COGNOME				
	ISTRUZIONI			
• La prova dura	a 3 ore.			
	ti consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi su essi negli spazi predisposti il tuo nome, cognome e numero di matricola.			
il punteggio o	ciascuna domanda è presente un doppio riquadro: in quello di sinistra è indicato corrispondente alla domanda in caso di risposta completamente corretta; quello di sposizione della commissione per la correzione.			
	no espressi in trentesimi. Un punteggio compreso tra 30 e 32 corrisponde ad un voto mi; un punteggio di almeno 33 corrisponde ad un voto di 30 trentesimi e lode.			
	• Per le risposte utilizza unicamente gli spazi riquadrati già predisposti. Quando richiesto, le risposte vanno motivate brevemente, ma in maniera comprensibile.			
correggerà il	iare qualche risposta che hai già scritto sul foglio, fai in modo che sia chiaro per chi tuo compito quale sia la risposta definitiva. Se la risposta risultasse poco leggibile, ente un nuovo foglio e ritrascrivi su questo foglio tutte le risposte che hai dato.			
	della prova devi consegnare unicamente i fogli che ti sono stati consegnati . Non saranno ritirati eventuali fogli di brutta copia, integrazioni e simili.			
1. Si dimostri la	verità o falsità delle seguenti affermazioni riguardanti matrici appartenenti a $M(n,n,\mathbb{R})$			
	simile a B , allora $-A$ è simile a $-B$.			
Motivazi	ione:			
(b) Date due	e matrici invertibili $A \in B$, se A è simile a B , allora A^{-1} è simile a B^{-1} .			
26.00				
Motivazi	ione:			

11 SETTEMBRE 2014 - ESAME DI GEOMETRIA - INGEGNERIA GESTIONALE - A.A. 2013-2014

	Sia I	onsiderino, al variare del parametro k , i vettori $\mathbf{v}_1 := 1 + x + x^2 + 2x^3$, $\mathbf{v}_2 := kx + x^2 + 2x^3$, $= x^2 + x^3$, $\mathbf{v}_4 := 2x^3$ dello spazio vettoriale $\mathbb{R}^4[x]$. V il sottospazio vettoriale avente come base $\mathbf{v}_1, \mathbf{v}_2$. V il sottospazio vettoriale avente come base $\mathbf{v}_3, \mathbf{v}_4$.
2	(a)	Determinare tutti i valori di k per i quali $V \cap W = \{0\}.$
		Motivazione:
2	(b)	Determinare tutti i valori di k per i quali $\dim(V\cap W)=2$
	(b)	Determinate tutti i valori di k per i quan dini $(v + i w) = 2$
		Motivazione:

	11 se	TTEMBRE 2014 - ESAME DI GEOMETRIA - INGEGNERIA GESTIONALE - A.A. 2013-2014
	COG	GNOMEN. MATRICOLA
	3. Sia d	lato, al variare del parametro reale k , il sistema lineare nelle incognite x,y e z :
		$\begin{cases} x + y - z = 0 \\ x + 2y + (k^2 - k)z = 0 \\ 2x + 3y - z = k^2 - 1 \end{cases}$
3	(a)	Per quali valori di k il sistema ha esattamente una soluzione?
		Motivazione:
		Wiotivazione:
2	(b)	Determinare per quali valori di k l'insieme delle soluzioni del sistema forma un sottospazio
		vettoriale di dimensione uguale a 1.
		Motivazione:
2	(c)	Determinare per quali valori di k il sistema ammette almeno una soluzione in cui risulta $z=0$.
		Motivazione:

	4. Si co $f(a_o)$	onsideri l'endomorfismo di $\mathbb{R}^4[x]$ definito da: $+a_1x+a_2x^2+a_3x^3)=2a_0+2a_1+(2a_0+2a_1)x+4a_2x^2+(3a_2+3a_3)x^3).$
1	(a)	Determinare la matrice A associata a f relativamente alla base canonica di $\mathbb{R}^4[x]$.
2	(b)	Determinare una base di ker f .
		Motivazione:
4	(c)	Determinare, se esistono, una invertibile M e una matrice diagonale D tali che $M^{-1}AM = D$.
		Motivazione:

	11 SETTEMBRE 2014 - ESAME DI GEOMETRIA - INGEGNERIA GESTIONALE - A.A. 2013-2014 COGNOME
	5. Fissato nel piano un sistema di riferimento cartesiano, sia dato il punto $A:=(3,5)$ e la retta $r:x+2y+2=0$ e il punto $C:=(-3,1)$.
2	(a) Determinare il punto B simmetrico del punto A rispetto alla retta r . $B = ($
3	(b) Determinare il centro D della circonferenza passante per $A, B \in C$. $\boxed{D = (,)}$ Motivazione:
2	(c) Determinare i punti interni al triangolo ABC.

	6. Fissa	to nello spazio un sistema di riferimento cartesiano, siano dati il punto $A:=(1,2,3)$ e la retta: $x=4-t$
	$r: \left\{ \right.$	x=4-t $y=t$ $z=2+t$
	(z = 2 + t
2	(a)	Determinare un'equazione cartesiana del piano α contenente sia il punto A che la retta r .
		Motivazione:
2	(b)	Determinare la distanza tra il punto A e la retta r .
	(*)	
		Motivazione:
3		Determinare le equazioni della circonferenza contenuta nel piano α , avente il centro in A e tangente alla retta r .
		Motivazione: