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IntroduzioneLo studio degli aspetti sia statici che dinamici delle transizioni di fasi �e uno degli argomentidi interesse della �sica contemporanea. Il comportamento di un sistema statistico al puntocritico �e intrinsecamente di di�cile descrizione: il carattere cooperativo del fenomeno, l'e�ettivainterazione tra tutti i gradi di libert�a del sistema, rende il problema molto complicato.In Meccanica Statistica sono state sviluppate numerose tecniche per lo studio delle propriet�adei sistemi critici: il Gruppo di Rinormalizzazione ha permesso una comprensione molto pro-fonda di ci�o che avviene al punto critico ed �e stato un utile strumento per lo studio dettagliatodi alcuni sistemi particolari. D'altro canto approcci pi�u na��f come la Teoria di Campo Medio oil Metodo Variazionale a Cluster (CVM), pur fornendo delle risposte pi�u super�ciali ed essendobasati su approssimazioni incontrollate, permettono di studiare il diagramma di fase di modellinotevolmente complicati ed hanno il pregio di permettere un controllo analitico del problemaper mezzo di un insieme di equazioni in numero abbastanza ridotto. Ci�o costituisce un grandevantaggio rispetto ad un'analisi puramente numerica, basata su simulazioniMonte Carlo, in cuii margini di miglioramento delle proprie misure sono legati soltanto alla possibilit�a di migliorarela potenza della macchina su cui si e�ettuano gli esperimenti numerici.Il Monte Carlo �e, a sua volta, divenuto una delle tecniche pi�u usate in Meccanica Statistica(e non solo) grazie all'aumento della capacit�a di calcolo dei calcolatori nell'ultimo decennio. Lasua versatilit�a e relativa facilit�a di applicazione lo rendono uno strumento adatto a qualsiasiproblema, sia per l'analisi delle propriet�a di equilibrio che per lo studio del comportamentodinamico di un modello. Il suo limite �e che le transizioni di fase si osservano solo nel limitetermodinamico, cio�e quando il volume tende ad in�nito, ed anche i calcolatori pi�u potenti hannogrossi problemi quando il numero di gradi di libert�a del sistema diventa dell'ordine di 106�107.Durante il dottorato di ricerca ho applicato alcuni dei metodi citati in precedenza a diversiproblemi legati allo studio delle transizioni di fase in Meccanica Statistica. Il carattere eteroge-neo della mia esperienza di dottorato si ri
ette sulla mia attivit�a di ricerca che �e stata condottasu tematiche diverse e con linguaggi di�erenti, pur essendo evidentemente incentrata sull'analisidelle trasizioni di fase nei modelli di spin. I linguaggi di�erenti, ma complementari, sono quellidella Fisica Matematica e della Fisica Teorica, il primo teso ad ottenere risultati rigorosi chepermettano di fondare la Meccanica Statistica su solide basi matematiche; il secondo teso allostudio di modelli che descrivono le pi�u svariate situazioni �siche, ma che per la loro complessit�aintrinseca permettono solo l'uso di tecniche approssimate. In questo lavoro ho raccolto alcunidi questi lavori che mettono in luce i pregi, ma anche i limiti delle varie tecniche.In particolare nel Capitolo 1 il Gruppo di Rinormalizzazione, pi�u che un metodo per lostudio di un modello, �e l'oggetto dello studio. Fin dalla met�a degli anni settanta, si veda peresempio [CGa], la comunit�a scienti�ca si �e posta il problema della corretta de�nizione delletrasformazioni del gruppo di rinormalizzazione e in [G2, GP, Is] fu osservato per la primavolta che le trasformazioni del gruppo possono esibire delle \peculiarit�a", che a partire dalla1



Introduzionepubblicazione di [EFS] sono note come \patologie" del gruppo di rinormalizzazione. In seguito ildibattito sul problema ha condotto ad una serie di lavori, per esempio [E1, EFK], in cui vengonoesibiti ulteriori esempi di patologie del gruppo di rinormalizzazione cui fanno da contropartelavori in cui vengono dimostrati risultati positivi di due tipi: da un lato si mostra come inalcuni casi in cui si osserva un comportamento patologico questo possa essere opportunamente\curato" [MO4, MO5], dall'altro si cerca di dimostrare che nei casi di rilevanza �sica questepatologie non esistono [HK, BMO, CO2, Ke2]. Nel Capitolo 1 dopo una breve introduzionealla Teoria di Dobrushin per gli stati di volume in�nito e alle idee fondamentali del Gruppodi Rinormalizzazione viene discusso il problema delle patologie e viene mostrato come nelcaso del modello di Ising al punto critico il gruppo di rinormalizzazione non presenti alcuncomportamento patologico [CO2].Nel Capitolo 2 viene mostrato come il CVM permetta di ottenere notevoli informazionisul diagramma di fase di alcuni modelli di super�ci su reticolo, per i quali, a causa dellaloro complessit�a, esistono pochi risultati esatti. I modelli di super�ci su reticolo sono statisviluppati con l'intento di descrivere le propriet�a delle membrane [Lip, NPW]. In biologia sidistingue tra due tipi di membrane: le membrane 
uide, costituite da un doppio strato di lipidiin cui si incastrano molecole di proteine e quelle rigide caratterizzate da una rete di proteine.Nel Capitolo 2 si studiano alcuni modelli di spin su reticolo che sono stati introdotti per ladescrizione del comportamento sia delle membrane 
uide che di quelle polimerizzate.In particolare viene indagato il problema della transizione di folding di una super�cie trian-golata immersa in uno spazio bidimensionale e tridimensionale discreto: si utilizza il CVM perstudiare il diagramma di fase di modelli di spin introdotti in [FG2, BFGG] per la descrizionedi questo fenomeno e per stabilire l'ordine della transizione; l'aspetto interessante �e che mentremodelli continui come quello introdotto in [KN] esibiscono una transizione critica, i modelli sureticolo suggeriscono che la transizione sia discontinua.Per quanto riguarda i modelli di membrane 
uide si mostra come il CVM possa essereutilizzato per descrivere in modo dettagliato il diagramma di fase della versione di Ising delmodello ad otto vertici. In realt�a si tratta di un modello dalle vaste applicazioni �siche, chespaziano dalla meccanica statistica delle super�ci [CCGM] alla teoria delle stringhe [SW]. Comemodello di super�ci il modello ad otto vertici presenta un diagramma di fase estremamente riccoche permette di spiegare molte delle fasi che si osservano in una miscela ternaria, per esempiouna miscela di acqua, olio e surfatante.Nel Capitolo 3 viene a�rontato, mediante simulazioni Monte Carlo, lo studio della decompo-sizione spinodale in una fase superantiferromagnetica, cio�e in una fase di bassa temperatura conperiodicit�a uno, ovvero costituita da una successione di strisce di spin uno e meno uno larghe unpasso reticolare. Quando un sistema viene ra�reddato da una fase disordinata ad una ordinata,il processo di riordinamento non avviene istantaneamente, bens�� tramite la crescita di dominiordinati delle due (o pi�u) fasi in competizione. Si pensi, per esempio, al caso del modello diIsing ferromagnetico: se ad un certo istante il sistema viene portato dalla fase paramagneticaa quella ferromagnetica, il sistema deve riordinarsi tramite la crescita di domini di spin pi�u edi spin meno a partire da una con�gurazione completamente disordinata.Un problema analogo �e quello della decomposizione spinodale nelle leghe binarie, problemastudiato per molte decadi in metallurgia, dove gli stadi �nali di crescita sono noti come \Ostwaldripening". La maniera pi�u semplice di studiare questo problema �e quella di considerare ilmodello di Ising interpretando spin pi�u e meno come atomi di tipo A e B [MLK, RKLM]e considerando, per�o, una dinamica che conservi la magnetizzazione in modo da impedire latrasformazione di atomi di tipo A in atomi di tipo B.Uno degli aspetti pi�u interessanti di questo problema �e che a tempi lunghi, cio�e dopo la2



Introduzioneprima fase in cui si passa da una con�gurazione completamente disordinata ad una struttura bende�nita di domini, la crescita delle regioni ordinate �e caratterizzata da una sorta di invarianzadi scala [Bat]: guardando i domini a tempi lunghi essi sembrano \statisticamente" simili aquelli osservati a tempi precedenti e la loro dimensione tipica L(t) cresce con legge di potenzaL(t) � t
. L'esponente di crescita 
 risulta dipendere dalla dinamica del modello: nel caso dimodelli con parametro d'ordine conservato (dinamiche di Kawasaki) 
 = 13 [LS, RKLM, MB],mentre per modelli con parametro d'ordine non conservato (dinamiche di Glauber) 
 = 12[Lif, AC, HB].Il caso del ra�reddamento in una fase a strisce permette di porsi delle domande interessanticirca le propriet�a di anisotropia del fenomeno di crescita. Nel Capitolo 3 si vedr�a come per mezzodi simulazioni Monte Carlo sia possibile a�rontare questo problema, misurare gli esponenti dicrescita ed osservare un comportamento anisotropo nel senso che le correlazioni misurate lungola direzione parallela ai domini risultano diverse da quelle misurate nella direzione trasversa.In�ne il Capitolo 4 �e dedicato allo studio del comportamento metastabile di alcuni modellidi spin; questo studio viene condotto sia mediante simulazioni numeriche sia mediante la teoriadelle grandi deviazioni che permette di ottenere dei risultati rigorosi nel limite di bassa tem-peratura. Lo schema che si segue per la de�nizione e lo studio degli stati metastabili �e quelloproposto in [CGOV], noto come pathwise approach, che si basa sulla convinzione che il fenome-no della metastabilit�a sia un fenomeno genuinamente dinamico, non interpretabile mediante lameccanica statistica degli stati di equilibrio [I, LR].In particolare dopo una descrizione generale del tipo di risultati che possono essere ottenuticon il pathwise approach nel caso del modello di Ising bidimensionale, vengono discussi alcunesituazioni �sicamente interessanti che ho a�rontato durante il dottorato. In primo luogo simostra come la scelta delle condizioni al bordo possa in
uenzare la vita media dello statometastabile ed il meccanismo di uscita [CL], poi si studia il caso in cui sono presenti duestati metastabili in competizione. Questa situazione viene realizzata considerando il modellodi Blume-Capel [CO2] e si mostra come modi�cando i parametri del modello venga modi�catala traiettoria tipica che il sistema segue durante l'uscita dalla fase metastabile.Il lavoro �e organizzato nel modo seguente: ogni capitolo ha una sua introduzione al problemae nelle varie sezioni vengono esposti i risultati ottenuti sull'argomento con riferimento a lavoriapparsi su riviste scienti�che che vengono allegati alla �ne del capitolo stesso.
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Capitolo 1Patologie del Gruppo diRinormalizzazione
1.1 IntroduzioneL'introduzione del gruppo di rinormalizzazione per lo studio dei fenomeni critici e per la carat-terizzazione delle propriet�a del punto critico risale ad un lavoro di Di Castro e Jona-Lasinio del1969 [DJ]; ma la prima vera applicazione ad un modello concreto �e apparsa nel lavoro di Wilson[Wi] del 1970. Dopo questi lavori pioneristici il gruppo di rinormalizzazione �e stato uno deglistrumenti fondamentali per lo studio delle propriet�a critiche di numerosi modelli di MeccanicaStatistica [NL1] e per la comprensione profonda del carattere universale dei fenomeni critici.L'idea alla base della teoria del gruppo di rinormalizzazione �e che se un sistema al pun-to critico viene guardato su una scala pi�u grande di quella di partenza, integrando a livellomicroscopico alcuni gradi di libert�a, le propriet�a �siche del sistema restano invariate.Questa operazione viene e�ettuata trasformando il sistema di partenza (sistema oggetto)in uno nuovo sistema (sistema immagine) nel modo seguente: si considera un sistema de�nitosu un reticolo quadrato �nito � � Z2, ad ogni vertice del reticolo i �e associata una variabile�i che assume valori in uno spazio �nito e discreto S, per esempio S := f�1; + 1g, ad ognicon�gurazione � 2 
� := S� viene associata l'energia H�(�) e le propriet�a di equilibrio delsistema a temperatura 1=� sono descritte dalla misura di Gibbs ��;�(�).Si considera, poi, un nuovo reticolo �0 di passo pi�u grande di � e ai suoi vertici vengonode�nite delle nuove variabili, dette variabili rinormalizzate o variabili immagine �0i 8i 2 �0,che assumono valori in uno spazio S 0. In�ne si fornisce una regola per costruire la misura diequilibrio del sistema immagine a partire da quella del sistema oggetto, ovvero si pone�0�0;�(�0) := X�2
� ��;�(�)T (� ! �0) 8�0 2 
0�0 := S 0�0 (1.1)dove T (� ! �0) �e un nucleo di probabilit�a che contine la de�nizione della trasformazione dirinormalizzazione. Solitamente il nucleo T (� ! �0) viene de�nito in modo che le variabili �0icorrispondano all'integrazione delle vecchie variabili su una piccola scala: per esempio le nuovevariabili possono essere la media delle vecchie variabili su certi blocchi in cui �e stato suddivisoil reticolo � (block averaging transformation). Al sistema immagine pu�o essere associata ancheuna nuova hamiltoniana ponendoH 0�0(�0) := � 1� log�0�;�(�0) + cost (1.2)5



