APPELLO DI RECUPERO DI FISICA per Ingegneria Informatica del 23 ottobre 2018

- 1. Un punto materiale parte da fermo dalla posizione x = 0 nella direzione delle x positive, con accelerazione a = k + wt con $k = 8 m/s^2$. Se dopo il tempo $t_1 = 4$ s il corpo ripassa per la posizione x = 0, che valore ha la costante w? che accelerazione a_1 avrà al tempo t_1 ?
- 2. Un disco di massa m e raggio R, è posto su un piano inclinato di angolo θ . Trovare: il valore minimo del coefficiente di attrito statico μ_s affinché si abbia puro rotolamento e il tempo t_1 che impiega il disco a scendere di una quota h
- 3. Due moli di gas perfetto monoatomico si espandono in modo adiabatico reversibile, con volume finale triplo di quello iniziale. La temperatura iniziale vale $T_A = 300$ K. Determinare il lavoro compiuto durante l'espansione. Se l'espansione fosse invece libera nel vuoto, determinare la temperatura finale e la variazione di entropia. (R=8,314 J/mole K)
- 4. Un'asta metallica di lunghezza L può ruotare attorno a un suo estremo O ed è immersa in un campo magnetico B ortogonale al piano di rotazione e di intensità B = kr dove r è la distanza da O. Trovare, in funzione di L, la distanza r_1 da 0, tale che le differenza di potenziale $V_{r_1} V_O$ e $V_L V_{r_1}$ siano uguali.
 - a) Ricavare l'espressione per la densità di energia nel caso di un condensatore piano e del campo magnetico nel caso del solenoide ideale.
 - b) Descrivere il moto armonico semplice, equazione, soluzione, energia. Trovare l'equazione e il periodo di un pendolo composto caratterizzato da un corpo ridido di momento di inerzia *I* rispetto al suo baricentro e libero di ruotare attorno a un asse che lo attraversa in un punto diverso dal baricentro.