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Enzyme reactions play a pivotal role in intracellular signal transduction. Many
enzymes are known to possess Michaelis–Menten (MM) kinetics and the MM approxi-
mation is often used when modeling enzyme reactions. However, it is known that the
MM approximation is only valid at low enzyme concentrations, a condition not ful-
filled in many in vivo situations. Recently the total quasi steady-state approximation
(tQSSA) has been developed for enzymes with MM kinetics. This new approximation is
valid not only whenever the MM approximation is, but moreover in a greatly extended
parameter range. Starting from a single reaction and arriving at the mitogen activated
protein kinase (MAPK) cascade, we give several examples of biologically realistic scena-
rios where the MM approximation leads to quantitatively as well as qualitatively wrong
conclusions, and show that the tQSSA improves the accuracy of the simulations greatly.
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1. Introduction

Every living cell responds to external stimuli, like hormones, ions, heat
shock, etc., which are transduced by a complex intracellular molecular network.
When an external ligand binds a plasma membrane receptor, intracellular second
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messengers interacting with membrane receptors are activated, and by means of
biochemical reactions transduce the signal.

In the last decade many mathematical models have been formulated to
investigate the behavior of complex intracellular biochemical networks. Many of
those are based on the well-studied mitogen activated protein kinase (MAPK)
cascade (see for example [1–5]), and although not crucial for the results presen-
ted here, this ubiquitous signaling pathway will be given special attention in the
following.

The aim of such modeling (which is an integral part of the ‘Systems
Biology’ large scale project) is roughly twofold: to reproduce and study some
particular phenomena observed experimentally (like bistability, oscillations, ultra-
sensitivity, hysteresis, etc.) and to investigate the properties of these networks as
information processing and transducing devices. As a hope for the future, this
modeling could be used for pharmaceutical scopes (first of all drug discovery)
as a reliable tool to make predictions about the effects of drugs on the bioche-
mical networks, thus shortening the preclinical phase. This goal is related to the
ambitious project of a “Virtual Cell” ([6], http://www.vcell.org/) or “Silicon Cell”
([7], http://www.siliconcell.net/), which aims at simulating the behavior of whate-
ver cell as closely as possible to the physiological reality: “A silicon cell is a pre-
cise replica of (part of) a living cell” (cited from http://www.siliconcell.net/).

Surprisingly, the mathematical formulation of these highly interconnec-
ted enzyme reactions is usually based on in vitro studies of isolated reac-
tions, without a serious criticism of the delicate passage from the kinetics of
simple reactions to the kinetics of a network of reactions shared by seve-
ral cascades in a crowded molecular environment [8]. This can be justified
when analyzing underlying mechanisms (e.g., the importance of feedback or
the creation of oscillations), where the exact kinetic expressions and para-
meters are less important since one is usually only interested in the quali-
tative behavior that the system can perform. However, in the light of the
Silicon Cell project, which aims at being a both qualitative as well as quantita-
tive precise representation of the living cell, the use of correct parameters, kinetic
expressions, and initial conditions (i.e., steady-state concentrations of molecular
species) becomes crucial. This is the subject of the present work.

One of the principal components of the mathematical approach to Systems
Biology is the model of biochemical reactions set forth by Henri in 1901 [9–
11] and Michaelis and Menten in 1913 [12], and further investigated by Briggs
and Haldane in 1925 [13]. This formulation considers a reaction where a sub-
strate S binds an enzyme E reversibly to form a complex C. The complex can
then decay irreversibly to a product P and the enzyme, which is then free to bind
another molecule of the substrate. This process is summarized in the scheme

E + S
a−→←−
d
C

k−→ E + P, (1)
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where a, d, and k are kinetic parameters (supposed constant) associated with the
reaction rates.

This scheme is mathematically represented by a system of two nonlinear
ordinary differential equations (ODEs), corresponding initial conditions and two
conservation laws. The initial conditions give the concentrations of S and C at
the beginning of the reaction, and their time development is described by the
ODEs, while E and P are linked to S and C through the conservation laws.

Assuming that the complex concentration is approximately constant after
a short transient phase leads to the usual Michaelis–Menten (MM) approxi-
mation [or standard quasi steady-state assumption or approximation (standard
QSSA, sQSSA)], which is valid when the enzyme concentration is much lower
than either the substrate concentration or the Michaelis constant KM [14, 15].
This condition is usually fulfilled for in vitro experiments, but sometimes breaks
down in vivo [16–18]. We refer to the next section for the mathematical formu-
lation of scheme (1), and to [19] for a nice, general review of the kinetics and
approximations of (1).

The advantage of a quasi steady-state approximation is that it reduces the
dimension of the system, passing from two equations (full system) to one (MM
approximation or sQSSA) and thus speeds up numerical simulations greatly,
especially for large networks as found in vivo. Moreover, the kinetic constants in
(1) are usually not known, whereas finding the kinetic parameters for the MM
approximation is a standard in vitro procedure in biochemistry [20]. However, to
simulate physiologically realistic in vivo scenarios, one faces the problem that the
MM approximation is no longer valid as mentioned above. Hence, even if the
kinetic constants such as KM are identical in vivo and in vitro, they need to be
implemented in an approximation which is valid for the system under investiga-
tion.

Approximations such as the total QSSA (tQSSA) [21, 22], which is valid for
a broader range of parameters covering both high and low enzyme concentra-
tions, have been introduced recently. Tzafriri [22] showed that the tQSSA is at
least roughly valid for any set of parameters in the case of the reaction in (1).
Importantly, the tQSSA uses the same parameters (Vmax,KM) as the sQSSA.
Hence, the parameters found in vitro from the MM approach can be used by the
tQSSA for modeling in vivo scenarios.

The roles of Vmax, the maximal reaction velocity, and KM, the Michaelis
constant describing the concentration of the substrate at which the reaction rate
is half maximal, become essential when characterizing biochemical reactions in
vitro as well as in vivo. Moreover, descriptions of cooperative reactions, inhi-
bition, and many other biochemical processes have exploited the fundamental
ideas of the MM scheme, i.e., the sQSSA and the parameters Vmax and KM (see,
e.g., [20]). However, since these approximations cannot be expected to be valid in
vivo, employing the tQSSA to these more complex situations would be preferable.
Tzafriri and Edelman [23] studied the completely reversible enzyme reaction in
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terms of the tQSSA. We have recently derived the tQSSA for fully competitive
reactions [24].

In this paper, we compare various approximation schemes of the time
concentration development of the chemical species involved in the reactions. This
is done by numerically solving the system of ODEs derived from the reaction
scheme using the methods and approximations within the various approaches.
Our investigation applies to every biochemical network which includes enzyme
reaction cascades. We show that the use of the sQSSA can lead to gross quan-
titative as well as qualitative wrong conclusions even in the case of simple
networks. The tQSSA is shown to estimate the behavior significantly better,
and therefore we propose to use this approximation when modeling intracellular
signaling networks.

