explicitly computed.

— All solutions that originate from some initial data in a ball of energy-
radius R, after a finite time tx(R) enter into a ball of energy-radius Rpg
which is called absorbing set.

— The radius Rg of the absorbing set is independent of R!

— The entering time to(R) is an increasing function of R.

The proof of Th. 4 requires a very special Gronwall-type lemma.
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4. The Absorbing Set

Lemma. (Gatti - Pata - Zelik 2009) Let A : RT — RT satisfy, for some
K>0,Q>0, g0 >0 and every ¢ € (0,¢0], the differential inequality

d
dt
where ¢ € LL_(R+,Rt) is such that sup;so [T o(r)dr < Q.

loc

A(t) 4+ eN(t) < Ke2[A()]3/2 4 e72/30(t),

Then, there exist Ry > 0, k > 0 such that, for every R > 0, it follows that
A(t) <Ry,  vt>RY*(14+rQ) ™,

whenever A(0) < R.

Both R; and x can be explicitly computed in terms of K, and &g.
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4.1 The global attractor

4.1. The global attractor.

The strategy to prove the existence of a global attractor with optimal
regularity (in the norm of H* = D(A)) requires the existence of a Lyapunov
functional for the system.

Unfortunately, the occurrence of g in egn (13) prevents this fact. A change
of variables is needed in order that g disappears from the heat equation.

An equivalent Problem. Denoting
0, = A"1?g
we introduce the function
w(t) =0(t) — 0,.
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4.1 The global attractor

It then is apparent that (u(t), Owu(t),w(t)) solves the problem
Opu + Au — AY 20w — (p— ||u|\%)A1/2u = h,
Ow + AY2w + AY20u = 0,

where h = f 4+ g € H, with the initial conditions

¢ = (u(0),0:u(0),w(0)) = 2z — z,

and z, = (0,0,60,). It generates a strongly continuous semigroup So(t) on
‘H, such that

S(t)(¢ + zg) = zg + So(t)C, V¢ € H.
Thus, if B is the absorbing set of S, Sp(t) possesses the absorbing set

Bo = —z4 +‘B.
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Let

£0(t) = S1180(®)21B: + 7 (Iu(®)I — p)”.

Then, the functional

4.1 The global attractor

Lo(t) = Eo(t) — (h,u(t))

is a Lyapunov functional for So(t). It satisfies the differential equality

and then

d
—L 2 —=0.
di o+ Hwﬂl

d
—Lo < 0.
dt
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4.1 The global attractor

Theorem 3. Let f,g € H and p € R. Then, the semigroup So(t) acting on
H possesses the (connected) global attractor 2y bounded in

Y = H* x H? x H? € 'H.

Accodingly, the semigroup S(t) acting on H possesses the (connected)
global attractor 2, where

A = 2z, + o.
The regularity of 2lg and 2 is optimal.

The proof follows the same arguments as devised in [GPV, Nonlinearity, 2008].

Remark. 2l is as regular as f and g permit. For instance, if f,g € H" for
every n € N, then each component of 2 belongs to H?" for every n € N.
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4.2 Exponential stability

4.2. Exponential stability.

Let A1 the first eigenvalue of A.

Theorem 4. If [ f +g=0/]and |p < /A1 |, then 2 = {z,} = {(0,0,6,)} and

Or(S(1)B, ) = sup | S(8)z = zlln < QUUIBr)e ™,
for some s > 0 and some positive increasing function Q.

Both 2 and QO can be explicitly computed.
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4.3. The structure of the global attractor.

Let p € R and
S={zeH:5()z=2z2Vt>0}

—~

4.3 The structure of A

the set of stationary points of S(t): z = (4,0,0,), where @ € H* is a

solution to the elliptic problem

Al — (p—llallf)AY*a=f+g

So = S — z,4 is the (nonempty) set of stationary points of Sp(¢):

{=2z=(4,0,0) — z,.
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4.3 The structure of A

e Characterization of .

The global attractor 2 coincides with the unstable set of S.

A = {2(0) : 2(t) is a complete trajectory and lim |2(—t) — S|lx = 0}.

If S is finite, then
%A = {2(0) : lim [l2(—t) — 215 = lim [|2(¢) — 22|l = O},
for some z1,20 € S.

If S consists of a single element zg € H?, then A = {z4}.
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5. Stationary points

Part 5. Stationary points
The set of stationary points of S(t), namely
S={zeH:S5t)z=2z Vt >0}
consists of all vectors of the form (u,0,#6,), where
0, = A"1/2g ¢ H?
and v € H* is a solution to the elliptic problem (9), namely

Au— (p— ||ul|l})AY2u = ¢

~

where ¢g=f+ge€ H . Let \,, n = 1,n, the eigenvalues of A. On (0,1)

A, = ntn?.
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5. Stationary points

e Reduction of the problem

Let h = A-1/2¢. Then, problem (9) can be rewritten as

A2y — (p— [[uf?)u = h (14)

~

which is an elliptic problem of the second order.

