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Abstract

Recently in [1], for dimension 1, a transformation of a Hermite Subdivision Scheme
into a Lagrange Subdivision Scheme was proposed provided the Hermite scheme satisfies a
spectral property. This property is equivalent to the sum rule given in [2].

In this lecture, we propose a generalization for the multidimension case then we prove
that if the Lagrange subdivision operator is C0–convergent, then Hermite subdivision
scheme is Cd–convergent.

Let sk :=
(
s+k−1

s−1

)
be the dimension of the space of homogeneous polynomials of degree

k and rk :=
(
k+s

s

)
the dimension of the finite dimensional vector space of all polynomials

of total degree at most k so that rk = s0 + · · ·+ sk. We recall that for dimension s with d
derivatives, the Hermite operator HA operates on `rd(Zs) and is defined by

Dn+1HAc(α) =
∑

β∈Z
A(α− 2β)Dnc(β), c ∈ `rd (Zs) , (1)

where D is the diagonal matrix with diagonal entries (1, 1/2, . . . , 1/2︸ ︷︷ ︸
s1=s times

, . . . , 1/2d, . . . , 1/2d

︸ ︷︷ ︸
sd times

).

Now if cn = (HA)nc0, we decompose the vector cn(β) = (c(0)
n (β)︸ ︷︷ ︸
s0=1

, c(1)
n (β)︸ ︷︷ ︸

s1

, . . . , c(d)
n (β)︸ ︷︷ ︸

sd

)T

and the first component c
(0)
n (β) can be read as the value of a function fn at β/2n, the s1

following ones, c
(1)
n (β), are for the first derivatives D1fn(β/2n) and so one up to the last sd

ones, c
(d)
n (β) which are Ddfn(β/2n) where Dj :=

[
Dα = ∂j

∂xα

]
|α|=j

.
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