2. Mathematical background

Modeling all of the intermediate steps of enzymatic reactions, including bin-
ding, dissociation, and release of the product using mass action and conservation
laws, leads to a system of ODEs, one for each involved complex and substrate.
We refer to this as the full system. For (1) the equations are

dS
dt
= −a(ET − C)S + d C, (2a)

dC
dt
= a(ET − C)S − (d + k)C (2b)

with the initial conditions

S(0) = ST, C(0) = 0, (3)

and the conservation laws

E + C = ET, S + C + P = ST. (4)

Here ET is the total enzyme concentration assumed to be free at time t = 0. Also
the total substrate concentration, ST, is free at t = 0. This is the mathematical
formulation of the so-called MM kinetics [12, 14, 20].

The next, well-known and widely used step is that of the Henri–Michaelis–
Menten–Briggs–Haldane approximation [9–15]. It leads to an ODE for each sub-
strate while the complexes are assumed to be in a quasi-steady state (i.e., dC

dt ≈
0). See, e.g., [20] for a general introduction to this approach. We refer to this as
the sQSSA. For (1) it is given by

dS
dt
≈ − VmaxS

KM + S , S(0) = ST, (5)

E(0) = ET, Vmax = k ET, KM = d + k
a

.
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Figure 1. Temporal evolution of the product P at high enzyme concentrations for the single reac-
tion (1). In this case, the solution of the full system [(2), circles] is badly approximated by the MM
approximation [sQSSA (5), dashed curve], while the tQSSA [(6), full curve] estimates the behavior
very well. Parameters are k = 0.6,KM = 8, E(0) = ET = 50, and S(0) = ST = 10, all in arbitrary
units.

When we have more than one reaction in the system we denote the Michaelis
constant for reaction i by KM

i , and the reaction constants by ai, di , and ki .
For the single reaction represented in (1) it has been known for many years

that the sQSSA (MM approximation) holds when the initial substrate concen-
tration is much higher than the initial enzyme concentration (ST � ET), but it
was later realized that this is not a necessary condition; if the enzyme concentra-
tion is much less than the Michaelis constant, then the sQSSA also holds [14, 15].
This is summarized in the validity criterion ET � ST + KM, which loosely says
that the sQSSA (5) holds at low enzyme concentrations (with respect to either
the substrate concentration or the KM value).

As mentioned in the introduction, in vivo we cannot in general assume a
low enzyme concentration and hence, the MM approximation cannot be expec-
ted to hold. A recent approach to resolve this problem is that of the tQSSA. It
was introduced by Borghans et al. [21] and refined by Tzafriri [22] for isolated
reactions.

This approximation holds for a much larger region of parameter space, and
is in fact always roughly valid [22]. Importantly, the tQSSA coincides with the
sQSSA when the latter is expected to hold, i.e., at low enzyme concentrations.
Figure 1 shows that the tQSSA approximates the full system very well also for
high enzyme concentrations where the sQSSA fails.

The tQSSA [21, 22] arises by introducing the total substrate S̄ = S+C, and
assuming that the complex is in a quasi-steady state as for the sQSSA. For (1)
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it gives [22]

dS̄
dt
≈ −k C−(S̄), S̄(0) = ST, (6)

where

C−(S̄) = (ET +KM + S̄)−
√
(ET +KM + S̄)2 − 4ETS̄

2
. (7)

Numerical integration of (6) easily gives the time behavior of S̄, C [by (7)], and S
(by the relation S = S̄−C). Tzafriri [22] found a criterium for the validity of the
tQSSA (6) expressed as a certain ε � 1, and showed that this is always roughly
valid in the sense that

ε � K

4KM
� 1

4
. (8)

This means that for any combination of parameters and initial conditions, (6) is
a decent approximation to the full system (2).

As a first order approximation to (6), Tzafriri [22] found the expression,
obtained originally in [21] by different techniques,

dS̄
dt
≈ − VmaxS̄

KM + ET + S̄
, S̄(0) = ST. (9)

This approximation is valid at low enzyme concentrations ET� ST+KM, where
it reduces to the MM expression (5), but holds moreover at low substrate
concentrations ST � ET +KM [22]. Thus, with minimal effort, performing the
substitutions of S by S̄ and of KM by KM + ET, one obtains a significantly
improved MM-like approximation, without any need of more advanced mathe-
matics. In this first order approximation C = ETS̄/(KM + ET + S̄) and then
S = S̄ − C can be calculated.

Finally, while every reaction is characterized by three constant rates (a, d, k),
its QSSA works with only two parameters: Vmax and KM. In general, posing
d = αk, we have

k = Vmax

ET
, d = αVmax

ET
, a = k + d

KM
= (1+ α)Vmax

ETKM
(10)

with one degree of freedom related to the value of α. Consequently, it is possible
to vary the triplet (a, d, k) obtaining the same pair (Vmax,KM). However, the dif-
ferent choices of (a, d, k) could produce significantly different outputs, and thus
predict completely different behavior in the solutions of the full system and of
its QSSAs, respectively, as we will show in section 4.
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Let us remark that several biochemical and mathematical schemes for the
phosphorylation have been suggested in the literature [25–27]. In particular, Sala-
zar and Höfer [27] consider phosphorylation as a double step mechanism, which
can be represented by the following scheme:

S + E
a1−→←−
d1

C1

a2−→←−
d2

C2
k2−→ E + P. (11)

The sQSSA of this reaction was already studied from a mathematical point of
view by Frenzen and Maini [28]. The reason for different approaches to phos-
phorylation is that there is evidence or reaction schemes different from the MM
kinetics for this kind of processes [29, 30].

3. Competing substrates and the double phosphorylation mechanism

A theoretically well-studied example of a slightly more complicated network
than (1) is the case of fully competitive reactions [14, 24, 31], i.e., reactions with
competing substrates, S1 and S2,

S1 + E
a1−→←−
d1

C1
k1−→ E + P1,

S2 + E
a2−→←−
d2

C2
k2−→ E + P2,

(12)

where Si, Ci , and Pi represent substrate, enzyme-substrate complex, and product
(i = 1, 2) for the two competing reactions. Note that this reaction scheme also
covers competitive inhibition (for k2 = 0 with S2 being the inhibitor).

The system (12) is governed by the coupled ODEs and conservation laws
similar to the scenario of a single reaction (1) described above [14, 31, 32]. These
equations are given in appendix A. The sQSSA of this system is [14, 32]

dSi
dt
≈ − kiETSi

KM
i (1+ Sj/KM

j )+ Si
, Si(0) = Si,T, i = 1, 2, j �= i, (13)

which basically holds at low enzyme concentrations [31] as in the case of a single
reaction, which can be seen as a special case of (12) with negligible inhibitor
concentration.