Patologie del Gruppo di Rinormalizzazioneda cui �e possibile estrarre le interazioni fra le variabili immagine. In altri termini �e stata de�nitauna trasformazione tra il sistema oggetto (�;
�;��;�) e quello immagina (�0;
0�0 ;�0�0;�) .Lo schema descritto in precedenza crolla se si considera il caso di volume in�nito: in questocaso, infatti, la nozione di hamiltoniana ha solo senso formale e la de�nizione di stato diequilibrio va data seguendo la Teoria di Dobrushin degli stati di volume in�nito (si veda laSezione 1.2). Una trasformazione di rinormalizzazione, allora, va vista necessariamente comeuna trasformazione tra misure piuttosto che tra hamiltoniane. Ma una volta costruita la misura�0�0;� �e spontaneo chiedersi se questa ha signi�cato �sico, cio�e se �e gibbsiana nel senso che �ederivabile da un opportuno potenziale che descriva l'interazione tra le variabiali immagine (perla de�nizione precisa di gibbsianit�a di una misura si rimanda alla Sezione 1.2).Questo problema fu posto gi�a nel 1975 da M. Cassandro e G. Gallavotti in [CGa] nelcaso del Modello di Ising al punto critico; in seguito, in [G2, GP, Is] fu osservato che inalcuni casi le trasformazioni di rinormalizzazione esibiscono delle \peculiarit�a", nel senso che lamisura immagine non �e gibbsiana. Questi primi esempi furono chiariti da A.C.D. van Enter, R.Fernandez e A.D. Sokal in [EFS], in cui furono esibiti altri esempi di \patologie" del gruppo dirinormalizzazione. In seguito questo problema �e stato indagato a fondo e in numerosi altri lavori,tra cui [E1, EFK], sono stati messi in risalto altre situazioni in cui il gruppo di rinormalizzazioneesibisce un comportamento patologico nel senso descritto in precedenza.Per i dettagli sui metodi utilizzati per dimostrare l'esistenza delle patologie si rimanda allaSezione 1.4, qui ci si limita ad osservare che l'idea chiave sta nel mostrare che alla temperatura1=� a cui si sta studiando il modello oggetto, almeno uno dei modelli intermedi esibisce unatransizione di fase, ovvero �e sotto il suo punto critico; dove per modello intermedio si intendeun modello nelle variabili oggetto �i, de�nito sul reticolo �, ma con misura di equilibrio datada ��;�;�0(�) := ��;�(�)T (� ! �0)P�2
� ��;�(�)T (� ! �0) ; (1.3)cio�e �ssata una con�gurazione rinormalizzata �0, una con�gurazione � viene pesata tenendopresente quanto essa �e \compatibile" con �0.Parallelamente ai risultati sulle patologie del gruppo di rinormalizzazione �e stato profuso unnotevole sforzo per tentare di dimostrare risultati positivi di due tipi: possibilit�a di \curare" lepatologie del gruppo di rinormalizzazione, quando queste si presentano, tentativo di dimostrareche nei casi di interesse �sico, per esempio block averaging transformation applicata al modellodi Ising al punto critico, le trasformazioni sono ben de�nite, cio�e la misura rinormalizzata �egibbsiana. In [MO4] F. Martinelli ed E. Olivieri hanno dimostrato, per mezzo di metodi basatisulla cluster expansion, che la patologia esibita dalla trasformazione di decimazione per alcunivalori dei parametri del modello di Ising pu�o essere eliminata quando si considera la stessatrasformazione de�nita su un passo pi�u grande; in altri termini anche se dopo il primo passo dirinormalizzazione si ottiene una misura non gibbsiana, iterando per un numero su�cientementeelevato di volte la trasformazione si ripristina la gibbsianit�a della misura. Invece in [MO5] �estato visto come la patologia esibita dalla block averaging transformation possa essere eliminatapremettendo un passo di decimazione.Per quanto riguarda la seconda classe di risultati positivi �e stato dimostrato in [HK] unteorema che assicura la gibbsianit�a della misura rinormalizzata se, �ssata la temperatura inversa� a cui si studia la trasformazione, \tutti" i possibili modelli intermedi sono sopra il loro puntocritico, cio�e sono in assenza di transizione di fase. Si osserva che mentre per dimostare l'esistenzadella patologia �e su�ciente mostrare che almeno un modello intermedio �e sotto il suo puntocritico, per dimostrare la buona de�nizione della trasformazione �e necessario controllare che tuttii modelli intermedi siano in regime di unicit�a di fase. In [HK] il teorema descritto in precedenza6



Patologie del Gruppo di Rinormalizzazione�e stato usato per dimostrare la buona de�nizione della decimazione e della trasformazione diKadanof nel caso del modello di Ising ad alta temperatura.Il caso del modello di Ising al punto critico ovviamente �e di gran lunga pi�u interessantee complicato: in [Ke2] �e stato mostrato, usando risultati di [Ke1], che al punto critico delmodello di Ising bidimensionale alcuni modelli intermedi sono sopra il loro punto critico quandosi considera la trasformazione nota come majority rule. Ma per quanto osservato in precedenzaci�o non permette di concludere nulla sulla buona de�nizione della trasformazione, perch�e �enecessario controllare tutti i modelli intermedi.Questo �e esattamente il problema che ho a�rontato in [CO2] in collaborazione con E. Olivieri,ma la strategia usata si di�erisce da quella di [Ke2]: per dimostrare che tutti i modelli intermedisono sopra il loro punto critico alla temperatura critica di Ising, abbiamo mostrato che tuttiquesti modelli soddisfano ad una condizione di taglia �nita [DS1, DS2] che assicura il rapidodecadimento delle correlazioni, cio�e assicura che le ipotesi del teorema di [HK] siano soddisfatte.La veri�ca delle condizioni di taglia �nita �e stata condotta tramite simulazioni Monte Carloe�ettuate con una nuova dinamica particolarmente adatta al nostro problema, che costituisceun notevole miglioramento rispetto alla strategia seguita in [BMO] dove una domanda analoga�e stata posta nel caso di un singolo modello intermedio relativo alla trasformazione di blockaveraging.In questo capitolo vengono discussi alcuni dei risultati illustrati in precedenza; il capitolosi articola nel modo seguente: la Sezione 1.2 �e dedicata ad una rapida carrellata sulla teoriadegli stati di volume in�nito, in particolare viene mostrato come sia possibile de�nire questistati nel caso del modello di Ising; nella Sezione 1.3 si illustrano le idee �siche alla base delgruppo di rinormalizzazione con riferimento al caso del modello di Ising bidimensionale. LaSezione 1.4 presenta alcuni esempi di patologie, mentre nell'ultima sezione vengono illustrati irisultati ottenuti nel caso del modello di Ising al punto critico in [CO2]. In particolare vengonodiscussi prima gli aspetti teorici del calcolo, mettendo evidenza come i nostri risultati sianopossibili solo grazie alla profonda conoscenza degli aspetti sia statici [D, DS1, DS2] che dinamici[MOS, MO1, MO2, MO3, AH, SZ] degli stati di Gibbs, poi quelli numerici.1.2 Modello di Ising in volume in�nitoIn questa sezione viene illustrata la Teoria di Dobrushin per gli stati di volume in�nito conparticolare attenzione al caso del Modello di Ising.Si consideri il reticolo L := Z2 e l'insieme S costituito da tutti i suoi sottoinsiemi �niti; adogni sito x 2 L viene associata la variabile di spin �x 2 f�1; + 1g, si de�nisce con�gurazionedel sistema la collezione � := (�x)x2L e lo spazio delle con�gurazioni 
 := f�1; + 1gL. Datoun sottoinsieme � � L si de�niscono in modo analogo gli oggetti �� e 
�; in�ne si osserva chenel seguito, data una con�gurazione � 2 
 ed un insieme � � L, con il simbolo �� si indicher�aanche la restrizione di � all'insieme �.Lo spazio 
 �e uno spazio topologico rispetto alla topologia prodotto delle topologie discretesui singoli spazi �niti f�1;+ 1g di cui esso �e il prodotto cartesiano in�nito su L. La topologiadiscreta su f�1;+1g �e quella banale in cui tutti i sottoinsiemi di f�1;+1g sono aperti, mentrela base di aperti della topologia su 
 �e costituita dagli insiemi cilindriciEA� := f� 2 
 : �� 2 Ag (1.4)dove � �e un sottoinsieme �nito di L e A � 
�. Si osserva che A pu�o ridursi ad una solacon�gurazione �� di 
�, in questo caso il cilindro �e costituito da tutte le con�gurazioni di 
coincidenti con �� in � ed arbitrarie all'esterno.7



Patologie del Gruppo di RinormalizzazioneSi considera, inoltre, la �-algebra F dei borelliani di 
 rispetto alla topologia dei cilindri,ovvero F �e la pi�u piccola �-algebra di 
 contenente tutti i cilindri. In modo analogo si de�niscela �-algebra F� di 
�.Considerati i due numeri reali h e J , rispettivamente il campo magnetico esterno e l'interazionetra spin primi vicini, si introduce il potenziale�X(�) := 8><>: �h�x se X = fxg�J�x�y se X =< xy >0 altrimenti (1.5)dove con il simbolo < xy > si indica una coppia di siti primi vicini.Considerato un sottoinsieme �nito � 2 S si de�nisce l'hamiltoniana di Ising di volume �nitocon condizioni al bordo libere H libere� (�) := XX���X(�) (1.6)�e chiaro che la somma (1.6) ha contributo non nullo soltanto dai termini relativi alle coppie diprimi vicini e ai singoli siti. �E possibile de�nire l'hamiltoniana considerando anche l'interazionedel sistema con l'esterno del volume �nito �, in questo caso si deve �ssare una con�gurazione��c nel complementare di � e si de�nisceH��c� (�) := H libere� (�) +W�;�c(�� � ��c) (1.7)dove con il simbolo ��� ��c si denota la con�gurazione coincidente con �� in � e con ��c in �ce dove �e stata introdotta l'interazioneW�;�c(�� � ��c) := XX2S;X\� 6=;;X\�c 6=;�X(�� � ��c) : (1.8)Si osserva che la somma (1.8) �e a priori una somma in�nita, per cui nel caso di un genericopotenziale bisogna imporre dei requisiti di convergenza; ma nel caso del modello di Ising, in cuila sola interazione non nulla �e quella tra primi vicini, il numero di termini della somma si riducead un numero �nito. In altri termini nel caso del modello di Ising per speci�care la condizioneal bordo non �e necessario �ssare l'intera con�gurazione ��c, �e bens�� su�ciente assegnare il valoredello spin nei siti di �c che sono primi vicini di un sito di �.Le propriet�a di equilibrio del modello di Ising su un volume �nito sono descritte dallamisuradi Gibbs di volume �nito ���c�;�;�(�) := e��H��c� (�)Z��c�;� (1.9)dove � := 1=T �e l'inverso della temperatura eZ��c�;� := X�2
:��c=��c e��H��c� (�) (1.10)�e la funzione di partizione di volume �nito.Il caso �sicamente interessante �e quello in cui il volume �e in�nito, solo in questo caso c'�e lasperanza che un modello su reticolo possa presentare una transizione di fase. Ma le de�nizionidate in precedenza non si estendono in modo ovvio al caso di volume in�nito, infatti se side�nisse H(�)\ := " XX�L�X(�)\ = "� J X<xy> �x�y � hXx2� �x (1.11)8



Patologie del Gruppo di Rinormalizzazionesi otterrebbe un oggetto dal valore puramente formale, infatti la somma (1.11) ha un valore�nito solo per alcune con�gurazioni molto particolari, in sostanza si avrebbe energia in�nitaper quasi tutte le con�gurazioni.La de�nizione corretta del modello nel caso di volume in�nito pu�o essere data seguendo laTeoria di Dobrushin [EFS, D, LR]. L'idea chiave �e la seguente: la misura di volume in�nito��;� �e tale che, dato un insieme �nito � ed una condizione al bordo ��c, la misura di volume�nito ���c�;�;� coincide con la misura che si ottiene condizionando ��;� all'evento che consistenell'avere la con�gurazione ��c all'esterno di �. Per formalizzare questa de�nizione si utilizzala nozione di speci�cazione: una speci�cazione �e un insieme di probabilit�a condizionali peri sistemi de�niti su sottovolumi �niti di L; cio�e, dato � 2 S si vuole de�nire una funzione��(��c ;A) con ��c 2 
�c e A 2 F� che fornisca la probabilit�a dell'evento A nel volume �condizionata ad avere la con�gurazione ��c in �c. L'oggetto che si presta a questo scopo �e unnucleo di probabilit�a de�nito sullo spazio (
;F).De�nizione 1.1 Dati due spazi di probabilit�a (
;F) e (
0;F 0) si dice nucleo (kernel) di pro-babilit�a di (
;F) in (
0;F 0)�� : (�;A) 2 
 �F 0 �! ��(�;A) 2 [0;1]tale che� 8� 2 
, ��(�;�) �e una misura di probabilit�a su (
0;F 0)� 8A 2 F 0, ��(�;A) �e una funzione F-misurabile su 
.De�nizione 1.2 Si dice speci�cazione una collezione di nuclei (��)�2S di (
;F) in se stessotali che� 8A 2 F , ��(�;A) �e una funzione F�c-misurabile� 8B 2 F�c, ��(�;B) = �B(�), dove �B(�) �e la funzione caratteristica�B(�) := ( 1 ��c 2 B0 altrimenti (1.12)� se � � �0 allora 8� 2 
, 8A 2 F si haZ ��0(�;d�)��(�;A) = ��0(�;A) :Si osserva che le tre condizioni precedenti esprimono rispettivamente la necessit�a che la misuradi A dipenda solo dal comportamento di � fuori di �, che per osservazioni fuori di � la misurariproduca la con�gurazione ��c e che ci sia una sorta di compatibilit�a tra volumi inclusi l'unonell'altro.De�nizione 1.3 Data una misura � sullo spazio (
;F) e una speci�cazione (��)�2S si diceche la misura �e consistente con la speci�cazione se e solo se8� 2 S;8A 2 F si ha �(�AjF�c) = ��(�;A) �� quasi ovunque : (1.13)
9



