Una proprietà del sottospazio ortogonale S^{\perp} .

(Supplemento – errata corrige – al testo consigliato, Itinerario di geometria e algebra lineare)

Dato un sottospazio $S \subseteq \mathbf{R}^n$, sappiamo che il sottospazio ortogonale S^{\perp} è definito come l'insieme dei vettori ortogonali a qualunque vettore di S. Tale insieme è un sottospazio perché non è vuoto (contiene almeno lo zero) e per ogni scelta di $\underline{w} \in S$ e $\alpha, \beta \in \mathbf{R}$ si ha:

$$\underline{u}, \underline{v} \in S^{\perp} \Rightarrow (\alpha \underline{u} + \beta \underline{v}) \times \underline{w} = \alpha(\underline{u} \times \underline{w}) + \beta(\underline{v} \times \underline{w}) = \alpha \cdot 0 + \beta \cdot 0 = 0 \Rightarrow \alpha \underline{u} + \beta \underline{v} \in S^{\perp}$$
.

Evidenziamo ora una proprietà notevole di S^{\perp} :

$$(S^{\perp})^{\perp} = S .$$

Forse per comprendere meglio il significato di questa proprietà è utile vedere un esempio in cui essa non vale. Consideriamo due rette perperdicolari, r, s (passanti per l'origine) in \mathbf{R}^3 . Se scegliamo un vettore \underline{h} perpendicolare a s, non è detto che \underline{h} sia un vettore direttore di r. L'ortogonalità tra i due sottospazi non basta a garantire la proprietà che stiamo analizzando. Occorre che i due sottospazi siano "saturi" rispetto alla dimensione globale. Infatti, se al posto di s consideriamo il piano π ortogonale a r, adesso qualunque vettore ortogonale a π è un vettore direttore di r.

Dimostrazione della proprietà $(S^{\perp})^{\perp} = S$. Banalmente, $(S^{\perp})^{\perp} \supseteq S$. Infatti ogni vettore di S è, per definizione di S^{\perp} , ortogonale a qualunque vettore di S^{\perp} . Non è invece banale dimostrare che $(S^{\perp})^{\perp} \subseteq S$. Consideriamo quindi un elemento $\underline{h} \in (S^{\perp})^{\perp}$; scriviamo \underline{h} come $\underline{a} + \underline{b}$ dove $\underline{a} \in S$ e $\underline{b} \in S^{\perp}$ (dunque \underline{a} è la proiezione ortogonale di \underline{h} su S). Ora, per ipotesi, qualunque vettore di S^{\perp} è ortogonale a \underline{h} . Ciò vale in particolare per \underline{b} . Abbiamo quindi:

$$0 = \underline{b} \times \underline{h} = \underline{b} \times (\underline{a} + \underline{b}) = \underline{b} \times \underline{a} + \underline{b} \times \underline{b} = 0 + \underline{b} \times \underline{b} ,$$

da cui segue che $\underline{b} = 0$; possiamo dedurre che $\underline{h} = \underline{a} \in S$.

Grazie a questa proprietà possiamo essere certi che un vettore ortogonale a tutti i vettori di S^{\perp} appartiene a S; non è possibile alcuna alternativa – S lo "cattura". Come conseguenza, possiamo trovare la proiezione di un vettore \underline{z} su S come la differenza $\underline{z} - \underline{c}$ dove \underline{c} è invece la proiezione ortogonale di \underline{z} su S^{\perp} . Come abbiamo visto nel caso di due rette ortogonali nello spazio, senza l'ausilio della proprietà appena vista non potremmo essere certi che $\underline{z} - \underline{c} \in S$.

Notiamo, infine, che la strategia per dimostrare che due insiemi E e F sono uguali è quella di separare la dimostrazione in

$$E \subseteq F$$
 , $F \subseteq E$.

Si tratta di un classico metodo, generale, valido per qualunque altro contesto.