We have recently improved these results [24], extending the region of vali-
dity, by applying the tQSSA to the reactions (12). We showed that the tQSSA
is given by finding C1 as the unique biologically acceptable root (0 < C1 <
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min{ET, S̄1}) of the third degree polynomial

ψ1(C1) = −(KM
1 −KM

2 )C
3
1

+
[
(ET +KM

1 + S̄1)(K
M
1 −KM

2 )− (S̄1K
M
2 + S̄2K

M
1 )

]
C2

1

+
[
−ET(K

M
1 −KM

2 )+ (S̄1K
M
2 + S̄2K

M
1 )+KM

2 (ET +KM
1 )

]
S̄1C1

−ETK
M
2 S̄

2
1 , (14)

and similarly finding C2 as the root in the polynomial ψ2 obtained by interchan-
ging the indices 1 and 2 in (14). Then the evolution of the system can be studied
by means of the tQSSA

dS̄i
dt
≈ −kiCi(S̄1, S̄2), S̄i(0) = Si,T. (15)

This approach extends both the sQSSA for competitive reactions (13) as well
as the tQSSA for isolated reactions (6) as shown in [24]. This is confirmed by
figure 2(a), which shows that the tQSSA (15) approximates the full system very
well. This holds over a wide range of parameters covering both low and high
enzyme concentrations [24].

Our results are immediately applicable to, e.g., successive reactions catalyzed
by the same enzyme, such as non-processive or distributive double phosphoryla-
tion or dephosphorylation processes, as seen for example in the MAPK cascade
[25, 26, 33–35]. The reaction scheme for this case can be seen as a special case of
(12) with P1 = S2 and is summarized as

S1
E−→ S2

E−→ P, (16)

where it is usually assumed that at the beginning only S1 is present. Here S1
and S2 compete for the same enzyme, E. For the case of the MAPK cascade
one can think of, e.g., diphosphorylated and thus activated MAPKK (MAPKK-
PP, here E) phosphorylating MAPK (here S1) twice, producing first mono-
phosphorylated MAPK (MAPK-P, here S2) and then double-phosphorylated
MAPK (MAPK-PP, here P ). See also scheme (17) below. The reason for our
results carrying over to this scenario is that they have the same conservation law
for the enzyme concentration, ET = E +C1 +C2. See appendix A for the equa-
tions describing (16). The applicability of the competitive tQSSA to this scenario
is confirmed in figure 2(b).

However, it should be remarked that, up to now, there is no theoretical
proof of the applicability of the tQSSA for fully competitive enzymes to the case
of successive reactions. The problem is that there is no S2 at time t = 0, and
hence the timescales cannot be found following [14] because the definition of the
transient phase no longer holds.
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In the MAPK cascade literature every single reaction is often treated by a
MM approximation for an isolated reaction of the form (1), not only without
any a priori examination of its applicability, but also neglecting the other terms
involved in the double reaction and, in particular, the important fact that, for
example, MAPK and MAPK-P are competing substrates for MAPKK-P (howe-
ver, see [25, 26]). This means that even when the sQSSA for (16) holds, the
neglect of the competition leads to wrong estimations of the behavior, and
can only be expected to be an even greater problem when the sQSSA breaks
down, in which case the tQSSA should be used. This situation is illustrated
in figure 2(b), which shows that even when both the non-competitive sQSSA
and tQSSA as well as the competitive sQSSA fail, the competitive tQSSA is an
excellent approximation.

The double phosphorylation as well as double dephosphorylation of MAPK
was recently modeled taking into consideration the competition between the
pools of MAPK with different phosphorylation states [25, 26]. We model this
process by assuming that (16) holds for both the phosphorylation as well as
the dephosphorylation processes as in [25]. In [26] both (16) as well as a more
complicated process of phosphorylation were considered, but this further step is
not of our interest here although applying the tQSSA to this more complicated
scheme would be interesting. Similarly, we follow [25] and model the dephospho-
rylation by (16) instead of the slightly more complicated scheme from [26] for the
sake of simplicity.
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Figure 2. Competitive systems. Panel A: a simulation of competing substrates [scheme (12)]. Panel
B: a simulation of two successive reactions catalyzed by the same enzyme (scheme (16)). In both
cases the full system [red circles; panel A: (25), panel B: (28)] is estimated very well by the competi-
tive tQSSA [blue, full curve; panel A: (15), panel B: (30)], while the competitive sQSSA [blue, dashed
curve; panel A: (13), panel B: (29)] as well as the non-competitive sQSSA [black, dashed curve; (5)
for each reaction] and tQSSA [black, dotted curve; (6) for each reaction] do not fit. The parame-
ters are in both panels: k1 = 0.5, k2 = 0.6,KM

1 = 0.75,KM
2 = 8, Etot = 10, and S1(0) = S2(0) = 10

in panel A, S1(0) = 20, S2(0) = 0 in panel B. All units are arbitrary.
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Thus, we are studying the scheme

 MAPKK-PP

MAPK

v1
��

MAPK-P

v2
��

v4

�� MAPK-PP,
v3

��

MKP

����

�� ��
(17)

where the reaction rates v1−v4 are assumed to follow MM kinetics with compe-
tition between MAPK and MAPK-P for activated MAPKK (MAPKK-PP), and
between MAPK-PP and MAPK-P for the generic phosphatase MKP [36].

For the full system and the sQSSA of (17), the equations are basically as
above for schemes (12) and (16), see appendix A.

For the tQSSA special care must be used compared to the previous case of
(16). The problem is that we still do not have the exact tQSSA for reactions of
the given type, because the total substrate corresponding to MAPK-P involves
the two complexes of the reactions v2 and v4, not both relevant when calcula-
ting one of the reaction rates. Therefore, we find a first approximation to each
of these complexes and subtract it from the total substrate, see (21)–(24). New
tQSSAs should be developed to improve on this ad hoc approach.

We use the notation M = [MAPK], Mp=[MAPK-P], Mpp=[MAPK-PP],
E = [MAPKK-PP], F = [MKP] and the concentration of the complex of reac-
tion vi is denoted by Ci, i = 1, 2, 3, 4. The total substrates are defined by

M̄ = M + C1, M̄p = Mp + C2 + C4, M̄pp = Mpp + C3,

and are described by

dM̄
dt
≈ v4 − v1, M̄(0) = [MAPK]T, (18)

dM̄p

dt
≈ v1 − v2 + v3 − v4, M̄p(0) = 0, (19)

dM̄pp

dt
≈ v2 − v3, M̄pp = 0, (20)

where the rates are given by

v1 = k1C1(M̄, M̄p − C4(M̄p, M̄pp ;FT) ;ET), (21)

v2 = k2C2(M̄p − C4(M̄p, M̄pp ;FT), M̄ ;ET), (22)

v3 = k3C3(M̄pp, M̄p − C2(M̄p, M̄ ;ET) ;FT), (23)

v4 = k4C4(M̄p − C2(M̄p, M̄ ;ET), M̄pp ;FT). (24)
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Figure 3. Phosphorylation and dephosphorylation. The sQSSA [(32), dashed line] leads to a wrong
estimation of both the transient behavior as well as steady-state levels, while the tQSSA ((18)–
(24), full line) fits well, for the double phosphorylation/dephosphorylation (17) modeled with
MM kinetics. The full system (31) is shown as circles. Parameters: [MAPK]T=500 (panel A),
[MAPK]T = 50 (panel B), [MKP]T = 100, [MAPKK]T = 50,KM

1 = 50,KM
2 = 500, KM

3 = 22,

KM
4 = 18, k1 = 0.01, k2 = 15, k3 = 0.084, k4 = 0.06. (Concentrations and time in arbitrary units,

but for consistence with [26] one can think of nM and seconds).

Here, Ci(X, Y ;ZT) indicates the complex of reaction i with substrate X, compe-
ting substrate Y and enzyme Z, and is found as indicated for scheme (12). Spe-
cifically, in (14) the following substitutions should be made, and the root then
found: C1 by Ci, S̄1 by X, S̄2 by Y, ET by ZT, K

M
1 by KM

i , and KM
2  by KM

j ,
where j indicates the competing reaction, see scheme (17).

The parameters are taken from [26, figure 1] and are given in the caption of
figure 3. They are given in arbitrary units, but for consistency with [26] one can
think of nM for all concentrations, and seconds for all time units. Other para-
meters should then be expressed in these units.

As seen in figure 3(a), in this case the competitive sQSSA underestimates
the duration of the transient phase before reaching the steady state. Furthermore,
it underestimates the steady state level of MAPK-PP. However, this underestima-
tion is not a feature of the sQSSA, since lowering the total MAPK concentration
to [MAPK]T = 50 results in an (even more pronounced) overestimation of the
steady state level (figure 3(b)), which of course can be of equal importance as an
underestimation. Notably, the tQSSA (18)–(24) fits both the dynamic behavior as
well as steady-state levels very well in both cases. Remark the counter-intuitive
result that a ten times lower total MAPK concentration in figure 3(b) yields a
more than two times higher level of activated MAPK, showing the strength and
utility of mathematical modeling. To illustrate the importance of a reliable esti-
mation of the MAPK levels, we remark that is has been shown experimentally
that the dynamics of MAPK activity is crucial for the fate of the cell [37–40].
For example, PC12 cells proliferate in response to transient MAPK activation,
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while they differentiate when the activated MAPK levels are sustained [41]. We
follow this up in the next section and in the discussion.

4. The MAPK cascade

In the MAPK pathway (figure 4), the upstream kinase (denoted MKKK,
i.e., MAP kinase kinase kinase; for example Raf), when activated, phosphory-
lates the immediately downstream target, which is also a kinase (MAPKK, i.e.,
MAP kinase kinase, for example MEK) successively on two specific sites, even-
tually activating it. This last double-phosphorylated kinase (MAPKK-PP) acts
on the MAPK (for example ERK) through specific phosphorylation events on
two distinct sites. The activated MAPK is then responsible for further downs-
tream signalling. The activated cascade is shut down by the reverse action of spe-
cific phosphatases [36, 42], whose outcome is the time modulation of the signal,
probably through the regulation of the active kinase (for example, transient ver-
sus sustained activation). Moreover, the phosphatase controls the steady state
level of activated MAPK, which, in turn, controls downstream processes as men-
tioned in the previous section. Looking at the complete MAPK cascade, shown
in figure 4, it is clear that all the problems arising in the simpler cases described
in the previous sections may occur.

Recently, oscillatory phenomena have been investigated theoretically for
signal transduction networks like MAPK cascade [3]. Several authors suppose
that MAPK-PP acts, by means of a feedback mechanism, on the first layer of
the MAPK cascade, and in some cases this feedback has been shown experi-
mentally, for example in NIH3T3 cells, where Raf-1, a MKKK, was found to be

MKKK

1

MKKK-P

2

MAPKK

3

MAPKK-P

4

6

MAPKK-PP

5

MAPK

7

MAPK-P

8

10

MAPK-PP

9

KI

Figure 4. The MAPK cascade. The diagram is based on [3]. Each of the reactions is assumed to
follow MM kinetics, but there are competitive reactions since MKKK-P catalyzes both reactions 3
and 4 and MAPKK-PP catalyzes both reactions 7 and 8. Similarly, reactions 5 and 6 are assumed
to compete for a phosphatase, and both reactions 9 and 10 to be catalyzed by another phosphastase
(MKP in (17)). The phosphatases are not shown for clarity of the figure. The dashed line indicates
inhibition of reaction 1 by MAPK-PP as in [3]. However, we assume that this inhibition is compe-
titive. M-P and M-PP represent, respectively, monophosphorylated and diphosphorylated M, where
M is either MKKK, MAPKK or MAPK.
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Table 1
Regions of oscillations for the MAPK cascade with feedback expressed by the inhibition

constant KI.

Method Oscillations

Full system KI < 0.18
Competitive tQSSA KI < 0.86
Competitive sQSSA KI < 3.02

inactivated by ERK, a MAPK [43]. See also [39, 44] for reviews. Kholodenko [3]
introduced a non-competitive inhibition of this kind. The mathematical model
of this complex network (with or without feedback) was built using the MM
approximation without considering substrate competition, and it was shown that
oscillations could occur for several parameter values.

However, the appearance of oscillations could depend on the way in which
the model has been formulated. We compare the network with the full system
of reactions to both the competitive sQSSA [25, 26] and the competitive tQSSA
[24]. In contrast to Kholodenko [3], we model the negative feedback as a com-
petitive inhibition with inhibition constant KI to allow the use of the competi-
tive tQSSA (see figure 4 and appendix A). The differential equations describing
the full system and the competitive sQSSA are found as for the reactions descri-
bed in the previous sections, and the equations for the tQSSA are found as for
scheme (17). Since MKKK-P and MAPKK-PP have the function of products,
substrates, and enzymes, we have non-constant enzyme concentrations. Moreo-
ver, special care must be used in the tQSSA, since the total MKKK-P, MAPKK-
PP, and MAPK-PP concentrations are not easily defined, in addition to the
problems for MAPKK-P and MAPK-P mentioned above for scheme (17). All
the differential equations describing the MAPK cascade and further explana-
tions for the tQSSA are given in appendix A. The parameter values used for the
MAPK cascade are given in figure captions or in table 1.

Our simulations confirm that the cascade can reach a steady state as well as
oscillate also in this case. However, with parameters very similar to [3] the (com-
petitive) sQSSA approximation can lead to qualitatively wrong conclusions such
as oscillations when the full system is steady [figures 5(b) and (c)], or quantitative
wrong estimations of, e.g., the amplitude of the oscillations [figure 5(a)], or the
steady-state levels of MAPK-PP [figure 5(d)], while the full system is in general
much better approximated by the (competitive) tQSSA. However, for some para-
meters the tQSSA approach also fails qualitatively [figure 5(b)], or with respect
to the period of the oscillations [figure 5(a)].