Patologie del Gruppo di RinormalizzazioneIn altri termini prese due con�gurazioni �� 2 
� e ��c 2 
�c si ha�(E��� j��c) = ��(��c ;E��� ) (1.14)cio�e la speci�cazione fornisce la probabilit�a condizionale di una con�gurazione su un volume�nito.Si consideri, ora, un potenziale � che soddis� ai requisiti su�cienti ad assicurare la conver-genza della somma (1.8) e la misura di Gibbs di volume �nito ���c�;�;� introdotta come in (1.9)per il generico potenziale �. Posto��;�(�;A) = ���c�;�;�(A) 8� 2 
;8A 2 F (1.15)si veri�ca facilmente che (��;�)�2S �e una speci�cazione; tale speci�cazione �e detta gibbsiana.In alternativa si pu�o dire che una speci�cazione gibbsiana �e una speci�cazione che pu�o esserededotta da un potenziale con il procedimento descritto in precedenza.De�nizione 1.4 Si de�nisce stato di equilibrio di volume in�nito di un modello con potenziale�, una misura ��;� su (
;F) consistente con la speci�cazione gibbsiana (1.15).In questo modo, quindi, quando � �e il potenziale (1.5) si de�nisce lo stato di equilibrio ��;� delmodello di Ising nel caso di volume in�nito.Nel caso di una speci�cazione gibbsiana a partire dalla (1.14) si prova che data una con�-gurazione �� 2 
� si ha��;�(E��� ) = Z �E��� (�)��;�(�;��)��;�(d�) 8�� 2 
� : (1.16)Le equazioni (1.16) sono dette di Dobrushin Lanford e Ruelle (DLR) e si prova che sono neces-sarie e su�cienti per assicurare la gibbsianit�a di una misura [EFS, Ge].Per concludere questa breve discussione della teoria di Dobrushin si enuncia un teoremautile per la caratterizzazione delle misure gibbsiane. Si premettono due de�nizioni:De�nizione 1.5 Una speci�cazione (��)�2S �e quasi-locale se e solo sesup�1;�2: �1�0=�2�0 V ar h��(�1;�);��(�2;�)i �0!L�! 0 (1.17)dove �0 � � e dove �e stata introdotta la distanza in variazione tra due misureV ar h��(�1;�);��(�2;�)i := supA2F j��(�1;A)� ��(�2;A)j : (1.18)In altri termini in una speci�cazione quasi-locale la misura ��(�;�) dipende poco dal valore deglispin di � \molto" lontani da �.De�nizione 1.6 Una speci�cazione (��)�2S �e non-nulla se e solo se 8� 2 S, 8A 2 F���(�;A) > 0 8� 2 
 : (1.19)Teorema 1.1 Una speci�cazione (��)�2S �e gibbsiana se e solo se �e non-nulla e quasi-locale.La condizione necessaria �e semplice, per la condizione su�ciente si rimanda a [EFS].10



Patologie del Gruppo di Rinormalizzazione1.3 Le idee fondamentaliSi considera, ora, il modello di Ising in due dimensioni, volume in�nito, campo magnetico nullo(h = 0) e J = 1: tale sistema presenta una transizione di fase del secondo ordine a bassatemperatura, ovvero esiste un valore critico �c = 12 log(p2 + 1) (valore critico di Onsager) incorrispondenza del quale l'energia libera F� := � 1� lim�!1 logZ free�;� ha una singolarit�a essenziale[I]. Per valori della temperatura inversa � < �c il sistema �e nella fase paramagnetica, ovveroesiste un'unica fase pura �0� tale che la magnetizzazione m0� := �0�(�O), ove �O �e la variabile dispin de�nita nell'origine di L, �e nulla. Mentre per � > �c il sistema �e nella fase ferromagnetica,esistono due fasi pure coesistenti ��� tali che m�� := ��� (�O) = �m0 6= 0; ovvero nel sistema �epresente una magnetizzazione spontanea m0 non nulla.Le fasi pure sono caratterizzate dal decadimento esponenziale delle correlazioni: consideratidue siti x;y 2 L, denotata con rxy la loro distanza si ha�0;�� (�x; �y) := �0;�� (�x�y)� �0;�� (�x)�0;�� (�y) rxy!1� exp(� rxy�0;�� ) (1.20)dove �0;�� , la lunghezza di correlazione nella corrispondente fase pura, �e un numero reale estrettamente positivo. Ci�o vuol dire che nelle fasi pure lo spin in un sito x �e correlato soltantocon un numero �nito di spin, in particolare con gli spin che distano meno della lunghezza dicorrelazione. D'altro canto quando la temperatura tende al suo valore critico la lunghezza dicorrelazione diverge con legge di potenza�0;�� � jT � Tcj�1 ; (1.21)dove Tc �e la temperatura critica. In altri termini, al punto critico il modello manifesta uncomportamento molto peculiare: nonostante l'interazione esista soltanto tra spin primi vicini,cio�e tra spin a distanza uno, al punto critico tutti gli spin sono correlati tra loro.A T > Tc il numero di spin correlati �e �nito, quindi si pu�o pensare di approssimare ilsistema con un sistema �nito; ma al punto critico il numero di gradi di libert�a e�ettivamenteinteragenti �e in�nito: i fenomeni critici sono fenomeni cooperativi. D'altro canto la divergenzadella lunghezza di correlazione lascia supporre che il sistema sia in regime di invarianza di scala,cio�e guardando il sistema su scale diverse esso presenta lo stesso comportamento. Ci�o suggerisce,allora, di de�nire una trasformazione che associ al sistema di partenza (sistema oggetto) unnuovo sistema (sistema immagine) ottenuto integrando tutti i gradi su una certa scala �ssata. Inpresenza di invarianza di scala il sistema immagine e quello oggetto avrebbero le stesse propriet�a�siche; in altri termini un sistema al punto critico dovrebbe essere un punto �sso di questo tipodi trasformazioni. Tali trasformazioni sono dette trasformazioni di rinormalizzazione.Un esempio particolare di trasfromazione di rinormalizzazione �e la block averaging transfor-mation (BAT).De�nizione 1.7 (Trasformazione BAT) Si suddivide il reticolo L in quadrati L � L dis-giunti; ognuno di questi blocchi viene denotato con B1;Li ; al blocco i-esimo viene associata lanuova variabile �1;Li := 1L Xj2B1;Li (�j � ��(�j)) : (1.22)I possibili valori della variabile rinormalizzata sono�1;Li + 1L Xj2B1;Li ��(�j) = �L2L ;�L2 + 2L ;:::;+L2L : (1.23)11



Patologie del Gruppo di RinormalizzazioneSi denota con �1;L una con�gurazione di queste nuove variabili, con 
1;L il nuovo spazio dellecon�gurazioni e con F1;L la relativa �-algebra dei borelliani. Si dice che � 2 
 �e compatibilecon un insieme misurabile A 2 F1;L se e solo se applicando la trasformazione (1.22) la con-�gurazione � viene trasformata in une elemento di A. Si de�nisce il nucleo di probabilit�a di(
;F) in (
1;L;F1;L)TL0;1(�;A) := ( 1 � compatibile con A0 altrimenti 8� 2 
; 8A 2 F1;L (1.24)e la nuova misura �1;L� (A) := Z ��(d�)�A(�)TL0;1(�;A) 8A 2 F1;L (1.25)Il nuovo sistema di spin cos�� ottenuto viene denotato con il simbolo S1;L.Si osserva che la nuova misura �e normalizzata correttamente come conseguenza della correttanormalizzazione del nucleo TL0;1. Iterando la trasformazione si ottengono sistemi de�niti su scalasempre pi�u grande: S1;L;S2;L;:::;Sn;L;:::.L'idea alla base della teoria del gruppo di rinormalizzazione �e che al crescere di n, se ilmodello di partenza �e al punto critico, il sistema Sn;L presenta sempre le stesse propriet�a�siche; mentre se il sistema di partenza �e in una regione con lunghezza di correlazione �nita,allora le variabili rinormalizzate tendono a disaccoppiarsi, cio�e nel limite n!1 il sistema Sn;Ltende ad un sistema di variabili indipendenti.Prima di discutere questo punto si premette un lemma che assicura che iterare la BATequivale a considerare un solo passo della stessa trasformazione, ma su una taglia molto pi�ugrande.Lemma 1.1 Con le notazioni introdotte in precedenza:Sn;L = S1;Ln (1.26)La dimostrazione �e immediata, infatti identi�cando correttamente i siti dei reticoli rinormaliz-zati si ha �1;Lni = �n;Li .Per studiare, allora, l'e�etto dell'iterazione della trasformazione di rinormalizzazione �e suf-�ciente studiare il sistema S1;L quando L!1. Si considera il caso h = 0 e T > Tc, pertantosi ha �1;Li = 1L Xj2B1;Li �j : (1.27)Quando L �e molto grande, le variabili presenti nella somma (1.27) sono praticamente indi-pendenti, quindi per il teorema del limite centrale per la somma di variabili indipendenti lavariabile �1;Li tende ad avere una distruzione gaussiana�1;L� (�1;Li = m) L!1� 1L 1p2��i e�m22�i (1.28)dove �i �e la varianza di �1;Li . A priori la varianza �i dipende sia dalla taglia L sia dallecondizioni al bordo del blocco B1;Li ; ma sfruttando il decadimento esponenziale delle correlazionitipico della fase di alta temperatura, si pu�o mostrare che �i L!1� �� dove � := �@��(�i)@h �h=0 =���(�iPj2L �j) �e la suscettivit�a. Infatti��(�1;Li ; �1;Li ) = 1L2 Xj2B1;Li �� 0B@�j Xk2B1;Li �k1CA L!1� 1L2 Xj2B1;Li �� 0@�j Xk2L�k1A = �� 0@�j Xk2L�k1A12



Patologie del Gruppo di Rinormalizzazionedove si �e usato il decadimento esponenziale delle correlazioni per estendere la somma dal bloccoB1;Li a tutto il reticolo L.Si osserva, in�ne, che al punto critico a causa della divergenza della lunghezza di correlazioneil ragionamento precedente fallisce, infatti comunque grande si scelga la scala L, le variabili nellasomma (1.27) non possono essere considerate approssimativamente indipendenti.Lo schema illustrato in precedenza, pur sembrando del tutto naturale, non �e stato mai di-mostrato in modo rigoroso dopo quasi trent'anni dalla sua prima formulazione. L'interesse deirisultati esatti di questo tipo �e del tutto evidente, inoltre negli ultimi anni �e stato accresciutodalla pubblicazione di numerosi lavori (si veda, per esempio, [EFS]) in cui sono stati discussialcuni aspetti patologici delle trasformazioni di rinormalizzazione. Parallelamente si �e svilup-pata, o meglio ha trovato nuovo vigore, una linea di ricerca tesa a mostrare in modo rigorosoche nei casi di interesse �sico (per esempio il punto critico del modello di Ising) lo schema delgruppo di rinormalizzazione �e corretto.1.4 Alcuni esempi di patologie del gruppo di rinormaliz-zazioneIn questa sezione viene illustrato l'esempio di Israel sull'esistenza delle patologie del gruppo dirinormalizzazione: l'esempio, proposto per la prima volta in [G2, GP] e formalizzato in [Is],viene discusso nel pi�u profondo dettaglio in [EFS]. Nel seguito descriver�o per sommi capi ladimostrazione della non gibbsianit�a della misura rinormalizzata, per chiarire il ruolo giocatodai modelli intermedi. In primo luogo si de�nisce la trasformazione di decimazione nel caso delmodello di Ising e ci si limita a considerare il caso J = 1, h = 0 e � < �c:De�nizione 1.8 (Trasformazione di decimazione) Si considera il modello di Ising de�nitosul reticolo L := Z2; si denota con � 2 
L := f�1; + 1gL una con�gurazione, con FL la �-algebra dei borelliani e con �� la misura di equilibrio con i parametri h;J e � speci�cati inprecedenza. Si denota con L0 il nuovo reticolo ottenuto a partire da L prendendo un sitoogni due (si veda la Fig. 1.1). Considerato il sito x � (x1;x2) 2 L0 si denota con 2x ilsito (2x1;2x2) 2 L, quindi si de�nisce la trasformazione che ad ogni � 2 
L associa unacon�gurazione �0 2 f�1; + 1gL0 =: 
0L0 sul reticolo L0:�0x = �2x 8x 2 L0 :Per costruire la misura del modello immagine si de�nisce il nucleo di probabilit�a T : (
L;FL) �!(
0L0;F 0L0) nel modo seguente:T (�;A) := ( 1 � tale che �0 2 A0 altrimenti 8� 2 
L; 8A 2 F 0L0dove F 0L0 �e la �-algebra dei borelliani su 
0L0; quindi si de�nisce:�0�(A) := Z ��(d�)�A(�)T (�;A) 8A 2 F 0L0 :Si osserva che la de�nizione precedente corrisponde a costruire la misura rinormalizzata som-mando su tutti i vecchi spin che non si trovano sul reticolo L0; inoltre si osserva che le nuovevariabili non sono altro che i vecchi spin che si trovano su siti di L con coordinate pari.Si dimostra il seguente risultato: 13