Weak solutions.

Let h € H~!. A function @ € H! is a weack solution to (14) if
(AV24, AV2w) — (p — ||@lI3) (T, w) = (A7Y2h, AM?w),

for every w € H1.
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5. Stationary points

e The homogeneous case
Theorem. Let h=0 and
Se=1{n:p—+/A >0}, n. = |Sy|
Then, (14) has exactly 2n, 4+ 1 solutions: the trivial one and
ulf = CEV2sinnrz,

for every n € S;, where

Ot = 4|2 Yn,
vV An
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5. Stationary points

Proof. For any p € R, uw = 0 is a solution.
A nontrivial solution u solves the equation

AY2y 4 pu = 0, = [|ull? - p.
Hence,

/JJ:—\/)\T»L, u="Ce, C#*0,

where e, is the eigenfunction corresponding to v/ A,. In particular,

lullf = G2/ An.

The value C is determined by the relation

C*V = p =V An.

Therefore, we have exactly 2n, nontrivial solutions if and only if n € S,.

71



5. Stationary points

Nontrivial solutions to the homogeneous version of (14) are given by

2
ur(z) = :l:\/ P _ 2 sinnre.

n2m2

From the physical viewpoint, this means that when p exceeds the first
eigenvalue of the operator A/2, namely

Vo = 127

then nontrivial symmetric solutions pop up (the buckling states).
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5. Stationary points

e T he nonhomogeneous case

Theorem. Let h 20, h € H ! and h, = (A71/2h, AY/?¢,), where h,, # 0 for
some n. We define

VA h2 ,
’ n#j (\/)\_n_ V )\])2

Along with n, = |S,.|, we define

=i eN:p—/X>0, Q< p—+/}, hj=0}
i={ieN:p—/A>0, Q=p—+/A; hj=0}
Then, (14) has exactly m, solutions, with
1 < my <20y + 25, + 50 + 1.

Y

Y
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5. Stationary points

Proof. Now, uw = 0 is not a solution anymore. Then, by setting
v=—p+ a1, (15)

we have the constraint
p—+ v > 0. (16)

Writing @ = ) unen, With uw, = (@, e,), we have
11T =) Vi,

Thus, (15) turns into

v=—p+ Y VA2 (17)
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5. Stationary points

Projecting (14) on the orthonormal basis, we obtain,

(VAn + ) un = ho, n € N. (18)

Then, t solution u is known once we determine all the coefficients u,,.

o V£ —\/ )y, fOr all n.

From (18) and (17) it follows
h

Uy = ﬁ (19)
2
prr=o@) o)=Y Yl (20)

(Vn + )2

n
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5. Stationary points

Setting Recalling (16), The admissible values of v are the solutions to the
equation

ANv)=>dw)—p—rv =0, (21)

in D = (—p,+00) \ {—V\n}, which is the union (empty if n, = 0) of n,
bounded open interval I, and of the open interval Ip = (a,+00), where

—supv A, ifn,>0,
o = nesS,

—p if n, = 0.

For every v € D, we have

2
AN'(V) = D" (1) = Z(\/\L_wa 0.
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5. Stationary points

Thus, A is strictly convex on each I, C D, n € {1,...,n,} and the equation
A(p) = 0 can have at most two solutions on each I,.

In the unbounded interval Ip, the function A is strictly decreasing. More-

over, since ®(o0) = 0, then lim,_ 4 A(v) = —o0, and
im A(y) =4 T T n. >0,
v—at Cb(—p) >0 if n, = 0.

So, we conclude that there is exactly one solution in Ip.

Summarizing, the equation A(rv) = 0, and then (14), has at least one
solution and at most 2n, 4+ 1 solutions with the property that v = —v/\,.

In addition, for every v € D such that A(v) = 0, the vector @ with Fourier
coefficients given by (19) belongs to H!.
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o v = —,/\,;, for some given j.

We preliminarily observe that, due to constrain (16),

p+v>0

5. Stationary points

if p < 4/A;, no such solutions exist. In the other case, p > /\;, for n # j

the values u,, are fixed by

Un

hn
T VAV

We are left to determine the value u;. But (17) now reads

VAU + Qi =p — /A

Therefore, we have no solutions whenever Q; > p — /.
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Assume then that Q; <p— /\;. From (18),

has no solutions unless h; = 0, since v = —/A;. If Q; =p—

(VAj + v)u; = h;

only the trivial solution

szo

5. Stationary points

Aj we have

On the other hand, if Q; <p— +/A;, we have two solutions, corresponding

to

ut =41/ — V& — QDA
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