In table 1, we summarize the ranges of the inhibition constant KI for which
MAPK-PP oscillates in the three cases. It is seen that the solution of the full
system undergoes oscillations for a very narrow range of this parameter, while
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Figure 5. Simulations of the MAPK cascade with feedback as in figure 4. The computed MAPK-
PP concentration is shown following the legends in figure 3. The values of the inhibition constant
are as follows: Panel A: KI = 0.1. Panel B: KI = 0.5. Panel C: KI = 2.5. Panel D: KI =
20. At low values of KI (panel A), all the three schemes, full system (circles), tQSSA (full curve)
and sQSSA (dashed curve), produce oscillations, but the tQSSA follows the solution much better
than the sQSSA, especially with respect to the amplitude of the oscillations. In panel C, although
the MAPK-PP modelled by the full system (circles) almost immediately reaches a steady-state, the
sQSSA (dashed curve) shows oscillations. On the other hand, the full system is followed very well by
the tQSSA (full curve). However, this is not always the case, since the tQSSA can also predict oscil-
lations when the full system is stable (panel B). Finally, at high values of KI all the three approaches
go to a steady state, but the sQSSA overestimates the MAPK-PP level significantly (panel D).

the use of the sQSSA yields oscillations for a much larger range, also for values
for which the solution of the full system does not perform rhythmic behavior
[Figures 5(b) and (c)]. However, the competitive tQSSA also fails to predict the
behavior for some parameters, but the range for which this occurs is markedly
reduced compared to the sQSSA (table 1). New improved tQSSAs should be
developed in order to get a better representation of the full system.

The great majority of authors using the sQSSA usually neglects the concen-
tration of the complexes, as expressed, e.g., in the conservation law [MAPK]T =
[MAPK]+[MAPK-P]+[MAPK-PP] [3, 26], but this is only valid at low enzyme
concentrations. We suppose that this is the major reason for the poor predic-
tion of the sQSSA. Figure 6(a) shows the complex (MAPK-P)–(MAPKK-PP) of
reaction 8 in figure 4, the substrate MAPK-P and the free enzyme MAPKK-
PP. In contrast with the sQSSA, the tQSSA considers the complex concen-
trations, and it is seen from figure 6(a) that this is necessary, since the total
substrate concentration is comparable with the complex concentration.
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Figure 6. Non-neglectible and non-constant complex concentrations in the MAPK cascade. In the
full system describing the MAPK cascade with feedback, the complex (MAPK-P)–(MAPKK-PP) is
neither negligible (panel A) nor approximately constant (panel B). Panel A shows the concentrations
of the complex (MAPK-P)–(MAPKK-PP) (red, full curve), MAPK-P (blue, dashed curve), “total
MAPK-P” (MAPK-P ; blue, dotted curve) and MAPKK-PP (black, dash-dot curve) during the last
part of the simulation of the full system from figure 5(b). Panel B shows the absolute value of the
time derivative of the complex, MAPK-P and MAPK-P (same legends as in panel A).

Taking the complex concentrations into account is not only important for
the generation of oscillations, but, as it could be expected, also for the steady-
state concentrations obtained for the full system, the sQSSA and the tQSSA
at high values of the inhibition constant KI (table 1). With the parameters
used here the competitive sQSSA overestimates the steady-state level of activated
MAPK [figure 5(d)] as in the simpler case considering only the last level of the
cascade [figure 3(b)]. On the other hand, the competitive tQSSA estimates this
level well [figures 5(c) and (d)]. As mentioned in the previous section, the cor-
rect estimation of activated MAPK-PP has important implications for predicting
further downstream effects. We follow this question up in the discussion.

A second problem of both the QSSAs is the fact that the complex never
enters a steady state during the oscillations. In figure 6(b), we show the time deri-
vatives of the concentrations from panel A, which measure the rate of change.
The assumption that the complex concentration changes much more slowly than
the substrate lies at the heart of the QSSAs, but this does not hold in general;
as seen in figure 6(b) the rate of change of the complex is comparable to that
of the substrate, the total substrate and the kinase. We believe that this is why
the tQSSA also fails for some parameters and, moreover, sometimes estimates
the period of the oscillations badly [figure 5(b)]. Consequently, it would in some
cases be preferable to model the network by means of the full system. The impli-
cations of this approach and its flaws will be faced in the discussion.
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5. Conclusions and perspectives

Far from being a collection of serial chemical reactions, the higher euka-
ryotic intracellular signal transduction networks are highly complex. The increa-
sed amount of data and knowledge about these networks has made mathematical
modeling and computational methods increasingly important in Systems Biology,
and has led to projects such as the Silicon Cell, which aims at being a precise
replica of the living cell. This means using experimentally found data and repro-
ducing both qualitative and quantitative behavior of the cell.

In a recent paper [45] the so-called Van Slyke–Cullen mechanism, i.e., an
irreversible enzyme reaction, with inflow and outflow was studied. It was shown
that the sQSSA of the system would always approach a stable steady state even
though the full system permitted an unstable steady state and even a limit cycle.
It is readily shown that these observations can be extended to an open MM
mechanism by changing some of the constants in the computations. Thus, in line
with our results the authors showed that the sQSSA must be used with care [45].

So far most of the models describing enzyme reactions, e.g., in the MAPK
cascade, have been based on the classical MM approximation (sQSSA) and many
of these did not consider competition between substrates. These approaches were
taken, although parameters and initial conditions were chosen so that the vali-
dity criterion for the sQSSA no longer held and the competition could not be
neglected. As exceptions, we mention Hatakeyama et al. [25] and Markevich et
al. [26], who treated the problem of substrate competition in terms of the sQSSA
for two substrates competing for the same kinase, but they did not consider the
region of validity of the sQSSA and neglected the enzyme–substrate complexes.

Although it was known that the sQSSA will often be invalid in vivo, the
sQSSA approach was necessary for many years, since no better approximations
were known, but this has changed recently with the introduction of the tQSSA.
This approach was first applied to the simplest reactions [21, 22], and later to
increasingly more complex schemes such as reversible reactions [23] and fully
competing systems [24].

We have here presented the application of the tQSSA to biologically rea-
listic networks, and shown that it is superior to the sQSSA in all the presen-
ted cases. We did not formally investigate the validity of the tQSSA for all the
reaction networks examined, and found in fact that the tQSSA has its limita-
tions as well (table 1), probably related to the fact that the complexes do not
always enter a quasi-steady state (figure 6b). However, based on our simulations
we feel confident in saying that compared to the sQSSA it provides a more accu-
rate estimate of the behavior of enzyme networks. For example, it was found that
the tQSSA estimates the steady state levels of activated MAPK very well [figures
3 and 5(a)], while the sQSSA often fails dramatically. We believe that the main
reason for this is the fact that the tQSSA incorporates the complex concentra-
tions while the sQSSA does not, as stated for example in the conservation law
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[MAPK]T = [MAPK] + [MAPK-P] + [MAPK-PP] [3, 26]. We also showed that
the choice of the approximation scheme could dramatically change the size of the
parameter range in which oscillations occur in the MAPK cascade with a com-
petitive, negative feedback [figure 5(a) and table 1].

As already noted in section 3, to illustrate the importance of a reliable esti-
mation of the MAPK dynamics and steady-state levels, we remark that is has
been observed that both the duration and intensity of the activated MAPK is
crucial for the fate of the cell ([37, 40, 41, 46] and references therein). For example,
rat PC12 cells differentiate if stimulated by nerve growth factor (NGF) and
proliferate if stimulated by epidermal growth factor (EGF) [47–50], although
the cognate receptors use the same signaling cytoplasmic network to trans-
duce the signal to the nucleus. In the two cases, the most evident difference
is that NGF induces a sustained MAPK (ERK) activity, while EGF induces a
transient MAPK (ERK) activity (see [41] for a review). Recently, it was also
shown that PC12 [48] and Kaposi Sarcoma [51] cells are sensitive to the strength
of the MAPK signal indicating a threshold phenomenon, which means that
even minor changes in the levels of activated MAPK can have dramatic conse-
quences.

If any Silicon Cell should help to discover pharmaceutically sensitive targets
and reproduce the effects of drugs on these targets, the quantitative aspects of
the model would have to be carefully studied and resolved, for example in esti-
mating the size of the above parameter windows. For instance, continuing the
example of the MAPK cascade with inhibitory feedback, assume that we wish
to apply a drug in order to create oscillations. Lowering the KI value would
appear promising on the basis of the model using the sQSSA, since this model
predicts oscillations in a rather wide parameter range (table 1). However, this
could encourage a waste of resources searching for an appropriate pharmaceu-
tical compound, since the drug would have to be very finely tuned and, hence,
difficult to find, because the full system has a very narrow parameter range
yielding oscillations. Thus, one might be better off looking for a drug acting
elsewhere in the network.

Since the tQSSA, although superior to the sQSSA, also does not always
work, one could suggest to use the alternative of simulating each step of the
reaction by means of the full system of ODEs, which means describing every
reaction in terms of two equations, and facing three instead of two parameters
for every reaction, as it has been done for example for the MAPK cascade [4, 5,
52, 53], However, more equations would mean, especially for larger systems, that
this approach quickly would become computer expensive.

A more serious problem is the fact that the three rate constants [a, d, and k
in (1)] are usually unknown, while finding the QSSA parameters KM and Vmax
(or kcat = Vmax/ET) is a standard procedure in biochemistry. Thus, the reduc-
tion obtained from the QSSA is in this sense an advantage compared to the full
system. We could in any case rebuild the parameters a, d, k starting from the
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MM parameters, but, as shown in the Introduction, we then introduce a degree
freedom. Bhalla and Iyengar [2] try to overcome this problem supposing that
d = 4k, but this hypothesis seems to us a bit arbitrary without any strong expe-
rimental support, as already remarked by the authors. However, we have applied
this assumption through out this work when modeling the full system.

The validity of the tQSSA depends on the precise values of a, d, and k as
stated for example in (8) for the case of a single reaction: the smaller the ratio
K/KM, i.e., the larger the ratio d/k, the better the approximation. However, for
any choice with a large ratio d/k, the tQSSA holds. A similar result holds for
fully competitive reactions [24]. This is consistent with the choice of d = 4k and
supported by the fact that for many enzymes the parameter d is much greater
than k [54, 55].

From a theoretical point of view, the application of the tQSSA in this way
makes the actual parameter values of a, d, and k less important. When we a
priori know that the system can be well-approximated by the tQSSA, all the pos-
sible choices of a, d, k will give approximations near each other, and hence, near
the true solution, assuming that the true parameters are such that the tQSSA is
valid. This can be used in cases where only the parameters KM and Vmax are
available, the sQSSA is known not to hold, and only a very complicated tQSSA,
too complicated to implement effectively on a computer, exists. One can then
choose any relation between a, d, and k giving the correct values for KM and
Vmax, check that the tQSSA holds using a theoretically founded validity criteria,
and then do the simpler implementation of the full system of equations.

Related to the above, but from another point of view, is the lack of reliable
experimental data about the kinetic constants of the intracellular biochemical
reactions, including KM and Vmax values. To reconstruct these missing parame-
ter values, some authors rely on the so-called reverse engineering (or inverse pro-
blem). The classical approach to reverse engineering is based on least square
techniques with the aim to find the set of parameters that gives the best fitting
curve, i.e., the curve passing “as close as possible” to the experimental data. This
is done searching for the global minimum of a function of as many variables as
there are unknown parameters. To find the global minimum of these functions is
in general far from trivial, for example due to the risk of finding only local, not
global, minima. Furthermore the uniqueness of this minimum cannot, in general,
be guaranteed; several sets of parameters could give the global minimum. This is
the question of a priori identifiability [56].

As shown in the present work, the misuse of the sQSSA can lead to large
quantitative and qualitative errors. However, even when the sQSSA is not a good
approximation of the system, we can still find parameters for which the sQSSA
does fit the data (the full system), by minimizing, e.g., the least square error. This
would inevitably lead to wrongly estimated parameters, since the original ones
did not provide a good approximation [57].
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From these considerations it follows that the ability of the model to fit a
certain data set cannot be used to test whether a certain approximation holds.
Applying reverse engineering for the sQSSA, without any a priori examination
of its validity, one could argue that the (mis)use of the sQSSA causes no pro-
blems, since we can obtain a good fit anyway. However, one would prefer to have
a model that works under many different conditions, not only in a certain expe-
rimental setting. If fitting the sQSSA model to the data yields wrong estimates of
the parameters, then it is likely that the predicted behavior using these parame-
ters would be far from the true behavior. The same would be true if the model
was later used as a subsystem of an enlarged model. For example, the estimation
of the Michaelis or inhibition constant relying on a wrong model formulation
could be crucial, as seen in the following example.

Assume that all the parameters except the inhibition constant KI were
known for the model illustrated by figure 4. If we had a data set for this model
showing stable behavior, according to table 1, using the sQSSA we would esti-
mate a value of KI greater than 3.02, even though the true value of KI could
be between 0.18 and 3.02. Assume now that we obtain a drug capable of lowe-
ring the KI value according to some known mechanisms, and that we decide to
administrate the drug to lower KI with the aim to let the system oscillate. Belie-
ving that the sQSSA estimated KI is the true value, we would apply a certain
amount of the drug in order to get below the threshold value at KI = 3.02. But
the actual value of KI could be completely different from the wrongly estimated
one and such that the drug administration, though lowering KI, would leave the
system stable.

Similar problems can be expected to occur in metabolic control analysis
[52, 58, 59], which is used to find the steps in the network that controls some output
behavior, e.g., the concentration of a certain biochemical species. It seems likely
that an invalid sQSSA model might predict that a certain step is the most impor-
tant, while the full system or the corresponding tQSSA model finds that step to
be less important. In the light of applications for the pharmaceutical industry,
this could lead to a waste of money and energy focusing on an apparently sen-
sitive target, which then turns out to be unimportant or, vice versa, the neglect
of an important target that apparently seems unimportant.

In conclusion, we have shown that the use of the classical MM approach
(sQSSA) should be done with much care, since it can lead to both quantita-
tive and qualitative errors. This has further impact on techniques such as reverse
engineering and metabolic control analysis. Finding approximations improving
the sQSSA for complex reactions such as successive reactions, open systems,
loops such as the Goldbeter–Koshland switch [60], feedback systems, etc., and
investigating their validity, should be of great interest for further investigations
and simulations of such reactions in vivo, where the MM description can be
expected to break down.
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Appendix A All equations and parameters

• The equations for the single, non-competitive reaction (1) are described in the
Introduction [equations (2), (5), and (6)].
The parameters used are given in the caption of figure 1 using the relation d =
4k for the full system as described in the Introduction.
• The equations for the sQSSA and the tQSSA of the fully competitive reactions

(12) are given in section 2 [(13) and (15)].
The full system is given by i = 1, 2,

dSi
dt
= −aiE · Si + diCi, Si(0) = Si,T, (25a)

dCi
dt
= ai(E · Si −KM

i Ci), Ci(0) = 0, KM
i =

di + ki
ai

, (25b)

and the conservation laws

Si,T = Si + Ci + Pi, i = 1, 2, (26)

ET = E + C1 + C2. (27)

The parameters used are given in the caption of figure 2 using the relation d =
4k for the full system as described in the Introduction.
• The equations for the two successive reactions (16) are descibed by:

Full system:

dS1

dt
= −a1E · S1 + d1C1, S1(0) = ST, (28a)

dS2

dt
= k1C1 − a2E · S2 + d2C2, S2(0) = 0, (28b)

dCi
dt
= ai(E · Si −KM

i Ci), Ci(0) = 0, KM
i =

di + ki
ai

, i = 1, 2, (28c)

ST = S1 + S2 + C1 + C2 + P, (28d)

ET = E + C1 + C2. (28e)

sQSSA:

dS1

dt
≈ − k1ETS1

KM
1 (1+ S2/K

M
2 )+ S1

, S1(0) = ST, (29a)

dS2

dt
≈ k1ETS1

KM
1 (1+ S2/K

M
2 )+ S1

− k2ETS2

KM
2 (1+ S1/K

M
1 )+ S2

, S2(0) = 0, (29b)

P = ST − S1 − S2. (29c)
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tQSSA:

dS̄1

dt
≈ −k1 C1(S̄1, S̄2), S̄1(0) = ST, (30a)

dS̄2

dt
≈ k1 C1(S̄1, S̄2)− k2 C2(S̄1, S̄2), S̄2(0) = 0, (30b)

P = ST − S̄1 − S̄2, (30c)

where the expression for Ci(S̄1, S̄2), i = 1, 2, are given by finding the root of
ψ1 given by (14) and the corresponding expression for C2.
The parameters used are given in the caption of figure 2 using the relation d =
4k for the full system as described in the Introduction.
• The double phosphorylation and dephosphorylation scheme (17) is described

by:
Full system:

dM
dt
= −a1E ·M + d1C1 + k4C4, M(0) = [MAPK]T, (31a)

dMp

dt
= −a2E ·Mp+d2C2+k1C1−a4F ·Mp+d4C4+k3C3, Mp(0)=0,(31b)

dMpp

dt
= −a3F ·Mpp + d3C3 + k2C2, Mpp(0) = 0, (31c)

dC1

dt
= −(d1 + k1) C1 + a1E ·M, C1(0) = 0, (31d)

dC2

dt
= −(d2 + k2) C2 + a2E ·Mp, C2(0) = 0, (31e)

dC3

dt
= −(d3 + k3) C3 + a3F ·Mpp, C3(0) = 0, (31f)

dC4

dt
= −(d4 + k4) C4 + a4F ·Mp, C4(0) = 0, (31g)

where M=[MAPK], Mp=[MAPK-P], Mpp=[MAPK-PP], E=[MAPKK-PP],
F=[MKP], and the concentration of the complex of reaction vi is denoted by
Ci, i = 1, 2, 3, 4. The conservation laws are (the first one is a consequence of
the ODEs, and thus redundant and only included for clarity):

[MAPK]T = M +Mp +Mpp + C1 + C2 + C3 + C4,

[MAPKK-PP]T = E + C1 + C2 = ET,

[MKP]T = F + C3 + C4 = FT.
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sQSSA:

dM
dt
≈ v4 − v1, M(0) = [MAPK]T, (32a)

dMp

dt
≈ v1 − v2 + v3 − v4, Mp(0) = 0, (32b)

dMpp

dt
≈ v2 − v3, Mpp = 0, (32c)

with the rates v1 − v4 given by:

v1 = k1ETM

KM
1 (1+Mp/K

M
2 )+M

, v2 = k2ETMp

KM
2 (1+M/KM

1 )+Mp
,

v3 = k3FTMpp

KM
3 (1+Mp/K

M
4 )+Mpp

, v4 = k4FTMp

KM
4 (1+Mpp/K

M
3 )+Mp

.

tQSSA: The equations are described in the main text (18)–(24).
The parameters are taken from [26, figure 1] and are given in the caption of
figure 3. They are given in arbitrary units, but for consistency with [26] one
can think of nM for all concentrations, and seconds for all time units. Other
parameters should then be expressed in these units.
• The MAPK cascade of figure 4 is modeled by:

Full system:

dS2

dt
= k1C1 − a2S2F2 + d2C2

+(d3 + k3)C3 − a3S2S3 + (d4 + k4)C4 − a4S2S4, S2(0) = 0,
dS4

dt
= k3C3 − a4S4S2 + d4C4 + k5C5 − a6S4F5 + d6C6, S4(0) = 0,

dS5

dt
= k4C4 − a5S5F5 + d5C5

+(d7 + k7)C7 + (d8 + k8)C8 − a7S7S5 − a8S8S5, S5(0) = 0,
dS8

dt
= k7C7 − a8S8S5 + d8C8 + k9C9 − a10S8F9 + d10C10, S8(0) = 0,

dS9

dt
= k8C8 − a9S9F9 + d9C9 + kI−Cinh − kI+S9E1, S9(0) = 0,

dC1

dt
= a1S1E1 − (d1 + k1)C1, C1(0) = 0,

dC2

dt
= a2S2F2 − (d2 + k2)C2, C2(0) = 0,
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dC3

dt
= a3S3S2 − (d3 + k3)C3, C3(0) = 0,

dC4

dt
= a4S4S2 − (d4 + k4)C4, C4(0) = 0,

dC5

dt
= a5S5F5 − (d5 + k5)C5, C5(0) = 0,

dC6

dt
= a6S4F5 − (d6 + k6)C6, C6(0) = 0,

dC7

dt
= a7S7S5 − (d7 + k7)C7, C7(0) = 0,

dC8

dt
= a8S8S5 − (d8 + k8)C8, C8(0) = 0,

dC9

dt
= a9S9F9 − (d9 + k9)C9, C9(0) = 0,

dC10

dt
= a10S8F9 − (d10 + k10)C10, C10(0) = 0,

dCinh

dt
= kI+E1S9 − kI−Cinh, Cinh(0) = 0,

with conservation laws

S1 = S1,T − S2 − C1 − C2 − C3 − C4,

S3 = S3,T − S4 − S5 − C3 − C4 − C5 − C6 − C7 − C8,

S7 = S7,T − S8 − S9 − C7 − C8 − C9 − C10 − Cinh,

F2 = F2,T − C2,

F5 = F5,T − C5 − C6,

F9 = F9,T − C9 − C10,

E1 = E1,T − C1 − Cinh.