Patologie del Gruppo di Rinormalizzazione
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Figura 1.1. Le linee continue rappresentano il reticolo L, i dischi neri i siti del reticolo L0.Teorema 1.2 Con le notazioni introdotte in precedenza, se � > 12 cosh�1(1 + p2) � 1:73�c,dove �c �e il valore critico di Onsager, allora la misura rinormalizzata �0� non �e gibbsiana.Per dimostrare il teorema precedente si prova che la misura rinormalizzata �0� non �e consistentecon nessuna speci�cazione quasi-locale e si usa in senso \negativo" il Teorema 1.1 che caratte-rizza le misure gibbsiane. In altri termini si dimostra che una funzione locale calcolata tramitela misura rinormalizzata, per esempio la quantit�a �0�(�0O) (il valor medio dello spin immaginenell'origine), dipende fortemente dai valori degli spin immagine molto lontati se gli spin vici-ni vengono scelti in modo opportuno; cio�e il valore di �0�(�0O) cambia di una quantit�a �nitase viene calcolato condizionando la misura immagine in modo diverso su siti arbitrariamentelontani dall'origine. Il problema, quindi, si riduce a determinare questa con�gurazione \oppor-tuna" che �e in grado di trasportare l'informazione da molto lontano �no all'origine. L'idea �edi considerare una con�gurazione in corrispondenza della quale il relativo modello intermedio�e in regime di transizione di fase, ovvero ha pi�u fasi consistenti.Pi�u precisamente, a partire da �0� si costruisce la speci�cazione con cui la misura rinorma-lizzata �e consistente: ��0(�0;A0) = �0�(A0j�0�0c) (1.29)per ogni �0 sottoinsieme �nito di L0, �0 2 
0L0 e A0 2 F 0L0. La speci�cazione �e quasi locale se esolo se comunque si prenda un volume �nito �0 � L0 accade chesup�01;�02: �01�0=�02�0 V ar h��0(�01;�);��0(�02;�)i == sup�01;�02: �01�0=�02�0 supA02F 0L0 j��0(�01;A0)� ��0(�02;A0)j �0!1�! 0 (1.30)dove �0 � L0 �nito e �0 � �0. La strategia che si segue per dimostrare che la speci�cazione(��0)�0 �nito�L0 non �e quasi-locale �e la seguente: determinare un particolare evento A0 2 F 0L0, peresempio l'evento A0 = f�0O = +1g, e far vedere che la misura di questo evento cambia molto14



Patologie del Gruppo di Rinormalizzazionese si condiziona a due con�gurazioni coincidenti nei pressi dell'origine, ma diverse lontanodall'origine stessa. Per essere pi�u precisi bisogna dimostrare che esiste una con�gurazione �0tale che �e possibile trovare un � > 0 tale che in ogni intorno di �0 esistono due con�gurazioni �01e �02, coincidenti in un certo �0 � L0 �nito, ma arbitrariamente grande, e diverse all'esterno, ej�O(�01;f�0O = +1g)� �O(�02;f�0O = +1g)j � � > 0 (1.31)Il primo problema da risolvere, quindi, �e determinare la con�gurazione �0: si de�niscono imodelli intermediDe�nizione 1.9 (Modelli intermedi) Si consideri �0 2 
0L0, si dice modello intermedio re-lativo a �0 un modello nelle vecchie variabili � 2 
L con misura di equilibrio��0;�(A) := R ��(d�)�A(�)T (�;�0)R ��(d�)T (�;�0) 8A 2 FL :Nel caso di volume in�nito la notazione �e necessariamente complicata, ma si osserva che unmodello intermedio corrispondente a �0 altri non �e che il modello di Ising con il vincolo diconsiderare soltanto quelle con�gurazioni tali che il valore dello spin su siti x 2 L0 sia �0x. Infattidalla De�nizione 1.8 si ha T (�;�0) = �f�L0=�0g(�) da cui si ottiene ��0;�(A) = ��(Aj�L0 = �0).Ora si osserva che se esiste un modello intermedio ��0;� che �e sopra il suo punto critico,allora le grandezze calcolate su un volume �nito � � L devono essere discontinue rispetto avariazioni delle condizioni al bordo. L'idea �e che prendendo �01 e �02 uguali a �0 all'interno di�0, ma diverse tra loro all'esterno, deve essere possibile sfruttare le \propriet�a" di discontinuit�adella misura intermedia per trovare un � in corrispondenza del quale sia valida la (1.31).A questo punto si mostra come sia possibile realizzare il progetto enunciato in precedenza:si considera la con�gurazione �0alt completamente antiferromagnetica sul reticolo L0 e si provache il modello intermedio ��0alt;� ha due fasi coesistenti se� > 12 cosh�1(1 +p2) : (1.32)Infatti, il modello intermedio �e de�nito sul reticolo L con gli spin che cadono sul sottoreticolocoincidente con L0 uguali agli spin di �0alt (si veda la Fig. 1.2). Ma il contributo all'hamiltonianadelle coppie di spin primi vicini in cui vi �e uno degli spin �ssati �e nullo, perch�e i vari contributisi cancellano a due a due. Quindi il modello intermedio diventa equivalente al modello di Isingcon accoppiamento J = 1, temperatura 1� e de�nito sul reticolo L00 ottenuto rimuovendo in Ltutti i siti del sottoreticolo coincidente con L0 (si veda Fig. 1.2).Come nel caso della decimazione nel modello di Ising unidimensionale, a questo punto, �epossibile sommare su tutti gli spin che hanno due soli siti primi vicini: si ottiene un modellodi Ising su reticolo Z2 con accoppiamento tra primi vicini 12 log cosh 2�. Allora il modellointermedio ha transizione di fase se � �e maggiore di un certo �� de�nito dall'equazione12 log cosh 2�� = �c (= 12 log(1 +p2)) :dalla precedente si ottiene facilmente la condizione (1.32).Per caratterizzare le propriet�a di discontinuit�a della misura ��0alt;� si procede nel modoseguente: preso un numero intero e positivo R, si consideraNR := f�0 : �0 = �0alt su �0R; �0 arbitraria altroveg (1.33)15
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Figura 1.2. A sinistra �e rappresentata la con�gurazione �0alt sul reticolo L, mentre a destra �erappresentato il reticolo L00.dove �0R �e un quadrato centrato nell'origine di L0 e di lato 2R + 1. Si osserva che al variare diR la famiglia degli insiemi NR costituisce una base di intorni di �0alt nella topologia dei cilindri.Poi si dimostra [EFS] che esiste un numero � > 0 tale che comunque si prenda un NR esistonodue sottoinsiemi non vuoti N+ e N� di NR e due costanti c+ e c� tali che8><>: c+ � c� � ���0+;�(�O) � c+ se �0+ 2 N+��0�;�(�O) � c� se �0� 2 N� : (1.34)Fissato R, gli insiemi aperti N� vengono de�niti scegliendo un opportuno R0 > R e ponendo:N� := f�0 : �0 = �0alt su �R; �0 = �1 su �R0 n �R; �0 arbitraria altroveg :Le disequazioni (1.34) caratterizzano il comportamento discontinuo della misura intermediarelativa a �0alt in un intorno di questa con�gurazione; ma dalla de�nizione di intorno, nella to-pologia dei cilindri, �e anche chiaro che deve essere possibile mettere in relazione la discontinuit�adella misura intermedia con la forte dipendenza dagli spin lontani della misura rinormalizzata.In [EFS] si dimostra, infatti, a partire dalle (1.34), che esiste un � > 0 tale che comunque siprenda un intorno N di �0alt �e possibile prendere R abbastanza grande in modo che NR2 ;R2 +1;� �N e si ha �0�(�0Oj�0+ in fOgc)� �0�(�0Oj�0� in fOgc) � � > 0 (1.35)con �0� 2 NR2 ;R2 +1;�. La (1.35) mette in luce che il valore d'attesa dello spin rinormalizzatonell'origine dipende fortemente da ci�o che avviene arbitrariamente lontano da essa e constituiscela prova che la speci�cazione con cui �0� �e consistente non �e quasi-locale e, quindi, la misurarinormalizzata non �e gibbsiana.In [EFS] l'approccio descritto in precedenza �e stato generalizzato ed applicato a numerosicasi interessanti, per esempio la transformzazione di Kadano�, quella di block averaging e lamajority rule.
16



Patologie del Gruppo di Rinormalizzazione1.5 Assenza di patologie per il modello di Ising criticoNella sezione precedente sono stati mostrati alcuni esempi di trasformazioni del gruppo dirinormalizzazione che esibiscono un comportamente patologico; in questa sezione, invece, inun caso di grande interesse �sico, come il modello di Ising bidimensionale al punto critico,si \dimostra" che le trasformazioni del gruppo di rinormalizzazione sono ben de�nite, cio�e lamisura rinormalizzata �e gibbsiana [CO2] (si veda l'Allegato 1).In realt�a l'espressione \si dimostra" non �e completamente corretta, perch�e tramite unacatena di implicazioni logiche basate su risultati di R.L. Dobrushin, F. Martinelli, E. Olivieri e S.Shlosman, si riduce la dimostrazione alla stima di una grandezza e la misura di questa quantit�aviene e�ettuata per mezzo di una simulazione numerica. La misura di questa grandezza, d'altrocanto, �e molto delicata e in [CO2] �e stata sviluppata una dinamica, chiamata dynamical surgery(generalizzando la terminologia introdotta in [DS1]), adatta al nostro problema. In questasezione verranno descritti i risultati di [CO2] e per i dettagli tecnici si rimanda all'Allegato 1.Si considera il modello di Ising critico, cio�e con le notazioni introdotte nelle sezioni precedentisi considera il caso J = 1, h = 0 e � = �c; si denota la misura di equilibrio con il simbolo ��c.Si de�nisce poi la trasformazione di rinormalizzazione nota come majority rule [NL1, NL2]:De�nizione 1.10 (Trasformazione MR) Si suddivide il reticolo L in blocchi 2� 2 denotaticon Bi; al blocco i-esimo viene associata la variabile immagine�0i := ( signPj2Bi �j se Pj2Bi �j 6= 0��Bi altrimenti ;dove ��Bi rappresenta lo spin in alto a sinistra nel blocco Bi, ovvero il primo spin in ordinelessicogra�co. Si denota con �0 una con�gurazione delle variabili immagine, con L0 il nuovoreticolo, con 
0L0 := f�1; + 1gL0 il nuovo spazio delle con�gurazioni e con F 0L0 la relativa �-algebra dei borelliani. Per costruire la misura del modello immagine si de�nisce il nucleo diprobabilit�a T : (
L;FL) �! (
0L0 ;F 0L0) nel modo seguente:T (�;A) := ( 1 � tale che �0 2 A0 altrimenti 8� 2 
L; 8A 2 F 0L0 ;quindi si de�nisce: �0�c(A) := Z ��c(d�)�A(�)T (�;A) 8A 2 F 0L0 :Inoltre, considerata una con�gurazione �0 si de�niscono i modelli intermedi come nel caso delladecimazione (De�nizione 1.9); in questo caso un modello intermedio �e un modello di Ising in cuiin ogni blocco Bi sono ammesse soltanto 8 delle 16 possibili con�gurazioni. Pi�u precisamente,si dividono le 16 possibili con�gurazioni di un blocco 2 � 2 in due classi C+ e C� nel modoseguente:� con�gurazioni di blocco appartenenti alla classe C+" � ++ + # " + �� + # " + �+ � # " + �+ + # " + +� � # " + +� + # " + ++ � # " + ++ + #
� con�gurazioni di blocco appartenenti alla classe C�" � �� � # " � �� + # " � �+ � # " � �+ + # " � +� � # " � +� + # " � ++ � # " + �� � #17



Patologie del Gruppo di RinormalizzazioneEbbene nel modello intermedio ��0;�c in corrispondenza del blocco Bi vanno considerate solo le8 con�gurazioni di C+, se �0i = +1, di C� si �0i = �1.La strategia seguita in [CO2] per dimostrare che la misura rinormalizzata �0�c �e gibbsianaconsiste nell'utilizzare il Teorema 1.1 di [HK] che in sostanza dice: considerati tutti i possibilimodelli intermedi ���0;V de�niti sul volume �nito V e con condizioni al bordo � , se questi sod-disfano ad una condizione di decadimento esponenziale delle correlazioni (che assicura l'assenzadi transizione di fase nel limite termodinamico), allora la misura rinormalizzata �e gibbsiana. Inrealt�a piuttosto che veri�care direttamente le ipotesi del teorema di Haller e Kennedy, l'idea�e veri�care che tutti i modelli intermedi soddisfano ad una condizione di strong mixing, dacui, con gli argomenti della dimostrazione di [HK], si deduce direttamente la gibbsianit�a dellamisura rinormalizzata.De�nizione 1.11 (Strong Mixing) Un misura di Gibbs ��� de�nita sul volume �nito � econ condizioni al bordo � soddisfa ad una condizione di strong mixing con costanti C e 
 se esolo se per ogni � � � sup�;� (y)2
�c V ar(���;�;�� (y)�;�) � Ce�
dist(�;y) (1.36)dove � (y)x = �x per ogni x 6= y e ���;� �e la relativizzazione di ��� al sottovolume � � �. Questacondizione viene denotata con il simbolo SM(�;C;
).In sostanza dire che una misura �e SM(�;C;
) vuol dire che ci�o che avviene all'interno del volu-me � dipende poco dal bordo, cio�e in ogni sottovolume di � non \cambia nulla" se la condizioneal bordo viene cambiata in un punto, perch�e l'in
uenza del bordo decade in modo esponenzialequando ci si allontana dal punto in cui la condizione al bordo �e stata modi�cata. Nella ter-minologia introdotta da Dobrushin e Shlosman una misura che soddisfa ad una condizione distrong mixing in tutti i volumi �niti �e detta completamente analitica: se un sistema �e in regimedi completa analiticit�a non solo si dimostra l'unicit�a della misura di gibbs, e quindi l'assenza ditransizione di fase, ma una serie di ulteriori propriet�a, equivalenti fra loro, che caratterizzanocompletamente la misura stessa [DS2].Assieme alla nozione di strong mixing si de�nisce quella di weak mixing:De�nizione 1.12 (Weak mixing) Un misura di Gibbs ��� de�nita sul volume �nito � e concondizioni al bordo � soddisfa ad una condizione di weak mixing con costanti C e 
 se e solose per ogni � � � sup�;� 02
�c V ar(���;�;�� 0�;�) � C Xx2�;y2@�+ e�
jx�yj (1.37)dove @�+ := fx 2 �c : jx � yj = 1g. Questa condizione viene denotata con il simboloWM(�;C;
).La nozione di weak mixing �e pi�u debole di quella di strong mixing, infatti esistono esempi dimodelli [Sc3] che soddisfano a condizioni di weak mixing, ma non a condizioni di strong mixing.Nel caso bidimensionale, per�o, F. Martinelli, E. Olivieri e R.H. Schonmann hanno provato laloro equivalenza nel senso illustrato dal seguente teorema [MOS]:Teorema 1.3 (Martinelli, Olivieri, Schonmann) Si consideri il caso bidimensionale: seesistono due costanti C e 
 tali che la misura di Gibbs ��� soddisfa alla condizione WM(�;C;
)per ogni volume �nito �, allora esistono due costanti positive C 0 e 
0 tali che la misura di Gibbs��� soddisfa alla condizione SM(�;C 0;
0) per tutti i volumi � su�cientemente regolari, cio�e pertutti i volumi multipli di un quadrato su�cientemente grande.18



Patologie del Gruppo di RinormalizzazionePoich�e usando gli argomenti sviluppati da Haller e Kennedy e l'ipotesi che tutti i modelliintermedi siano strong mixing su volumi su�cientemente regolari �e possibile dimostrare lagibbsianit�a della misura rinormalizzata, allora, grazie al Teorema 1.3, il nostro problema siriduce a veri�care che tutti i modelli intermedi sono \weak mixing" su tutti i volumi �niti.Le condizioni di weak e strong mixing sono delle condizioni di \taglia �nita", perch�e sonodelle propriet�a che un sistema deve soddisfare su un volume �nito; ma per poter dedurre deirisultati sulla misura di volume in�nito �e necessario che queste siano valide per tutti i sotto-volumi �niti o perlomeno per tutti i sottovolumi su�cientemente regolari. In [DS1] Dobrushine Shlosman hanno introdotto una condizione di taglia �nita, che chiamer�o DSU(�;�), tale chese esiste un volume �nito su�cientemente grande � in cui il sistema soddisfa alla condizioneDSU(�;�), allora si possono dedurre una serie di propriet�a del modello nel limite termodina-mico, per esempio l'unicit�a della misura di Gibbs di volume in�nito, in altri termini l'assenzadi transizione di fase. La condizione DSU , quindi, �e una condizione di volume �nito moltoforte: per ottenere informazioni sul limite termodinamico non bisogna esaminare direttamentela misura di volume in�nito, oppure la misura di volume �nito su tutti i sottovolumi �niti, mabasta studiare il sistema in un volume �nito, purch�e sia su�cientemente grande.In particolare in [DS1] �e stato dimostrato il seguente teorema:Teorema 1.4 (Dobrushin, Shlosman) Se DSU(V;�) �e soddisfatta per un volume su�cien-temente grande V e per un � < 1, allora esistono due costanti positive C e 
 tali che lacondizione WM(�;C;
) �e soddisfatta per ogni volume �nito �.Dal punto di vista della dimostrazione della gibbsianit�a della misura rinormalizzata �0�c �epossibile usare i risultati enunciati in precedenza e ridursi a veri�care che esiste un volume �nitosu�cientemente grande V tale che tutti i modelli intermedi soddisfano la condizione DSU(V;�).Si enuncia, quindi, la condizione DSU:De�nizione 1.13 (Condizione DSU) Si consideri una metrica sullo spazio di singolo spinS := f�1;+ 1g, preso un volume �nito V si de�nisce la metrica su SV :�V (�V ;�V ) := Xx2V �(�x;�x) 8�V ;�V 2 SV :Si dice che la condizione DSU�(V;�) �e soddisfatta se e solo se esiste un insieme �nito V e unnumero � > 0 tali che: per ogni x 2 @V + esiste �x > 0 tale che comunque si prenda una coppiadi condizioni al bordo �;� 0 2 SV c con �y = � 0y per ogni y 6= x si haD�V (��V ;�� 0V ) � �x�(�x;� 0x)e Xx2@V + �x � �jV j ;dove �e stata introdotta la distanza di VassersteinD�V (��V ;�� 0V ) := inf�2K(��V ;�� 0V ) X�V ;�V 2SV �V (�V ;�V )�(�V ;�V ) (1.38)con K(��V ;�� 0V ) l'insieme di tutte le rappresentazioni congiunte di ��V e �� 0V .Dire che un sistema soddisfa allaDSU(V;�) con un � < 1 vuol dire che cambiando la condizioneal bordo in un punto le due misure di Gibbs in V sono molto vicine, nel senso che la loro distanzadi Vasserstein �e pi�u piccola del rapporto jV jj@V +j .19



Patologie del Gruppo di RinormalizzazionePer veri�care che tutti i modelli intermedi soddisfano alla condizione DSU si procede nelmodo seguente: si �ssa un volume V , si sceglie una con�gurazione immagine �0 e si considerail modello intermedio ��V;�0;�c con condizione al bordo � . Poi si calcola la quantit�aE�;� (x)V;�0;�c := D�V (��V;�0;�c;�� (x)V;�0;�c) j@V +jjV j (1.39)dove si �e scelta la metrica � := 1 � ��x;�0x sullo spazio di singolo spin S = f�1; + 1g. �E facileconvincersi che se EV;�0;�c := supx2@V + sup�2S@V+ E�;� (x)V;�0;�c < 1allora il modello intermedio relativo alla con�gurazione �0 soddisfa alla condizione DSU�(V;�)con un � < 1. In de�nitiva il problema di dimostrare la gibbsianit�a della misura rinormalizzatasi riduce a mostrare che la quantit�a EV;�0;�c �e minore di uno per tutti i modelli intermedi.La grandezza EV;�0;�c �e stata misurata mediante simulazioni Monte Carlo. In [BMO] �e statoposto un problema analogo nel caso della trasformazione di block averaging, ma il calcolonumerico �e stato e�ettuato con l'usuale dinamica di Metropolis che ha permesso la misura diun estremo inferiore dell'estimatore EV;�0;�c e ci�o �e chiaramente non su�ciente per dedurre lavalidit�a della condizione DSU . In [CO2], invece, �e stata introdotta una nuova dinamica chepermette di misurare un estremo superiore di EV;�0;�c e quindi di \dimostrare" numericamenteche tutti i modelli intermedi soddisfano la condizione di Dobrushin e Shlosman e che quindi lamisura rinormalizzata �e gibbsiana.L'idea alla base della dinamica �e la seguente: per calcolare esattamente la distanza di Vas-serstein tra le due misure ��V;�0;�c e �� (x)V;�0;�c si dovrebbe essere in grado di determinare la misuracongiunta �� 2 K(��V;�0;�c;�� (x)V;�0;�c) che minimizza la somma (1.38), ma ci�o risulta troppo di�ci-le. D'altro canto �e possibile calcolare la distanza di Vasserstein tra tra le misure relativizzatead un singolo blocco (si veda la Sezione 4 dell'Allegato 1), allora si pu�o considerare un MonteCarlo in cui due copie del sistema, che di�eriscono solo per la condizione al bordo in un punto,evolvono simultanemente e ad ogni passo la coppia di sistemi viene aggiornata in accordo conla misura congiunta che realizza il minimo nella distanza di Vasserstein su un singolo blocco.Se si lascia evolvere il sistema per un tempo su�cientemente lungo, la coppia di sistemi ter-malizza su una misura congiunta che, sperabilmente, non �e molto lontana dalla ��. Calcolandola media temporale della distanza tra due con�gurazioni, quindi, si calcola la somma (1.38) conuna misura congiunta vicina alla �� che ottimizza la somma stessa, quindi si riesce a stimare ladistanza di Vasserstein. In realt�a, poich�e il Monte carlo non realizza esattamente la misura ��ci�o che si misura non �e esattamente EV;�0;�c, ma soltanto un suo estremo superiore UV;�0;�c. Maci�o �e comunque un risultato che per noi �e su�ciente, infatti se la nostra misura �e minore di uno,a maggior ragione lo sar�a la grandezza EV;�0;�c e quindi avremo \dimostrato" numericamente chetutti i modelli intermedi soddisfano la condizione DSU . Ovviamente questa strategia presentaun rischio: se il Monte Carlo realizza una misura congiunta troppo lontana da ��, pu�o accadereche noi misuriamo qualcosa che sia molto maggiore di EV;�0;�c e che addirittura sia maggior diuno, pur essendo EV;�0;�c < 1.Dal punto di vista numerico il calcolo ha due aspetti contrastanti: a livello intuitivo ci siaspetta che la distanza tra le misure cresca con il crescere del volume perch�e quando il volumecresce la di�erenza tra due con�gurazioni ha pi�u spazio per propagarsi. Ma se il volume diventaabbastanza grande, tipicamente maggiore della lunghezza di correlazione del modello, allora ladistanza tra le misure dovrebbe essere costante rispetto al volume. Inoltre il nostro estimatore(1.39) ha il fattore j@V +jjV j che tende a farlo decrescere quando il volume cresce, quindi questo20



Patologie del Gruppo di Rinormalizzazionel UV;�c �UV;�c2 1.452 0.00743 1.122 0.00714 0.877 0.00468 0.436 0.002616 0.207 0.0016Tabella 1.1. Misura Monte Carlo di UV;�c, ovvero dell'estremo superiore di UV;�0;�c su tuttii modelli intermedi considerati nelle simulazioni, eseguita per diversi volumi. La variabile lrappresenta la semilunghezza del lato del quadrato V .argomento intuitivo suggerisce che quanto pi�u �e grande il volume tanto pi�u facile dovrebbeessere la misura di valori piccoli di EV;�0;�c per tutti i modelli intermedi.Ma, d'altro canto, quando si considerano volumi troppo grandi il numero di possibili modelliintermedi ed il numero di possibili condizioni al bordo che bisogna controllare, in altri termini ilnumero totale di esperimenti numerici che bisogna e�ettuare, cresce esponenzialmente. In [CO2]abbiamo cercato di ottimizzare questi aspetti contrastanti considerando volumi su�cientementegrandi, per assicurarci che il nostro estimatore fosse minore di uno, ma limitandoci ad eseguireuna statistica su tutti i possibili modelli intermedi e su tutte le possibili condizioni al bordo.Per la descrizione dettagliata di tutti i risultati numerici e del metodo seguito per eseguire lastatistica si rimanda alla Sezione 5 dell'Allegato 1, qui si delinenano le idee guida e si espongonoi risultati principali.In primo luogo la quantit�a UV;�0;�c �e stata misurata per volumi crescenti eseguiendo unastatistica cieca sui modelli intermedi e sulle condizioni al bordo, cio�e per ogni volume sono statiscelti a caso un certo numero di modelli intermedi e di condizioni al bordo.I risultati in Tabella 1.1 suggeriscono che nel caso l = 4 tutti i modelli intermedi soddisfanola condizione UV;�0;�c < 1 (1.40)e che quindi l = 4 �e il valore abbastanza grande del lato del volume su�ciente per i nostriscopi. Ma, gi�a ad l = 4 non �e possibile considerare tutti i modelli intermedi e tutte le possibilicondizioni al bordo, in e�etti il risultato in Tabella 1.1 �e stato ottenuto considerando soltanto50 dei 216 modelli intermedi e 60 coppie di possibili condizioni al bordo. Quindi �e possibile cheesista un modello (o una condizione al bordo) particolarmente sfortunato, in corrispondenzadel quale risulti UV;�0;�c > 1.Inoltre si osserva che la distanza tipica, l4UV;�0;�c, fra le due copie del sistema, cresce da 0:530a 0:8415 quando si passa da l = 1 a l = 3 e poi resta approssimativamente costante, confermandola descrizione intuitiva del fenomeno data in precedenza; e ci�o costituisce una ulteriore confermache il volume corrispondente ad l = 4 dovrebbe essere su�ciente per a�ermare che tutti i modelliintermedi soddisfano DSU .Ma per poter supportare questa tesi si �e anche cercato di fare una sorta di \statisticaintelligente": si �e considerato il caso l = 6, in modo da avere un estimatore abbastanza piccolo(tra 0:436 e 0:877, come suggerisce la Tabella 1.1) e allo stesso tempo degli esperimenti numericinon troppo lunghi (alcuni giorni di CPU su un alpha 125). La statistica intelligente �e statae�ettuata cercando di individuare i modelli intermedi pi�u pericolosi (�0 antiferromagnetica olamellare) e la regione in cui la di�erenza tra le due copie del sistema si propaga a partire dal21



Patologie del Gruppo di Rinormalizzazionepunto in cui le due condizioni al bordo sono diverse. Alla �ne abbaimo ottenutoUV;�c = 0:633 �UV;�c = 0:011 ;che ci permette di a�ermare con notevole con�denza che in corrispondenza di l = 6 tutti imodelli intermedi soddisfano la condizione di taglia �nita di Dobrushin e Shlosman e che , invirt�u della catena di implicazioni logiche discusse in precedenza, la misura rinormalizzata �0�c�e gibbsiana.
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Patologie del Gruppo di Rinormalizzazione
Allegato 1Renormalization-group at criticality and complete analiticity of constrained mo-del: a numerical study.E.N.M. Cirillo, E. Olivieri, Journ. Stat. Phys. 86, 1117-1151, 1997

RiassuntoSi studia la trasformazione nota con il come di Majority Rule appliacataalla misura di Gibbs del modello di Ising bidimensionale al punto critico.Lo scopo �e dimostrare che la trasformazione �e ben de�nita nel senso che lamisura rinormalizzata �e gibbsiana. Studiamo la validit�a della condizione ditaglia �nita di Dobrushin-Shlosman per i sistemi intermedi corrispondentia diverse con�gurazioni del modello immagine. �E noto che DSU implica,nel caso bidimensionale, la completa analiticit�a, da cui segue la gibbsianit�a,come �e stato mostrato recentemente da Haller e Kennedy. Si introduce unalgoritmo Monte Carlo per calcolare la distanza di Vasserstein tra misuredi Gibbs di volume �nito con diverse condizioni al bordo. Otteniamo delleforti indicazioni numeriche che la condizione DSU �e veri�cata per volumiabbastanza grandi e per tutti i modelli intermedi.
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Capitolo 2Applicazione del CVM ad alcunimodelli di super�ci
2.1 IntroduzioneIn questo capitolo verr�a mostrato come il CVM permetta di ottenere notevoli informazionisul diagramma di fase di alcuni modelli di super�ci su reticolo, per i quali, a causa della lorocomplessit�a, esistono pochi risultati esatti.I modelli di super�ci su reticolo sono stati sviluppati con l'intento di descrivere le propriet�adelle membrane [Lip, NPW]. In biologia si distingue tra due tipi di membrane: le membrane
uide sono costituite da un doppio strato di lipidi in cui si incastrano molecole di proteine. Ilipidi, che costituiscono la struttura portante della molecola, hanno propriet�a am��le, posseg-gono una parte idro�la, la testa, ed una idrofoba formata da due code; le dimensioni tipichedi queste molecole sono dell'ordine di 10� 20 Angstrom. Le proteine, invece, sono i siti attividella membrana e sono costituiti da una catena di aminoacidi. I lipidi sono molto mobili e for-niscono alla membrana il carattere di 
uido incompressibile bidimensionale, mentre le proteinedi�ondono lentamente nel 
uido di lipidi.Membrane costituite da un unico strato di molecole am��le si formano all'interno dellemiscele ternarie, per esempio le miscele di acqua, olio e surfatante (molecola am��la, per es-empio la lecitina). In sistemi di questo tipo si osserva una grande variet�a di fasi diverse alcambiare della concentrazione relativa dei costituenti della miscela. Per esempio si osservanofasi lamellari, in cui acqua e olio si dispongono su strati alternati, separati da strati di surfa-tante; oppure si formano fasi disordinate in cui l'acqua e l'olio sono racchiuse in piccole micelle(microemulsione). All'aumentare della concentrazione di surfatante �e possibile che si instauriuna fase bicontinua, con un'interfaccia molto disordinata simile ad una spugna.Un altro tipo di membrane �e costituito da quelle che hanno una struttura rigida, per esempioa causa di una rete di proteine: una rete di spettrine �e presente sulla membrana che costituisceil globulo rosso. Poich�e il tempo tipico necessario per rompere o ridistribuire i legami tra leproteine �e molto pi�u grande della scala di tempo tipica per le 
uttuazioni della struttura, ilsistema pu�o essere visto come una rete con connettivit�a �ssata.Il passo tipico di una rete di proteine �e dell'ordine di 100 nanometri, strutture pi�u densepossono essere ottenute nel caso di molecole di lipidi polimerizzabili: esistono vari tipi di mole-cole 
uide che sottoposte all'azione di raggi ultravioletti polimerizzano in reti bidimensionali.Su una scala grande rispetto al passo della rete, questi sistemi possono essere visti come deifogli elastici il cui comportamento �e regolato da un'energia di bending, che tende a renderepiatta la super�cie, ed un termine di stretching che controlla la lunghezza dei legami [NP]. �E26



Applicazione del CVM ad alcuni modelli di super�cistato osservato in [KKN] che per ogni temperatura maggiore di zero al variare del termine dibending la struttura passa da una fase piatta (
at) ad una fase accartocciata (crumpled).Nella Sezione 2.2 si studieranno, con la tecnica del CVM, alcuni modelli per la descrizionedella transizione di crumpling, mentre la Sezione 2.3 sar�a dedicata allo studio della versione diIsing del modello ad otto vertici che si presta alla descrizione delle varie fasi presenti all'internodi una miscela ternaria; mentre nella Sezione 2.4 si discuteranno alcuni aspetti di questo modelloin relazione con la Teoria delle Stringhe.2.2 Il problema del foldingCome si �e detto nell'introduzione un problema interessante connesso con i modelli di super�ci �elo studio del folding (ripiegamento) di una super�cie polimerizzata (una super�cie triangolata).In modelli di questo tipo vengono introdotti, in generale, due termini di energia: un terminedi stretching che cresce con il crescere della lunghezza del lato condiviso da due poligoni ed untermine, detto di bending, che tende a far stare sullo stesso piano due poligoni adiacenti, cio�etende a rendere piatta la super�cie. �E stato dimostrato che al variare dell'intensit�a del terminedi bending dell'energia, il sistema subisce una transizione da una fase in cui �e piatta ad unafase in cui ha delle pieghe (rispettivamente 
at e crumpled phase).Il problema di una super�cie triangolata immersa in uno spazio ambiente di dimensioneD = 2, con lunghezza dei lati dei triangoli �ssata, �e stato a�rontato in [KJ, FG1, FG2];in questo caso i vettori normali alle facce triangolari che costituiscono la super�cie puntano overso l'alto o verso il basso, ci�o suggerisce una descrizione del problema in termini di un modellodi Ising:� si considera il reticolo esagonale (duale del reticolo triangolare);� ad ogni sito viene associata una variabile di spin �i 2 f�1;+ 1g il cui valore ci dice se lanormale alla super�cie punta verso l'alto o verso il basso;� si impone che gli spin su un esagono regolare soddis�no al vincoloPi2esagono �i = �6;0;+6,ci�o assicura che la super�cie sia continua, non abbia tagli;� l'energia di bending viene scritta come interazione ferromagnetica tra spin associati a sitiprimi vicini: �KP<ij> �i�j;� viene introdotto un campo magnetico h che rompe la simmetria �i ! ��i.In [FG1] questo modello �e stato studiato con il metodo della matrice di trasferimento, inparticolare, �e stata determinata una transizione del primo ordine ad h = 0 e a K = 0:11� 0:01tra 
at phase ed una crumpled phase.Nel lavoro [CGP1] il modello di folding triangolare �e stato generalizzato, supponendo chela super�cie triangolare possa presentare tagli; ci�o �e stato realizzato supponendo che il vincolosugli esagoni elementari possa essere violato, ma a ci�o �e stato assegnato un costo L > 0 intermini di energia. Pertanto il caso L = 0 corrisponde al puro modello di Ising su reticoloesagonale, mentre il caso L ! 1 corrisponde al puro modello di folding. In altre parolel'hamiltoniana �e stata de�nita come segue:� HkBT := KXhiji �i�j + hXi �i + L Xesagoni � (f�igi2esagono) ; (2.1)27
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Figura 2.1. Diagramma di fase del modello (2.1) nel caso L = 0: modello di Ising. Le lineecontinue e quella tratteggiata indicano transizioni del primo e del secondo ordine rispettiva-mente.ove la prima somma �e e�ettuata su tutti i siti primi vicini e la funzione � vale uno se il vincolosulle celle elementari �e soddisfatto, altrimenti vale zero.Questo modello �e stato studiato con il CVM: seguendo lo schema proposto in [A] si deveminimizzare l'energia liberaf(�6) = �32KTr(s1s2�2(s1;s2))� hTr(s1�1(s1))� 12LP0�6(fsig)+12Tr(�6 ln �6)� 32Tr(�2 ln �2) + 12Tr(�1A ln �1A) + 12Tr(�1B ln �1B)+�(Tr�6 � 1); (2.2)dove Tr vuol dire traccia, P0 �e la somma sulle con�gurazioni che soddisfano il vincolo chede�nisce il modello, �1A(B), �2 e �6 sono rispettivamente le matrici densit�a di sito, coppia edesagono e, in�ne, � �e un moltiplicatore di Lagrange che assicura la giusta normalizzazione di�6 e, di conseguenza, di �2 e di �1A(B). La minimizzazione dell'energia libera (2.2) �e statae�ettuata mediante le equazioni di iterazione naturale [Ki1, Ki2] (per maggiori dettagli sirimanda all'Allegato 2 [CGP1]).Nel caso L = 0, corrispondente al modello di Ising su reticolo esagonale, si ottiene il classicodiagramma di fase (Fig. 2.1) e la transizione critica tra fase ferromagnetica e paramagneticaviene trovata aK = �0:6214; il risultato �e in ottimo accordo con il valore esattoK = 12 log(p3+2) ' 0:6585 [HKW]. Nelle sezioni 3 e 4 dell'Allegato 2 �e descritto come questo diagramma difase si deforma al crescere di L �no a considerare il caso di puro folding. In Fig. 2.2 �e riprodottoil diagramma di fase del modello (2.1) nel caso L = 1:6: i due punti critici che limitano il ramosuperiore ed inferiore della linea del primo ordine hanno coordinate K = 0:175; h = 0:0076 e28
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Figura 2.2. Diagramma di fase del modello (2.1) nel caso L = 1:6. Le linee continue e quellatratteggiata indicano transizioni del primo e del secondo ordine rispettivamente. I dischi nerirappresentano punti critici le cui coordinate sono date in Sezione 2.2. Il riquadro in alto adestra �e un ingrandimento della regione del diagramma di fase racchiusa nel quadrato.K = 0:262; h = 0:0009.Il diagramma di fase del modello (2.1) nel caso di puro folding (L!1) �e mostrato in Fig.2.3: i nostri risultati sono in ottimo accordo con quelli ottenuti in [FG2], ma tali risultati sonostati estesi alla regioneK < 0 dove �e stata trovata una transizione del primo ordine. Comunque,l'aspetto pi�u interessante del diagramma 2.3 �e che anche il CVM prevede una transizione noncritica tra la fase 
at e quella folded.Questi risultati sono in contrasto con quelli ottenuti nel caso del modello di membranapolimerizzata introdotto in [KN]; tale modello �e stato studiato sia con un approccio alla Landau-Ginzburg [NP, PKN, DG, AL, PK] sia mediante simulazioni numeriche [BEW, RK, HW, WS]:tutti questi risultati mostrano che al variare dell'energia di bending il sistema manifesta unatransizione di fase critica da una fase crumpled ad una fase 
at. Cosa accade, allora, se ilmodello di super�cie triangolata con lunghezza dei legami �ssa viene immerso in uno spazioambiente tridimensionale?In [BFGG] �e stato proposto un modello in cui la super�cie triangolata (variet�a bidimen-sionale) viene immersa in un reticolo cubico a facce centrate (fcc), quindi in uno spazio didimensione D = 3. In questo modello le placchette della super�cie triangolata \poggiano"sulle facce del reticolo fcc, quindi due placchette adiacenti formano un angolo che pu�o assumeresoltanto quattro valori (si veda la Fig. 2.4).In [BFGG] questo modello �e stato scritto come un modello di spin: una coppia di variabilidi spin zi;�i 2 f�1;+ 1g viene associata ad ogni placchetta della super�cie triangolata, ovveroad ogni sito del reticolo esagonale bidimensionale duale della super�cie triangolata. I valori diqueste variabili su due placchette adicenti (per esempio j = 1 e j = 2) determinano l'angolo29



Applicazione del CVM ad alcuni modelli di super�ci

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

K

h

Figura 2.3. Diagramma di fase del modello (2.1) nel limite di puro folding. Le linee continuee quella tratteggiata indicano transizioni del primo e del secondo ordine rispettivamente.fra le due placchette in accordo con le seguenti prescrizioni:z1z2 = +1; �1�2 = +1 ) assenza di piegaz1z2 = �1; �1�2 = +1 ) piega acutaz1z2 = �1; �1�2 = �1 ) piega ottusaz1z2 = +1; �1�2 = �1 ) piega completa (2.3)(si veda la Fig. 2.4). Perch�e una con�gurazione delle variabili zi e �i possa corrisponderee�ettivamente ad una con�gurazione della super�cie triangolata sul reticolo fcc, le variabili dispin devono soddisfare i due vincoli seguenti:6Xi=1 �i = 0 mod 3 ; (2.4)dove l'indice i �e associato ai sei vertici di una cella elementare del reticolo esagonale, e6Xi=1 1� zizi+12 �i;c = 0 mod 2 c = 1;2 ; (2.5)dove z7 = z1 e �i;c := ( 1 se Pij=1 �j = c mod 30 altrimenti i = 1;:::;6; c = 1;2 : (2.6)
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 Figura 2.4. I quattro modi in cui �e possibile piegare due placchette adiacenti della super�cietriangolare immersa nel reticolo fcc. Da sinistra verso destra e dall'alto verso il basso: as-senza di piega, piega acuta (70o320), piega ottusa (109o280) e piega completa. I dischi scurirappresentano i vertici in una cella elementare del reticolo fcc.
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Figura 2.5. Diagramma di fase del modello (2.7).Nel lavoro [CGP2] �e stata de�nita l'hamiltoniana di questo modelloH(�;z) := �K3 Xhiji �i�j(1 + 2zizj)� hXi �zi;1��i;1 ; (2.7)31



Applicazione del CVM ad alcuni modelli di super�ciper ogni con�gurazione (�;z) ed �e stato studiato il suo comportamento all'equilibrio termodina-mico con il CVM (per i dettagli tecnici si rimanda all'Allegato 3). La funzione (2.7) �e stata de�-nita associando a due placchette adiacenti il costo energetico �K cos � con � l'angolo tra le duenormali alle placchette; tale contributo pu�o essere scritto nella forma �K3 Phiji �i�j(1+2zizj) intermini delle variabili di spin. Per rompere la simmetria dell'hamiltonia sotto la trasformazionezi ! �zi e �i ! ��i 8i �e stato introdotto il campo h.Il diagramma di fase del modello (2.7) �e stato riportato in Fig. 2.5. Si osserva che per ognivalore del campo h si trova una transizione del primo ordine da una fase 
at ad una fase folded.Il CVM, quindi, suggerisce che non �e su�ciente immergere la super�cie triangolata nel reticolofcc per ottenere le propriet�a critiche della transizione di crumpling.2.3 Le miscele ternarieLo studio delle miscele ternarie in Meccanica Statistica �e stato condotto mediante l'introduzionedi modelli di spin de�niti su reticolo cubico tridimensionale. Gli spin +1 e �1 rappresentanodue elementi della miscela, per esempio acqua e olio, mentre il surfatante �e rappresentato dallesuper�ci di Peierls che separano le isole di pi�u da quelle di meno. Le varie fasi possone esserecontrollate introducendo dei parametri opportuni nell'hamiltoniana del modello.
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Figura 2.7. Diagramma di fase del modello (2.8) nel piano �L � �S per diversi valori di �C .Le diverse curve, da destra verso sinistra, si riferiscono ai valori �C = �0:2; � 0:1; � 0:04;0.I simboli F, AF e RI denotano rispettivamente le fasi ferromagnetica, antiferromagnetica erandom isotropic, ovvero paramagnetica.dove J1; J2 e J4 sono numeri reali, �i 2 f�1; + 1g �e la variabile di spin associata al sito i e letre somme sono eseguite rispettivamente su tutte le coppie di siti primi vicini, secondi vicini esu tutte le placchette del reticolo cubico tridimensionale. I parametri J1; J2 e J4 possono essereespressi in termini dei parametri �S; �C e �L che rappresentano, rispettivamente, il costo intermini di energia di una placchetta, di due placchette ad angolo retto e di quattro placchetteche condividono un lato [CCGM]:J1 = �S + �L2 + �C ; J2 = ��L8 � �C4 ; J4 = ��L8 + �C4 : (2.9)Valori positivi di �C favoriscono le con�gurazioni piatte, in sostanza �C corrisponde ad unaenergia media di curvatura; mentre valori positivi del termine �L inibiscono la presenza dicontatti tra le varia super�ci, nel limite �L ! 1 si ha un modello di super�ci autoevitantesi(self-avoiding).Il modello (2.8) �e stato introdotto come un semplice modello statistico atto a descrivereil comportamento delle super�ci random [NPW, CCGM, Ka] e delle microemulsioni [GS]; direcente �e stata proposta la sua interpretazione come modello discreto di stringhe (gonihedricIsing model) [ASSS, SW, SSW, JM, PW, CGJP].Il comportamento critico della versione bidimensionale del modello (2.8) �e stato studiato alungo ed �e, oramai, ben noto [Le, Bax]; il caso tridimensionale �e un problema tutt'ora aperto.I risultati ottenuti con la teoria di campo medio [CCGM, GLM] suggeriscono che il diagrammadi fase di tale modello sia estremamente ricco e che presenti fasi ordinate lamellari e bicontinuee fasi di disordine strutturato e non-strutturato [W, CGM]. Il diagramma di fase appare moltointeressante perch�e riproduce alcune delle fasi che vengono osservate sperimentalmente.33
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Figura 2.10. Diagramma di fase del modello (2.8) nel caso J4=J2 = �2. La linea continua equella a tratti rappresentano, rspettivamente, una transizione del primo e del secondo ordine.Il disco nero rappresenta il punto tricritico, lei cui coordinate sono J tric1 = 0:273 e J tric2 = �0:05.Nel lavoro [CG] abbiamo a�rontato il problema della descrizione del diagramma di fase delmodello (2.8) utilizzando la \Lower Bound Renormalization Group Transformation" (LBRG)introdotta da Kadano� in [K]. Per la de�nizione della trasformazione e per tutti gli aspettitecnici relativi si rimanda alla Sezione 2 dell'Allegato 4, qui si descrivono i prncipali risultati diinteresse �sico. In Fig. 2.6 �e riportato il diagramma di fase nel piano J4 = J2: la transizione diIsing viene descritta molto bene, il punto critico viene trovato a �crit = 0:23925 e per l'esponentecritico della lunghezza di correlazione si trova � = 0:6288, mentre le migliori stime ottenute in[FL] con ra�nate procedure Monte Carlo sono �crit = 0:22165 e � = 0:6289� 0:0008.Una diversa rappresentazione del diagramma di fase pu�o essere data in termini dei parametri�S, �C e �L; in Fig. 2.7 �e rappresentato il diagramma di fase del modello (2.8) nel piano �L��Sa diversi valori del parametro �C . A valori grandi di �S la fase ferromagnetica descrive unafase con piccole super�ci diluite; quando �S decresce viene favorita la presenza di super�ci e siottiene una fase in cui l'interfaccia invade tutto il sistema. Ma se �L �e su�cientemente grandesi stabilisce una fase completamente isotropica, la fase paramagnetica.La trasformazione LBRG, pur fornendo degli ottimi risultati pe la transizione di Ising, ha deigrossi limiti in altre regioni dello spazio dei parametri: per esempio per J1 < 0 e per per J2 < 0.Ci�o si spiega perch�e in quelle regioni la trasformazione non rispetta le simmetrie degli statifondamentali dell'hamiltoniana. Per esempio, la transizione F-P a J1 piccolo �e stata studiata indettaglio anche mediante simulazioni numeriche [CCGM, Ka] e sono stati trovati alcuni puntitricritici con esponenti classici; mentre la LBRG non prevede l'esistenza di punti tricritici sullalinea di transizione F-P: nell'approssimazione LBRG la transizione �e critica lungo tutta la linea(super�cie).Per studiare le regioni del diagramma di fase non accessibili mediante la LBRG in [CGJP,35



Applicazione del CVM ad alcuni modelli di super�ciCGP3, CGP4] abbiamo utilizzato l'approssimazione di cubo del CVM (si veda l'Appendice A,[Ki1, A, M]) e il calcolo degli esponenti critici �e stato e�ettuato con il cluster variation-Pad�eapproximant method (CVPAM) [Pe1, Pe2]. In particolare �e stato studiato il diagramma difase del modello (2.8) nella regione J2 < 0 dove si osserva una transizione di fase tra le fasiferromagnetica e paramagnetica ed una fase caratterizzata da una successione alternata di pianidi spin pi�u e meno alti un passo reticolare (fase lamellare).Nel caso bidimensionale le linee che delimitano la fase ferromagnetica e la superantiferro-magnetica (l'equivalente della fase lamellare in due dimensioni) non si incontrano mai, ovverola fase paramagnetica si estende �no all'in�nito; in altri termini scegliendo opportunamenteil rapporto J2=J1 nel caso bidimensionale si osserva la fase paramagnetica per temperaturaarbitrariamente bassa [Bax].Nel caso tridimensionale, invece, la fase paramagnetica �e racchiusa in una zona limitata: inFig. 2.8 �e rappresentato il diagramma di fase del modello (2.8) ottenuto con il CVM nell'ap-prossimazione di cubo nel caso J4 = 0. La linea che separa la fase ferromagnetica da quellaparamagnetica �e una linea del secondo ordine; il punto critico del modello di Ising standard�e a J1 = 0:218 (la stima del punto critico del modello di Ising standard �e molto pi�u accuratarispetto a quella fornita dalla LBRG). La fase lamellare �e separata da quella ferromagneticae da quella paramagnetica da una linea del primo ordine che nel limite di bassa temperaturasi avvicina asintoticamente alla linea J2 = �J1=4 [St]. La linea critica interseca la line dicoesistenza nel \critical end point" di coordinate Jend1 = 0:865 e Jend2 = �0:2176. Lungo lalinea J2 = �J1=4 il sistema manifesta un transizione critica dalla fase ferromagnetica a quellaparamagnetica (alta temperatura); la natura critica di questa transizione �e evidente in Fig. 2.9dove sono stati disegnati gli andamenti dell'energia libera delle tre fasi.All'interno della fase paramagnetica �e possibile distinguere tra due regioni: una detta non-strutturata, per valori grandi di J2, caratterizzata dal decadimento esponenziale delle correlazio-ni, ed una detta strutturata in cui il decadimento esponenziale �e accompagnato da oscillazionisu una piccola scala. Queste oscillazioni su piccola scala segnalano la presenza di struttureordinate sulla scala di qualche passo reticolare: si tratta di una fase di microemulsione conpresenza di micelle [CGT].Modi�cando il valore del rapporto J4=J2 la topologia del diagramma di fase resta simile aquella descritta nel caso J4 = 0, ma quando J4=J2 diventa pi�u piccolo di �1=4 allora sulla lineaferro-para compare un punto tricritico; ovvero la transizione ferromagnetica-paramagneticadiventa del primo ordine quando la linea si avvicina alla fase lamellare. A titolo di esempio inFig. 2.10 �e stato riportato il diagramma di fase del modello (2.8) nel caso J4=J2 = �2; sullalinea ferro-para compare un punto tricritico le cui coordinate sono J tric1 = 0:273 e J tric2 = �0:05.2.4 Il modello goniedricoIl comportamento del modello lungo la linea J2=J1 = �1=4 �e di particolare interesse, perch�elungo quella linea il modello (2.8) coincide con il \gonihedric Ising model" [ASSS, SW, SSW,JM, PW, CGJP]. Tale modello, infatti, �e de�nito scegliendo i parametri J1;J2;J4 nel modoseguente J1 = 2�� ; J2 = ��2� e J4 = 1� �2 � ; (2.10)con � un parametro reale e positivo e � la temperatura inversa. In altre parole il modellogoniedrico �e il modello (2.8) con �S = 0 e �C = 1; �S = 0 implica che l'estensione dellasuper�cie non �e controllata da un parametro esterno, mentre �C = 1 implica che le super�cipiatte sono preferite. 36



