ONLINE SUPPLEMENTARY MATERIAL

 $http://www.dmmm.uniroma1.it/{\sim}bersani/mousetrap.html/tables.pdf$

	0 - 2	0 - 2	0 – 4
	s = 2	$\begin{array}{ c c c c c c } \hline s = 3 \\ \hline 20 \\ \hline \end{array}$	s = 4
	_		
m=2	4/4 (3/3) - SC	7/7 (5/5) - SC	$10/10 \ (7/7) - SC$
	immediate	immediate	immediate
	90	1680	34650
m=3	9/10 (5/5) - WC	16/16 (8/8) - SC	22/22 (11/11) - SC
	immediate	immediate	immediate
	2520	369600	63063000
m=4	$17/18 \ (7/7) - WC$	28/28 (11/11) - SC	$38/38 \ (15/15) - SC$
	immediate	immediate	immediate
	113400	168168000	$\sim 3.06 \cdot 10^{11}$
m=5	27/28 (9/9) - WC	43/43 (14/14) - SC	58/58 (19/19) - SC
	immediate	355, 932	14, 461, 409
	7484400	$\sim 1.37 \cdot 10^{11}$	$\sim 3.25 \cdot 10^{15}$
m=6	$40/40 \ (11/11) - SC$	61/61 (17/17) - SC	82/82 (23/23) - SC
	4,530,195	123, 289, 316	314, 429, 118
	681080400	$\sim 1.83 \cdot 10^{14}$	$\sim 6.65 \cdot 10^{19}$
m = 7	$54/54 \ (13/13) - SC$	82/82 (20/20) - SC	$110/110 \ (27/27) - SC$
	62, 241, 794	7, 332, 146, 168	63, 227, 020, 954
	$\sim 8.17 \cdot 10^{10}$	$\sim 3.69 \cdot 10^{17}$	$\sim 2.39 \cdot 10^{24}$
m=8	$70/70 \ (15/15) - SC$	106/106 (23/23) - SC	139/142 (31/31) - WC
	4,152,727,936	$\sim 147,000,000,000$	$\sim 264,386,000,000$
	$\sim 1.25 \cdot 10^{13}$	$\sim 1.08 \cdot 10^{21}$	$\sim 1.41 \cdot 10^{29}$
m=9	88/88 (17/17) - SC	131/133 (26/26) - WC	172/178 (34/35)
	$\sim 90,000,000,000$	$\sim 255,000,000,000$	> 207, 000, 000, 000
	$\sim 2.38 \cdot 10^{15}$	$\sim 4.39 \cdot 10^{24}$	$\sim 1.29 \cdot 10^{34}$
m=10	$106/108 \ (19/19) - WC$	154/163 (28/29)	205/218 (37/39)
	> 600,000,000,000	> 81,000,000,000	> 217,000,000,000
	$\sim 5.49 \cdot 10^{17}$	$\sim 2.39 \cdot 10^{28}$	$\sim 1.75 \cdot 10^{39}$
m=11	$128/130 \ (21/21) - WC$	184/196 (31/32)	224/262 (39/43)
	92,800,000,000	36, 700, 000, 000	2,000,000,000
	$\sim 1.51 \cdot 10^{20}$	$\sim 1.71 \cdot 10^{32}$	$\sim 3.40 \cdot 10^{44}$
m=12	139/154 (22/23)	204/232 (33/35)	273/310 (43/47)
	12,000,000,000	2,000,000,000	1,000,000,000
	$\sim 4.92 \cdot 10^{22}$	$\sim 1.56 \cdot 10^{36}$	$\sim 9.20 \cdot 10^{49}$
m=13	158/180 (22/25)	235/271 (34/38)	305/362 (45/51)
	2,000,000,000	5,000,000,000	4,000,000,000
	_, ~~, ~~, ~~, ~~		2,000,000,000

Table 1 - BEST SCORES IN $(HLM)^2N$ OBTAINED WITH MONTE CARLO METHODS

In each box of this table we report the number $N_{m\cdot s}$ of different decks; the ratio between the best score and C_{max} ; the ratio between the best number of stored cards and the number predicted by (WC); the number of simulations performed before achieving the first winning deck or performed without obtaining any winning deck. The number of simulations is given by the sum of the trials done by F. Scigliano and by myself, while I have no information about the number of simulations done by A. Pompili. The symbols SC and WC indicate respectively if we proved the strong or the weak conjecture.

	s=2	s=3	s=4
m = 2	$3/6 \; ; \; P_{max} = 0.5$	$4/20 \; ; \; P_{max} = 0.2$	$15/70 \; ; \; P_{max} \sim 0.21$
m = 3	$0/90 \; ; \; P_{max} = 0$	$4/1680 \; ; \; P_{max} \sim 0.0024$	$5/34650$; $P_{max} \sim 0.00014$
m = 4	$0/2520 \; ; \; P_{max} = 0$	$9/369,600$ $P_{max} \sim 0.000024$	$229/63,063,000$ $P_{max} \sim 0.0000036$
m=5	$0/113400 \; ; \; P_{max} = 0$	$63/168, 168, 000$ $P_{max} \sim 0.000000375$	$10568/3.06 \cdot 10^{11}$ $P_{max} \sim 0.000000035$
m = 6	$1/7,484,400$ $P_{max} \sim 1.34 \cdot 10^{-7}$	$1177/1.37 \cdot 10^{11}$ $P_{max} \sim 0.0000000009$	$1,212,483/3.25 \cdot 10^{15}$ $P_{max} \sim 3.73 \cdot 10^{-10}$
m = 7	$7/681,080,400$ $P_{max} \sim 1.00 \cdot 10^{-8}$ $8/8.17 \cdot 10^{10}$	$36144/1.83 \cdot 10^{14}$ $P_{max} \sim 1.98 \cdot 10^{-10}$	$411,488,689/6.65 \cdot 10^{19}$ $P_{max} \sim 6.19 \cdot 10^{-12}$
m = 8	$8/8.17 \cdot 10^{10}$ $P_{max} \sim 9.79 \cdot 10^{-11}$	$1,677,968/3.69 \cdot 10^{17}$ $P_{max} \sim 4.54 \cdot 10^{-12}$	
m = 9	$105/1.25 \cdot 10^{13}$ $P_{max} \sim 8.40 \cdot 10^{-12}$	$127, 255, 522/1.08 \cdot 10^{21}$ $P_{max} \sim 1.18 \cdot 10^{-13}$	
m = 10	$656/2.38 \cdot 10^{15}$ $P_{max} \sim 2.76 \cdot 10^{-13}$	$14,569,821,371/4.39 \cdot 10^{24}$ $P_{max} \sim 3.32 \cdot 10^{-15}$	
m = 11	$6745/5.49 \cdot 10^{17}$ $P_{max} \sim 1.23 \cdot 10^{-14}$		
m = 12	$76823/1.51 \cdot 10^{20}$ $P_{max} \sim 5.07 \cdot 10^{-16}$		
m = 13	$986,994/4.92 \cdot 10^{22}$ $P_{max} \sim 2.00 \cdot 10^{-17}$		
m = 14	$17,175,636/1.86 \cdot 10^{25}$ $P_{max} \sim 9.23 \cdot 10^{-19}$		
m = 15	$320, 152, 788/8.09 \cdot 10^{27}$ $P_{max} \sim 3.96 \cdot 10^{-20}$		
m = 16	$7,062,519,606/4.02 \cdot 10^{30}$ $P_{max} \sim 1.76 \cdot 10^{-21}$		

Table 2 - WINNING DECKS AT $HE\ LOVES\ ME\ HE\ LOVES\ ME\ NOT$

In each box we report the ratio between the number of winning decks and the total number of decks and the winning probability $P_{max} = P(C_{max})$.

	1	1 1/)
	s = 1	winning deck(s)
m = 2	1/1 (1/1)	1, 2
m = 3	3/4 (1/2 and 2/2)	three decks
m = 4	6/8 (3/3)	$2\;,\;1\;,\;3\;,\;4$
m = 5	9/13 (3/4)	$2\ ,\ 5\ ,\ 1\ ,\ 4\ ,\ 3$
m = 6	14/19 (4/5)	$6\ ,\ 1\ ,\ 4\ ,\ 3\ ,\ 5\ ,\ 2$
m = 7	18/26 (4/6)	3 , 7 , 1 , 5 , 2 , 6 , 4
m = 8	25/34 (5/7)	$8\ ,\ 1\ ,\ 5\ ,\ 2\ ,\ 6\ ,\ 4\ ,\ 7\ ,\ 3$
m = 9	31/43 (7/8)	4 , 1 , 2 , 6 , 9 , 7 , 3 , 8 , 5
m = 10	39/53 (6/9)	10, 1, 6, 2, 7, 3, 8, 5, 9, 4
m = 11	47/64 (8/10 and 9/10)	six decks
m = 12	56/76 (7/11 and 10/11)	three decks
m = 13	67/89 (11/12)	two decks
m = 14	79/103 (12/13)	two decks
m = 15	93/118 (13/14)	two decks
m = 16	108/134 (14/15)	two decks

Table 3

In this table we report the ratio between the best score at $(HLM)^2N$ with one suit and C_{max} and the ratio between the number of stored cards and the number of cards satisfying (WC). In some cases it is possible to obtain the same best score with a different number of cards. When there is only one winning deck, we report it in the third column.

	s = 1	s=2	s=3	s=4	
m . 2		3/6; $P = 0.5$			
m = 2	$1/2 \; ; \; P = 0.5 [\mathbf{G} - \mathbf{N}]$,	$4/20 \; ; \; P = 0.2$	$15/70 \; ; \; P \sim 0.21$	
m = 3	$2/6 \; ; \; P \sim 0.33 [\mathbf{G} - \mathbf{N}]$	$12/90 \; ; \; P \sim 0.13$	$90/1680 \; ; \; P \sim 0.054$	$675/34650 \; ; \; P \sim 0.019$	
m=4	$6/24 \; ; \; P = 0.25 [\mathbf{G} - \mathbf{N}]$	$147/2520 \; ; \; P \sim 0.058$	5232/369,600	210,069/63,063,000	
	, ,	, ,	$P \sim 0.014$	$P \sim 0.0033$	
m = 5	15/120	2322/113,400	476,042/168,168,000	$119,375,881/3.06 \cdot 10^{11}$	
$m - \sigma$	$P = 0.125 [\mathbf{G} - \mathbf{N}]$	$P \sim 0.020$	$P \sim 0.0028$	$P \sim 0.00039$	
m = 6	84/720	71629/7, 484, 400	$111,660,352/1.37 \cdot 10^{11}$	$P \sim 0.000070$ [MC]	
m = 0	$P \sim 0.12$ [G – N]	$P \sim 0.0096$	$P \sim 0.00081$	$I \sim 0.000070$ [NIC]	
7	330/5040	2,214,258/681,080,400	D 0.00016 [MC]	D 0.0000091 [MC]	
m = 7	$P \sim 0.065$ [G – N]	$P \sim 0.0033$	$P \sim 0.00016$ [MC]	$P \sim 0.0000081$ [MC]	
0	1812/40320	$118,228,868/8.17 \cdot 10^{10}$	D 0.000046 [N/C]	D 0.000001F [MC]	
m = 8	$P \sim 0.045$ [G – N]	$P \sim 0.0014$	$P \sim 0.000046$ [MC]	$P \sim 0.0000015$ [MC]	
0	9978/362,880	$6,597,279,578/1.25\cdot 10^{13}$	D 0.000010 [M/G]	D 0 0000000 [MCC]	
m = 9	$P \sim 0.027$ [G – N]	$P \sim 0.00053$	$P \sim 0.000010$ [MC]	$P \sim 0.0000002$ [MC]	
10	65503/3, 628, 800	D 0 00000 [MG]	D 0 0000000 [M.C]	D 0.00000000 [N.C]	
m = 10	$P \sim 0.018$ [C – S]	$P \sim 0.00022$ [MC]	$P \sim 0.0000026$ [MC]	$P \sim 0.00000003$ [MC]	
1.1	449,719/39,916,800	D 0.000000 [MCC]	D a acceptage [MCC]	2 10-9 · D · C 10-9 [7/10]	
m = 11	$P \sim 0.011$ [C – S]	$P \sim 0.000083$ [MC]	$P \sim 0.0000006$ [MC]	$2 \cdot 10^{-9} < P < 6 \cdot 10^{-9} $ [MC]	
10	3,674,670/479,001,600	D 0 000000 [N.C.]	D 000000004 [3.60]	10-10 . D . 10-9 [7.50]	
m = 12	$P \sim 0.0077$ [C – S]	$P \sim 0.000036$ [MC]	$P \sim 0.000000084$ [MC]	$10^{-10} < P < 10^{-9} [MC]$	
10	28, 886, 593/6, 227, 020, 800	D 0.000019 [MG]	2 10-8 (D (T 10-8 [MG]	$10^{-11} < P < 10^{-10}$ [MC]	
m = 13	$P \sim 0.0046$ [C – S]	$P \sim 0.000013$ [MC]	$3 \cdot 10^{-8} < P < 5 \cdot 10^{-8} $ [MC]	$10^{-11} < P < 10^{-10}$ [MC]	
1.4	$266, 242, 729/8.72 \cdot 10^{10}$				
m = 14	$P \sim 0.0031$				
	$2,527,701,273/1.31 \cdot 10^{12}$				
m = 15	$P \sim 0.0019$				
4.0	$25,749,021,720/2.09 \cdot 10^{13}$				
m = 16	$P \sim 0.0012$				
		l .	l	1	

Table 4 - WINNING DECKS AT MOUSETRAP

In each box we report the ratio between the number of winning decks and $N_{m \cdot s}$ and the winning probability $P := P_{M,m \cdot s}(m \cdot s)$. We indicate with [G-N] and with [C-S] the results already quoted respectively in [9] and in [4], [17]. We indicate with [MC] the estimates obtained by means of Monte Carlo simulations.

	s = 1	s=2	s=3	s=4
m=2	$1/2 \; ; \; P = 0.5 \; [G-N]$	$5/6 \; ; \; P \sim 0.83$	$19/20 \; ; \; P = 0.95$	$69/70 \; ; \; P \sim 0.986$
m=3	$4/6 \; ; \; P \sim 0.67 \; \; [\mathbf{G-N}]$	$60/90 \; ; \; P \sim 0.67$	$1081/1680 \; ; \; P \sim 0.64$	$\frac{22898/34650}{P \sim 0.66}$
m=4	$9/24 \; ; \; P = 0.375 \; \; [\mathbf{G-N}]$	$1182/2520 \; ; \; P \sim 0.47$	$173,053/369,600$ $P \sim 0.47$	$29,642,185/63,063,000$ $P \sim 0.47$
m=5	$76/120 \; ; \; P \sim 0.633 \; \; [\mathbf{G-N}]$	$63063/113,400$ $P \sim 0.56$	$ \begin{vmatrix} 86,636,303/168,168,000 \\ P \sim 0.52 \end{vmatrix} $	$P \sim 0.49 \; [\mathrm{MC}]$
m = 6	$190/720 \; ; \; P \sim 0.26$	$ 1,797,350/7,484,400 $ $ P \sim 0.24 $	$P \sim 0.23 \; [MC]$	$P \sim 0.22 \; [\mathrm{MC}]$
m = 7	$3186/5040 \; ; \; P \sim 0.632143$	$ \begin{vmatrix} 364,572,156/681,080,400 \\ P \sim 0.54 \end{vmatrix} $	$P \sim 0.49 \; [\mathrm{MC}]$	$P \sim 0.46 \; [\mathrm{MC}]$
m = 8	$ \begin{array}{c} 11351/40320 \\ P \sim 0.28 \end{array} $	$P \sim 0.24 \; [\mathrm{MC}]$	$P \sim 0.22 \; [\mathrm{MC}]$	$P \sim 0.21 \; [\mathrm{MC}]$
m = 9	$132,684/362,880$ $P \sim 0.37$	$P \sim 0.31 \; [\mathrm{MC}]$	$P \sim 0.28 \; [\mathrm{MC}]$	$P \sim 0.27 \; [\mathrm{MC}]$
m = 10	$884, 371/3, 628, 800$ $P \sim 0.24$	$P \sim 0.20 \; [\mathrm{MC}]$	$P \sim 0.18 \; [\mathrm{MC}]$	$P \sim 0.18 \; [\mathrm{MC}]$
m = 11	25, 232, 230/39, 916, 800 $P \sim 0.632120561$	$P \sim 0.53 \; [\mathrm{MC}]$	$P \sim 0.48 \; [\mathrm{MC}]$	$P \sim 0.45 \; [\mathrm{MC}]$
m = 12	$50, 436, 488/479, 001, 600$ $P \sim 0.11$	$P \sim 0.085$ [MC]	$P \sim 0.077 \; [\mathbf{MC}]$	$P \sim 0.073 \; [MC]$
m = 13	3,936,227,868/6,227,020,800 $P \sim 0.632120559 $ [A002467]	$P \sim 0.53 \; [\mathrm{MC}]$	$P \sim 0.48 \; [\mathrm{MC}]$	$P \sim 0.45 \; [\mathrm{MC}]$

Table 5 - WINNING DECKS AT $MODULAR\ MOUSETRAP$

In each box we report the ratio between the number of winning decks and $N_{m \cdot s}$ and the winning probability $P := P_{MM,m \cdot s}(m \cdot s)$. We indicate with [G-N] the results already quoted in [9].

The result corresponding to m=13, s=1 can be also obtained subtracting the total number of derangements to the total number of decks, n!=m! (because m is prime). We indicate it with [A002467]. We indicate with [MC] the estimates obtained by means of Monte Carlo simulations.

	unreformed	1-reformed	2-reformed	3-ref.	4-ref.	5-ref.	1-cycles	total reformed
m = 1	0	0	0	0	0	0	1	1
m = 2	1	0	0	0	0	0	1	1
m = 3	4	2	0	0	0	0	0	2
m = 4	18	4	2	0	0	0	0	6
m = 5	105	14	1	0	0	0	0	15
m = 6	636	72	11	1	0	0	0	84
m = 7	4710	316	14	0	0	0	0	330
m = 8	38508	1730	81	1	0	0	0	1812
m = 9	352,902	9728	242	8	0	0	0	9978
m = 10	3, 563, 297	64330	1142	31	0	0	0	65503
m = 11	39, 467, 081	444,890	4771	56	2	0	0	449,719
m = 12	475, 326, 930	3, 645, 441	29009	219	1	0	0	3,674,670
m = 13	6, 198, 134, 207	28, 758, 111	127, 876	605	1	0	0	28, 886, 593
m = 14	86, 912, 048, 471	265, 434, 293	805, 947	2485	4	0	0	266, 242, 729
m = 15	1, 305, 146, 666, 727	2,522,822,881	4,868,681	9697	14	0	0	2, 527, 701, 273
m = 16	20, 897, 040, 866, 280	25, 717, 118, 338	31, 862, 753	40571	57	1	0	25, 749, 021, 720

Table 6

Number of unreformed and reformed decks at *Mousetrap* for s=1. The values for $1 \le m \le 9$ were reported by Guy and Nowakowski [9]. The values for $10 \le m \le 13$ were reported by Chua [4] and Sloane [17]. There is only one 5-reformed deck for m=16. The first column extends the sequence [17] A007711; the second column extends [17] A007712; the third column extends [17] A055459; the fourth column extends [17] A067950; the last column extends [17] A007709; the sixth column corresponds to [17] A127966.

	unreformed	1-reformed	2-reformed	3-ref.	4-ref.	1-cycles	total reformed
m = 1	1	0	0	0	0	1	1
m=2	3	2	0	0	0	1	3
m = 3	78	12	0	0	0	0	12
m=4	2373	132	14	1	0	0	147
m = 5	111,078	2270	51	1	0	0	2322
m = 6	7,412,771	70766	857	6	0	0	71629
m = 7	678, 866, 142	2,207,169	7071	18	0	0	2, 214, 258
m = 8	81,611,419,132	118,065,748	162,871	249	0	0	118, 228, 868
m = 9	12, 498, 038, 864, 422	6,593,940,635	3, 337, 216	1723	4	0	6, 597, 279, 578

Table 7

Number of unreformed and reformed decks at *Mousetrap* for s = 2. The case m = 9 yielded for the first time four 4-reformed deck.

	unreformed	1-reformed	2-reformed	3-reformed	1-cycles	total reformed
m=1	0	0	0	0	1	1
m=2	16	3	0	0	1	4
m=3	1590	86	4	0	0	90
m=4	364, 368	5148	84	2	0	5232
m=5	167, 691, 958	474,658	1384	1	0	476,042
m=6	137, 113, 427, 648	111, 570, 619	89649	84	0	111,660,352

Table 8

Number of unreformed and reformed decks at Mousetrap for s=3. There is no evidence of 4-reformed decks in any case we have examined.

	unreformed	1-reformed	2-reformed	3-reformed	1-cycles	total reformed
m = 1	0	0	0	0	1	1
m=2	55	11	4	0	1	15
m=3	33975	639	35	0	1	675
m=4	62, 852, 931	209, 411	658	0	0	210,069
m=5	305, 420, 859, 119	119, 321, 646	54210	25	0	119, 375, 881

Table 9

Number of unreformed and reformed decks at *Mousetrap* for s=4. In the case m=3 we find for the first time a non-trivial 1-cycle: 111122322333. There is no evidence of 4-reformed decks, in any case we have examined.

	unreformed	k-reformed	cycles	total reformed
m = 1	0	0	1	1
m = 2	1	0	1	1
m = 3	2	2	2	4
m = 4	15	4	5	9
m = 5	44	37	39	76
m = 6	530	170	20	190
m = 7	1854	2336	850	3186
m = 8	28969	11077	274	11351
m = 9	230, 196	129,869	2815	132,684
m = 10	2,744,429	883,700	671	884, 371
m = 11	14, 684, 570	21,529,972	3,702,258	25, 232, 230
m = 12	428, 565, 112	50, 435, 136	1352	50, 436, 488
m = 13	2, 290, 792, 932	3,456,154,665	480,073,203	3,936,227,868

Table 10

Number of unreformed and reformed decks at *Modular Mousetrap* for s=1. The values for $1 \le m \le 5$ were reported by Guy and Nowakowski [9]. Since in this game, for s=1 and m prime, a deck can only either win or give a *derangement*, we can obtain the number of unreformed decks by a theoretical point of view because it coincides with the number of *derangements* (see sequences [17] A000166 and A002467 and formula ()).

	unreformed	k-reformed	cycles	total reformed
m=1	0	0	1	1
m=2	1	0	5	5
m=3	30	39	21	60
m=4	1338	1027	155	1182
m=5	50337	57581	5482	63063
m=6	5,687,050	1,796,111	1239	1,797,350
m=7	316, 508, 244	364, 074, 715	497, 441	364, 572, 156

Table 11

Number of unreformed and reformed decks at Modular Mousetrap for s = 2.

	unreformed	k-reformed	cycles	total reformed
m = 1	0	0	1	1
m=2	1	0	19	19
m=3	599	615	466	1081
m=4	196, 547	161,772	11281	173,053
m=5	81, 531, 697	86, 339, 122	297, 181	86, 636, 303

Table 12

Number of unreformed and reformed decks at $\mathit{Modular\ Mousetrap}$ for s=3.

	unreformed	k-reformed	cycles	total reformed
m = 1	0	0	1	1
m=2	1	0	69	69
m = 3	11752	15466	7432	22898
m=4	33, 420, 815	29, 381, 680	260, 505	29, 642, 185

Table 13

Number of unreformed and reformed decks at $Modular\ Mousetrap\ for\ s=4.$

	MAX k -reformed	MAX k-trajectory	MAX k-pre-period	MAX k-cycle	number of 1-cycles
m = 1	0	1	0	1	1
m = 2	0	1	0	1	1
m = 3	2	2	1	1	1
m = 4	2	3	2	1	1
m = 5	3	5	4	2	1
m = 6	5	5	4	1	1
m = 7	10	19	18	2	1
m = 8	8	9	8	2	1
m = 9	13	13	11	2	1
m = 10	10	6	5	3	1
m = 11	41	203	156	66	1
m = 12	8	7	6	1	1
m = 13	51	840	839	12	1
m = 17	≥ 51	≥ 39924	≥ 39923	≥ 209	≥ 1

Table 14

Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops, k-cycles) at $Modular\ Mousetrap$ for s=1. In the last column we show the number of 1-cycles. For every value of m, the permutation $\{1\ ,\ 2\ ,\ 3\ ,\ \cdots\ ,\ m-1\ ,\ m\}$ gives a 1-cycle. There is no evidence for other (non trivial) 1-cycles. In the case m=17 we have examined only 50 million winning decks, because the total number of decks to be examined it too high. Since 17 is a prime number, it is highly probable that further investigation can improve the values we have up to now obtained.

	MAX k-reformed	MAX k-trajectory	MAX k-pre-period	MAX k-cycle	number of 1-cycles
m=1	0	1	0	1	1
m=2	0	3	2	1	2
m = 3	4	3	2	1	2
m=4	9	7	5	2	2
m=5	14	15	14	3	2
m=6	13	7	6	2	2
m = 7	29	24	23	2	8

Table 15

Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops, k-cycles) at $Modular\ Mousetrap$ for s=2. In the last column we report the number of 1-cycles. For every value of m, the permutation $\{1\ ,\ 2\ ,\ 3\ ,\ \cdots\ ,\ m-1\ ,\ m\ ,\ 1\ ,\ 2\ ,\ 3\ ,\ \cdots\ ,\ m-1\ ,\ m\}$ gives a 1-cycle. However, in this case we produced other (non trivial) 1-cycles.

	MAX k -reformed	MAX k-trajectory	MAX k-pre-period	MAX k -cycle	number of 1-cycles
m = 1	0	1	0	1	1
m=2	0	4	2	2	2
m=3	8	10	7	6	3
m=4	17	12	10	2	5
m=5	30	19	18	4	10

Table 16

Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops, k-cycles) at Modular Mousetrap for s=3. In the last column we report the number of 1-cycles. For every value of m, the permutation $\{1\ ,\ 2\ ,\ 3\ ,\ \cdots\ ,\ m-1\ ,\ m\ ,\ \cdots\ ,\ m-1\ ,\ m\}$ gives a 1-cycle. However, in this case we produced other (non trivial) 1-cycles.

	MAX k -reformed	MAX k-trajectory	MAX k-pre-period	MAX k-cycle	number of 1-cycles
m = 1	0	1	0	1	1
m=2	0	5	3	3	3
m=3	15	12	11	4	6
m=4	28	17	14	3	10

Table 17

Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops, k-cycles) at $Modular\ Mousetrap$ for s=4. In the last column we report the number of 1-cycles. For every value of m, the permutation $\{1\ ,\ 2\ ,\ 3\ ,\ \cdots\ ,\ m-1\ ,\ m\ ,\ \cdots\ ,\ m-1\ ,\ m\}$ gives a 1-cycle. However, in this case we produced other (non trivial) 1-cycles.

	lowest value of n	lowest value of n	lowest value of n
	yielding a k -cycle	yielding a k -trajectory	yielding a k -reformed deck
k = 1	1	1	3
k=2	5	3	3
k = 3	10	4	5
k=4	11	5	6
k=5	_	5	6

Table 18

Lowest value of n which produces a k-cycle, or a k-trajectory, or a k-reformed deck at $Modular\ Mousetrap$, with s=1. The table is based on the complete results obtained for $m\leq 13$ and the partial results for m=17. Let us observe that for $m=11,\ 13$ we found even longer k-cycles, corresponding only to the values k=14,15,66 for m=11 and k=6,7,12 for m=13. For m=17, up to now, we found only 1, 2, 170, 209-cycles.

The first value of n yielding k-trajectories, for $6 \le k \le 19$, is 7; the first value of n yielding k-trajectories, for $20 \le k \le 203$, is 11; the first value of n yielding k-trajectories, for $204 \le k \le 840$, is 13. Though in the case m = 17, we have only partial results, we know that 17 is the first value of n yielding at least all the k-trajectories for $841 \le k \le 39924$.

The first value of n yielding k-reformed decks, for $6 \le k \le 10$, is 7; the first value of n yielding k-reformed decks, for $11 \le k \le 13$, is 9; the first value of n yielding k-reformed decks, for $14 \le k \le 41$, is 11; the first value of n yielding k-reformed decks, for $42 \le k \le 51$, is 13.

	s = 2 (SC)	s = 3 (SC)	s = 4 (SC)
1	1 1 - cycle	1 1 - cycle	1 1 - cycle
m=1	$1 total \ reformed$	1 total reformed	$1 total \ reformed$
	1 1 - cycle	1 1 - cycle	1 1 - cycle
0	, v	, and the second	10 1-reformed
m=2	2 1-reformed	3 1-reformed	4 2-reformed
	$3 total \ reformed$	4 total reformed	15 total reformed
0	1 6 1	4 1-reformed	5 1-reformed
m=3	$only\ unreformed$	4 total reformed	5 total reformed
4	and a sum of anno ad	9 1-reformed	229 1-reformed
m=4	$only\ unreformed$	9 total reformed	229 total reformed
m = 5	only unreformed	63 1-reformed	10568 1-reformed
m - s	, , ,	63 total reformed	$10568 total \ reformed$
m = 6	1 1 - reformed	1177 1-reformed	1,212,483 $1-reformed$
m = 0	1 total reformed	1177 total reformed	1,212,483 total reformed
m = 7	7 1-reformed	36144 1-reformed	411,488,689 1-reformed
	7 total reformed	36144 total reformed	$411,488,689 total \ reformed$
m = 8	8 1-reformed	1,677,968 $1-reformed$	
0	8 total reformed	1,677,968 total reformed	
m=9	105 1-reformed	127, 255, 522 1-reformed	
	105 total reformed	127, 255, 522 total reformed	
m = 10	656 1-reformed	14,569,821,371 $1-reformed$	
	656 total reformed	14,569,821,371 total reformed	
m = 11	6745 1-reformed		
	6745 total reformed		
m = 12	76823 1 - reformed		
m = 13	"		
	986,994 total reformed 17,175,636 1 - reformed		
m = 14	$17,175,636$ $1-reformed$ $17,175,636$ $total\ reformed$		
	320,152,788 $1-reformed$		
m = 15	320, 152, 788 total reformed		
	7,062,519,606 $1-reformed$		
m = 16	7,062,519,606 total reformed		
	1,002,010,000 www.rejornied		

Table 19

Number of reformed decks satisfying (SC) at $(HLM)^2N$. Since the value of P_{max} decreases very quickly when m grows, we cannot expect 2-reformed decks, apart from the case m=2, s=4.

	s = 2 (WC)	s = 3 (WC)	s = 4 (WC)
	1 1 - cycle	1 1 - cycle	1 1 - cycle
m=1	$1\ total\ reformed$	1 total reformed	1 total reformed
m = 2	$\begin{array}{ccc} 1 & 1-cycle \\ 2 & 1-reformed \\ 3 & total \ reformed \end{array}$	$\begin{array}{ccc} 1 & 1-cycle \\ 4 & 1-reformed \\ 5 & total \ reformed \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
m = 3	$6 1-reformed$ $6 total \ reformed$	30 1-reformed $30 total \ reformed$	$160 1-reformed$ $160 total \ reformed$
m = 4	$10 1-reformed$ $10 total \ reformed$	278 1 - reformed 278 total reformed	$7410 1 - reformed$ $1 2 - reformed$ $7411 total \ reformed$
m = 5	56 1-reformed $56 total \ reformed$	5027 1-reformed $5027 total \ reformed$	$ \begin{array}{c cccc} 669,948 & 1-reformed \\ 4 & 2-reformed \\ 669,952 & total \ reformed \\ \end{array} $
m = 6	$200 1-reformed$ $200 total \ reformed$	$\begin{array}{ccc} 132,437 & 1-reformed \\ 132,437 & total \ reformed \end{array}$	
m = 7	$\begin{array}{cc} 1094 & 1-reformed \\ 1094 & total \ reformed \end{array}$	$6,131,753$ $1-reformed$ $6,131,753$ $total\ reformed$	
m = 8	$ 7016 1 - reformed $ $ 7016 total \ reformed $	436,816,134 1 - reformed 436,816,134 total reformed	
m = 9	$ 55661 1-reformed $ $ 55661 total \ reformed $		
m = 10	$ 586,810 1-reformed \\ 586,810 total \ reformed $		
m = 11	7,340,841 1 - reformed 7,340,841 total reformed		
m = 12	114,616,993 1 - reformed 114,616,993 total reformed		
m = 13	2,030,647,546 1 - reformed 2,030,647,546 total reformed		

Table 20

Number of reformed decks satisfying (WC) at $(HLM)^2N$. For s=4, since the number of reformed decks grows very quickly, it is possible to find 2-reformed decks.

REFERENCES

- [1] E. Berlekamp, J. Conway and R.K. Guy, Wiining Ways for your Mathematical Plays, vol. 4, A K Peters, Wellesley, 2004.
- [2] A. Cayley, A problem in permutations, Quart. J. Pure Appl. Math. 1 (1857), 79.
- [3] A. Cayley, On the game of Mousetrap, Quart. J. Pure Appl. Math. 15 (1878), 8 10.
- [4] K. S. Chua, private communication.
- [5] P.G. Doyle, C.M. Grinstead, J. Laurie Snell *Frustration Solitaire*, UMAP Journal, vol. 16, n. 2, 1995, pp. 137 145.
- [6] W. Feller, An introduction to Probability Theory and its applications, Wiley and Sons, New York, 1957.
- [7] M. Fréchet, Les probabilités associées a un système d'événements compatibles et dépendants Seconde partie: cas particuliers et applications, Hermann and C., Paris, 1943.
- [8] R. K. Guy, Mousetrap, §E37 in Unsolved Problems in Number Theory, third edition, Springer-Verlag, New York, 2004, pp. 237 238.
- [9] R. K. Guy and R. Nowakowski, Mousetrap, in D. Miklós, V.T. Sós and T. Szonyi, eds., *Combinatorics*, Paul Erdős is Eighty, vol. 1, János Bolyai Mathematical Society, Budapest, 1993, pp. 193 – 206.
- [10] R. K. Guy and R. Nowakowski, Unsolved Problems Mousetrap, Amer. Math. Monthly 101 (1994), 1007 1008.
- [11] R. K. Guy and R. Nowakowski, Monthly Unsolved Problems, 1969 1995, *Amer. Math. Monthly* **102** (1995), 921 926.
- [12] D. J. Mundfrom, A problem in permutations: the game of Mousetrap, European J. Combin. 15 (1994), 555 560.
- [13] A. Pompili, Il metodo MONTE CARLO per l'analisi di un solitario, http://xoomer.virgilio.it/vdepetr/Art/Text22.htm.
- [14] J. Riordan, An introduction to Combinatorial Analysis, Princeton Univ. Press, Princeton, 1980.
- [15] N. J. A. Sloane, A Handbook of integer sequences, Academic Press, San Diego, 1973.
- [16] N. J. A. Sloane, S. Plouffe, The encyclopedia of integer sequences, Academic Press, San Diego, 1995.
- [17] N. J. A. Sloane, The On-Line Encyclopaedia of Integer Sequences, $\label{eq:http://www.research.att.com/njas/sequences/} http://www.research.att.com/~njas/sequences/ \, .$
- [18] M. Z. Spivey, Staircase Rook Polynomials and Cayley's Game of Mousetrap, accepted for publication on *European J. Combin*.
- [19] A. Steen, Some formulae respecting the Game of Mousetrap, Quart. J. Pure Appl. Math. 15 (1878), 230 241.
- [20] A. Wuensche, Discrete Dynamical Networks and their Attractor Basins, Complexity International 6 (1998).