Here S1=[MKKK], S2=[MKKK-P], S3=[MAPKK], S4=[MAPKK-P], S5=
[MAPKK-PP], S7=[MAPK], S8=[MAPK-P], S9=[MAPK-PP]; E1 the concen-
tration of a kinase (e.g., Ras), while F2, F5, and F9 are concentrations of phos-
phatases; Cj , j = 1, . . . , 10, the complex of reaction i and Cinh the inhibition
complex E1−(MAPK-PP).
sQSSA:
Introducing

KM
i =

di + ki
ai

, i = 1, . . . , 10, KI = kI−
kI+
, (33)
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the sQSSA is

dS2

dt
≈ v1 − v2, S2(0) = 0,

dS4

dt
≈ v3 − v4 + v5 − v6, S4(0) = 0,

dS5

dt
≈ v4 − v5, S5(0) = 0,

dS8

dt
≈ v7 − v8 + v9 − v10, S8(0) = 0,

dS9

dt
≈ v8 − v9, S9(0) = 0,

[MKKK]T = S̄1 + S̄2,

[MAPKK]T = S̄3 + S̄4 + S̄5,

[MAPK]T = S̄7 + S̄8 + S̄9

with the rates given by

v1 = k1E1,TS1

KM
1 (1+ S9/KI)+ S1

, v2 = k2F2,TS2

KM
2 + S2

,

v3 = k3S2S3

KM
3 (1+ S4/K

M
4 )+ S3

, v4 = k4S2S4

KM
4 (1+ S3/K

M
3 )+ S4

,

v5 = k5F5,TS5

KM
5 (1+ S4/K

M
6 )+ S5

, v6 = k6F5,TS4

KM
6 (1+ S5/K

M
5 )+ S4

,

v7 = k7S5S7

KM
7 (1+ S8/K

M
8 )+ S7

, v8 = k8S5S8

KM
8 (1+ S7/K

M
7 )+ S8

,

v9 = k9F9,TS9

KM
9 (1+ S8/K

M
10 )+ S9

, v10 = k10F9,TS8

KM
10 (1+ S9/K

M
9 )+ S8

.

tQSSA:
The total substrates are

S̄1 = S1 + C1, S̄2 = S2 + C2 + C3 + C4,

S̄3 = S3 + C3, S̄4 = S4 + C4 + C6, S̄5 = S5 + C5 + C7 + C8,

S̄7 = S7 + C7, S̄8 = S8 + C8 + C10, S̄9 = S9 + C9 + Cinh,
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which are governed by the equations

dS̄2

dt
≈ v1 − v2, S̄2(0) = 0,

dS̄4

dt
≈ v3 − v4 + v5 − v6, S̄4(0) = 0,

dS̄5

dt
≈ v4 − v5, S̄5(0) = 0,

dS̄8

dt
≈ v7 − v8 + v9 − v10, S̄8(0) = 0,

dS̄9

dt
≈ v8 − v9, S̄9(0) = 0,

[MKKK]T = S̄1 + S̄2,

[MAPKK]T = S̄3 + S̄4 + S̄5,

[MAPK]T = S̄7 + S̄8 + S̄9

with rates

v1 = k1 C1(S̄1, S̄9 − C9(S̄9, S̄8;F9);E1),

v2 = k2 C2(S̄2 − C3(S̄3, S̄4; S̄2)− C4(S̄4, S̄3; S̄2), 0;F2,T),

v3 = k3 C3(S̄3, S̄4 − C6(S̄4, S̄5;F5,T); S̄2 − C2(S̄2, 0;F2,T)),

v4 = k4 C4(S̄4 − C6(S̄4, S̄5;F5,T), S̄3; S̄2 − C2(S̄2, 0;F2,T)),

v5 = k5 C5(S̄5 − C7(S̄7, S̄8; S̄5)− C8(S̄8, S̄7; S̄5), S̄4 − C4(S̄4, S̄3; S̄2);F5,T),

v6 = k6 C6(S̄4 − C4(S̄4, S̄3; S̄2), S̄5 − C7(S̄7, S̄8; S̄5)− C8(S̄8, S̄7; S̄5);F5,T),

v7 = k7 C7(S̄7, S̄8 − C10(S̄8, S̄9;F9,T); S̄5 − C5(S̄5, S̄4;F5,T)),

v8 = k8 C8(S̄8 − C10(S̄8, S̄9;F9,T), S̄7; S̄5 − C5(S̄5, S̄4;F5,T)),

v9 = k9 C9(S̄9 − Cinh(S̄9, S̄1;E1), S̄8 − C8(S̄8, S̄7; S̄5);F9,T),

v10 = vk10 C10(S̄8 − C8(S̄8, S̄7; S̄5), S̄9 − Cinh(S̄9, S̄1;E1);F9,T),

Ci(X, Y ;ZT) indicates the complex of reaction i with substrate X, compe-
ting substrate Y and enzyme Z, and is found as indicated for scheme (12).
Specifically, in (14) the following substitutions should be made, and the root
then found: C1 by Ci, S̄1 by X, S̄2 by Y,ET by ZT,K

M
1 by KM

i , and KM
2  by

KM
j , where j indicates the competing reaction, see scheme (17). For C1,K

M
2

should be substituted by KI because of the competitive inhibition, while for
Cinh,K

M
1  should be substituted by KI and KM

2 by KM
1 .

The idea behind the expressions above is that we still do not have the exact
tQSSA for reactions of the given type. The problem is that the total substrates
involve several complexes not all relevant for the reaction under consideration,
and this is further complicated by the fact that several of the species, e.g., S2,
act both as a substrate and an enzyme. We calculate a first approximation to
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Table 2
Parameter values in the MAPK cascade model [3]. For the full system the remaining parameters are

calculated as explained above and from (33).

[MKKK]T = 100 [MAPKK]T = 300 [MAPK]T = 300 E1,T = 100

F2,T = 10 F5,T = 10 F9,T = 10 KI = varies
KM

1 = 10 KM
2 = 8 KM

j
= 15, j = 3, . . . , 10

kI+ = 1 kj = 0.025, j = 1, . . . , 4 k5 = 0.075 k6 = 0.075
k7 = 0.025 k8 = 0.025 k9 = 0.05 k10 = 0.05

each of these complexes and subtract it from the total substrate. New tQSSAs
should be developed to improve on this ad hoc approach.
The parameters are based on [3], but modified to competitive inhibition. In
order to have the same magnitude on the ki values, we chose the level of E1
and the phosphatases appropriately. The parameters are given in table 2.
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