Applicazione del CVM ad alcuni modelli di super�ci�0 0.25 0.5 1 2 5 10T�1c CVM 0.550 0.464 0.443 0.427 0.421 0.420 0.420T�1c MC[JM] 0.505 - 0.44 0.44 0.44 0.44 0.44T�1c MF[JM] 0.325 0.31 0.278 0.167 0.09 0.0335 0.02Tabella 2.1. Risultati ottenuti in [CGJP] per la temperatura inversa di transizione �c delgonihedric Ising model per diversi valori di �.La caratteristica principale del modello goniedrico �e l'elevato grado di degenerazione deglistati fondamentali: tutte le possibili sequenze di piani di spin pi�u alternati a piani di spin meno(nel caso J4=J1 > �1=4) sono minimi degeneri dell'energia. La situazione cambia drasticamentequando �S 6= 0: per valori positivi di �S lo stato fondamentale �e quello ferromagnetico, mentreper valori negativi lo stato fondamentale �e costituito da una sequenza di piani di spin pi�ualternati a piani di spin meno (massima estensione della super�cie).Nel lavoro [CGJP] �e stato trovato che il modello (2.10), a bassa temperatura, manifesta latransizione dalla fase paramagnetica a quella ferromagnetica per ogni valore di � � 0. Inoltre, si�e ottenuto che la transizione �e critica per � � 0:87, mentre per piccoli valori di � la transizione�e del primo ordine. In Tabella 2.1 sono riportati i valori di � ai quali si manifesta la transizioneper alcuni valori di � e i nostri risultati vengono confrontati con risultati ottenuti in precedenzamediante simulazioni Monte Carlo e teoria di campo medio. Per una descrizione pi�u dettagliatadei risultati ottenuti si rimanda agli Allegati 5,6 e 7.Di recente numerosi studi basati su sviluppi ad alta temperatura [SSS] e su simulazioniMonte Carlo [JM] hanno posto il problema dell'universalit�a degli esponenti critici del modellogoniedrico (l'esistenza di una fase con ordine su larga scala �e stata dimostrata analiticamentenel caso J4 = 0 in [PW]). In [SSS, JM] �e stata proposta la congettura che il modello goniedricosia nella classe di universalit�a del modello di Ising bidimensionale, ma ulteriori misure MonteCarlo [BEJM] forniscono stime degli esponenti critici incompatibili con la congettura su esposta.Anche simulazioni precedenti e�ettuate in [H] non riescono a dare una stima de�nitiva degliesponenti critici.In [CGJP, CGP3] l'analisi degli esponenti critici e�ettuata con il metodo CVMPAM mo-stra la presenza di forti e�etti di crossover, probabilmente dovuti alla vicinanza della faselamellare, che potrebbero essere responsabili dei risultati contrastanti ottenuti nelle simulazioni[JM, BEJM]; il valore trovato per l'esponente della magnetizzazione �e � = 0:062� 0:003 che �ein buon accordo con i risultati di precedenti simulazioni �=� = 0:04(1) e � = 1:2(1) [JM].Per tentare di approfondire il problema abbiamo e�ettuato in [CGP4] delle simulazioniMonte Carlo con l'algoritmo di Metropolis. In Fig. 2.11 �e riportato il calore speci�co infunzione della temperatura inversa nel caso � = 1 per diversi valori della taglia del reticolo(L = 12;16;18). I dati sono stati ottenuti medianto su 2000 misure decorrelate per ogni valoredi L e della temperatura inversa �. La stima del tempo di decorrelazione �e stata di 1000iterazioni (una iterazione corrisponde ad un intero aggiornamento del reticolo) nei casi pi�usfavorevoli. Questi tempi sono molto pi�u grandi di quelli usati in [JM, BEJM] ma sono statinecessari per ottenere delle stime stabili del calore speci�co.I nostri dati sono stati interpolati con la curva Cmax=b[(���c)2+1] e i valori dei parametriCmax e �c ottenuti per i diversi valori di L sono riportati in Tabella 2.2. Il �t della posizione37
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Figura 2.11. Misura del calore speci�co del modello goniedrico nel caso � = 1. I dischi, iquadrati e i triangoli si riferiscono rispettivamente ai casi L = 12;16;18. Le linee continuerappresentano l'interpolazione ottenuta mediante la funzione Cmax=b[(� � �c)2 + 1].L Cmax �c8 2:8041� 0:0237 0:41182� 0:0002110 4:3707� 0:0706 0:41872� 0:0001812 6:1137� 0:0334 0:42300� 0:0001016 9:4068� 0:0586 0:42794� 0:0000418 10:6710� 0:0883 0:42937� 0:00002Tabella 2.2. Valori di Cmax e �c per diverse scelte della dimensione L del reticolo.del picco con la funzione �c = �crit + aL� 1� fornisce le stime �crit = 0:4370 � 0:0001 e 1=� =1:483� 0:001. Poich�e la miglior stima di 1=� per il modello di Ising �e 1=� = 1:594� 0:004 [FL]sembra necessario dover considerare reticoli molto pi�u grandi per chiarire in modo de�nitivo laclasse di universalit�a del modello goniedrico.Questo problema mette in luce alcuni limiti del Monte Carlo: a causa della presenza di trefasi \praticamente" coesistenti, i tempi di decorrelazione delle grandezze misurate sono moltoelevati e ci�o implica la necessit�a di esperimenti numerici molto lunghi. Pertanto ci si limitaa considerare reticoli abbastanza piccoli L � 18, ma ci�o comporta una scarsa a�dabilit�a del�nite-size scaling.
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Applicazione del CVM ad alcuni modelli di super�ci2.5 Accoppiamenti a sogliaNella sezione precedente si �e visto come, per e�etto di interazioni in competizione, �e possibileavere delle fasi di bassa temperatura costituite da un alternarsi regolare di strutture unidi-mensionali. Pi�u precisamente il modello (2.8) in due dimensioni esibisce la fase superantiferro-magnetica, una struttura modulata con passo uno, quando si considera un accoppiamento trasecondi vicini antiferromagnetico e abbastanza intenso. Il modello di Ising con accoppiamentoassiale tra secondi vicini (ANNNI model) �e il pi�u semplice tra i modelli che descrivono strutturemodulate con passo aribitrario; tali strutture possono essere osservate sperimentalmente nelleleghe binarie [Y, Se].Nel lavoro [CS] �e stato proposto un modello in cui ogni spin tende ad allinearsi con lamaggioranza degli spin che lo circondano ed �e stato mostrato che il modello presenta una fasedi bassa temperatura caratterizzata da strisce di spin \su" alternate a strisce di spin \gi�u"(striped phase).Il modello �e de�nito sul reticolo bidimensionale � = Z2, ad ogni sito i 2 � �e associata unavariabile di spin si 2 f�1; + 1g, 
 := f�1; + 1g� rappresenta lo spazio delle con�gurazioni,un suo generico elemento s 2 
 rappresenta una con�gurazione del sistema e la sua energia �edata dall'hamiltoniana del sistemaH(s) := �� Xi2� si�i(s) 8s 2 
 ; (2.11)dove � �e un numero reale positivo (l'inverso della temperatura) e�i(s) := sign f 9Xj=1 si;jg 8i 2 � ; (2.12)dove con si;j j = 1;:::;9 sono stati denotati i nove spin associati ai siti appartenenti al quadrato3�3 Bi centrato sul sito i. Il comportamento del sistema all'equilibrio �e descritto dalla funzionedi partizione Z�(�) := Xs2
 exp(�H(s)) : (2.13)Se � > 0 il modello �e caratterizzato da un accoppiamento di tipo ferromagnetico, cio�e glispin vicini tendono ad allinearsi, ma si tratta di un accoppiamento diverso da quello tra spinprimi vicini tipico dell'usuale modello di Ising. Si pu�o parlare di \accoppiamento ferromagneticocon soglia" nel senso di seguito descritto: se si = +1, nel modello di Ising il contributo del sitoi all'energia totale del sistema �e tanto pi�u basso, quanto pi�u alto �e il numero di spin + tra i suoiprimi vicini; cio�e se il numero degli spin + primi vicini aumenta, si ottengono con�gurazioniad energia sempre pi�u bassa. Nel modello (2.11), invece, il contributo all'energia totale delsistema da parte del sito i ha due soli possibili valori: +� se il numero di spin + in Bi �e minoredi cinque, �� altrimenti; quindi dal punto di vista del sito i la situazione energeticamentepreferibile viene raggiunta quando in Bi n fig ci sono almeno quattro spin +, non vi �e nessunulteriore vantaggio se il numero di spin + in Bi n fig diventa maggiore di quattro.Dal punto di vista entropico �e preferibile avere solo quattro spin + in Bi n fig piuttosto cheaverne pi�u di quattro (al limite 8), perch�e questa �e la situazione in cui si ha il pi�u alto numerodi con�gurazioni possibili. Questa osservazione suggerisce che non �e a�atto ovvio che a bassatemperatura il sistema preferisca la fase ferromagnetica.
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Applicazione del CVM ad alcuni modelli di super�cii 
i description of �i typical cluster in �i1 +200 pairs of nearest neighbors sites r r2 +240 pairs of next to the nearest neighbors sites r r3 -60 pairs of second{neighbor sites along the latticedirections r r4 -40 two{site clusters with sites at distance p5 latticespacings r r5 -20 pairs of second{neighbor sites along the lattice diagonals r r6 -80 plaquettes rr rr7 -40 four{site clusters containing the center of the block Band occupying a 3� 2 rectangular block rrr r8 -20 four{site clusters containing the center of the block Band occupying the whole B rr rr9 +24 four{site clusters not containing the center of the blockB and occupying a 3� 2 rectangular block rr rr10 +12 four{site clusters not containing the center of the blockB and occupying the whole B rr rr11 +12 six{site clusters containing the center of the block B andoccupying the whole B rr rrrr12 +24 six{site clusters containing the center of the block B andoccupying a 3� 2 rectangular block rrr rrr13 -20 six{site clusters not containing the center of the blockB and, necessarily, occupying the whole block B rrr rrr14 -20 eight{site clusters containing the center of the block B rrr rrr rr15 +140 eight{site clusters not containing the center of the blockB rrr r rrrrTabella 2.3. Lista dei coe�cienti 
i, introdotti in (2.11). Nella terza colonna vengono des-critte brevemente le famiglie �i cui sono legati i coe�cienti 
i. Nella quarta colonna vienerappresentato un tipico elemento � 2 �i: la griglia rappresenta il blocco 3 � 3 B in cui �econtenuto �, i siti di B appartenenti a � sono rappresentati dai dischi neri.D'altro canto il modello (2.11) non �e strettamente ferromagnetico, nel senso che la suahamiltoniana non soddisfa le ipotesi sotto cui sono valide le disuguaglianze di Gri�ths [G].Infatti la sua hamiltoniana pu�o essere scritta come somma di potenziali a pi�u corpi e si ottieneche non tutti questi accoppiamenti sono positivi, cio�e certi potenziali, per esempio tutti quellia due corpi diversi da primi-vicini e secondi-vicini, sono di tipo antiferromagnetico. In altritermini l'hamiltoniana pu�o essere scritta nella formaH(s) = � �29 15Xi=1 
i X�2�i s(�) ; (2.14)dove 
i �e un numero reale, �i �e una famiglia di sottoinsiemi di un blocco di siti 3� 3 e, preso� 2 �i, s(�) �e il prodotto degli spin associati ai siti appartenenti a �. L'elenco completo di tutte40



Applicazione del CVM ad alcuni modelli di super�cile famiglie �i e dei relativi coe�cienti 
i �e dato nella Tabella 2.3. A titolo di esempio si osservache �1 �e la famiglia costituita da tutte le coppie di siti primi vicini e �6 �e quella costituita datutte le placchette.Il diagramma di fase a bassa temperatura �e stato studiato utilizzando la trasformazione delgruppo di rinormalizzazione nota come \majority rule" [NL1, NL2]; la funzione hamiltonianarinormalizzata �e stata calcolata e�ettuando una espansione in cumulanti [NL2]. Nell'ambito diquesta approssimazione il modello esibisce una transizione di fase critica a bassa temperatura,cio�e esiste un valore critico �c del parametro �, tale che se � < �c il sistema �e nella faseparamagnetica, altrimenti �e in una fase a strisce larghe tre passi reticolari.Per il dettaglio dei calcoli si rimanda all'Allegato 8 [CS], dove �e stato studiato anche unaltro modello con accoppiamento ferromagnetico a soglia, ottenuto considerando dei blocchi aforma di croce al posto dei blocchi quadrati Bi.Veri�care la bont�a dei risultati ottenuti in [CS] mediante uno studio numerico del problema�e senza dubbio interessante, ma ci si scontra contro la necessit�a di considerare valori troppobassi della temperatura; l'ostacolo potrebbe essere aggirato utilizzando la dinamica \BKL" che�e particolarmente adatta a studiare il comportamento di sistemi statistici a temperatura moltobassa [BMB, BKL].
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Applicazione del CVM ad alcuni modelli di super�ci
Allegato 2Folding transitions of the triangular lattice with defects.E.N.M. Cirillo, G. Gonnella, A. Pelizzola, Phys. Rev. E 53, 1479, 1996

RiassuntoSi generalizza un modello introdotto in lavori recenti per la descrizione dellatransizione di folding in un reticolo triangolare e si studia il modello risul-tante per mezzo dell'approssimazione esagonale del CVM. In particolaresi studia il passaggio dal modello di puro folsing al modello di Ising e siottiene una struttura molto ricca nei diagrammi dei fase. I nostri risultatisono in buon accordo con quelli esatti e con quelli ottenuti per mezzo dellamatrice di trasferimento.
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Applicazione del CVM ad alcuni modelli di super�ci
Allegato 3Folding transition of the triangular lattice in a discrete three-dimensional space.E.N.M. Cirillo, G. Gonnella, A. Pelizzola, Phys. Rev. E 53, 3253, 1996

RiassuntoSi studia un modello a vertici introdotto in [BFGG] per la descrizione del\folding" di una super�cie triangolare posta sul reticolo a facce cubichecentrate per mezzo dell'approssimazione esagonale del CVM. Il modellodescrive il comportamento di una membrana polimerizzata posta in unospazio tridimensionale discreto. Abbiamo introdotto un'energia di curva-tura ed un campo che rompe la simmetria e abbiamo studiato il diagrammadi fase del modello risultante. Variando il parametro di curvatura il model-lo esibisce una transizione di fase del primo ordine tra una fase piatta eduna in cui la super�cie �e accartocciata.
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Applicazione del CVM ad alcuni modelli di super�ci
Allegato 4Renormalization Group results for lattice surface models.E.N.M. Cirillo, G. Gonnella, J. phys. A: Math. Gen. 28 , 867-877, 1995

RiassuntoSi studia il diagramma di fase di un modello statistico di super�ci chiuseed aperte costruite su un reticolo cubico. Le super�ci chiuse interagentiposso essere scritte come un modello di Ising, mentre quelle aperte comeun modello di gauge Z(2). Quando le super�ci aperte si riducono a quellechiuse con pochi difetti, anche il modello di gauge pu�o essere scritto comeun modello di Ising, Si applica la lower bound renormalization group trans-formation (LBRG) introdotta da Kadano� (Phys. Rev. Lett. 34, 1005(1975)) per studiare il modello di Ising che descrive le super�ci chiuse equelle aperte con pochi difetti. I nostri risultati vengono paragonati a quel-li presentati in lavori numerici precedenti. I limiti della LBRG emergonoquando si cerca di descrivere il diagramma di fase in regioni corrispondentia stati fondamentali non ferromagnetici.
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Allegato 5The Phase Diagram of the Gonihedric 3d Ising Model via CVM.E.N.M. Cirillo, G. Gonnella, D.A. Johnston, A. Pelizzola, Physics Letters A 226, 59-64, 1997

RiassuntoPer mezzo dell'approssimazione di cubo del CVM si studia il diagramma difase del modello goniedrico tridimensionale de�nito da Savvidy e Wegner.I risultati ottenuti con il CVM sonoin buon accordo con quelli ottentutitramite simulazioni Monte Carlo per le temperature critiche e per l'ordinedella transizione quando il parametro � viene variato. Il valore dell'espo-nente critico della magnetizzazione � = 0:062�0:003 �e statop calcolato concon il metodo degli approssimanti di Pad�e e risulta in buon accordo con ilvalore ottenuto dalle simulazioni.
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Applicazione del CVM ad alcuni modelli di super�ci
Allegato 6Critical behaviour of the three-dimensional Ising model with nearest neighbor,next nearest neighbor and plaquette interactions.E.N.M. Cirillo, G. Gonnella, A. Pelizzola, Phys. Rev. E 55, R17, 1997

RiassuntoIl comportamento critico e multi-critico del modello di Ising tridimensio-nale con accoppiamento tra primi vicini, secondi vicini e placchette vienestudiato nell'ambito dell'approssimazione di cubo del CVM. Particolare at-tenzione �e rivolta alla linea costituita dai punti ove termina la linea chesepara la fase ferromagnetica e quella paramagnetica: si calcolano gli espo-nenti (multi)critici e il loro valore suggerisce che la transizione appartienead una nuova classe di universalit�a. Si fornisce, inoltre, un stima degliesponenti di crossover.
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Applicazione del CVM ad alcuni modelli di super�ci
Allegato 7Critical behaviour of the three-dimensional gonihedric Ising Model.E.N.M. Cirillo, G. Gonnella, A. Pelizzola, Proceedings of the Conference "Lattice 1997", Pre-print BARI-TH/97-287

Riassuntoapprossimazione CVM viene studiato il diagramma di fase del modello go-niedrico tridimensionale proposto da Savvidy e Wegner. Questo modellocorrisponde all'usuale modello di Ising tridimensionale con accoppiamentitra primi vicini, secondi vicini e placchette nella regione con stati fonda-mentali lamellari degeneri. Il diagramma di fase fornito dal CVM �e in buonaccordo con i risultati Monte Carlo e si mostra che il modello �e nella stessaclasse di universalit�a dell'ordinario modello di Ising tridimensionale.
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Applicazione del CVM ad alcuni modelli di super�ci
Allegato 8Polymerization in a Ferromagnetic Spin Model with threshold.E.N.M. Cirillo, S. Stramaglia, Phys. Rev. E 54, 1096, 1996

RiassuntoSi propone un modello di spin con un nuovo tipo di interazione ferroma-gnetica, che pu�o essere chiamata interazione ferromagnetica a soglia. Inquesto modello il contributo di uno spin all'energia totale ha due possibilivalori in funzione del numero di spin ad esso paralleli tra i suoi primi esecondi vicini. Trasformando il nostro modello nella versione di Ising delmodello ad otto vertici viene messa in evidenza l'esistenza di una fase dibassa temperatura caratterizzata da una successione alternata di polimeridi spin positivi e negativi.
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Capitolo 3Analisi Monte Carlo della crescita didomini anisotropi
3.1 IntroduzioneIn questo capitolo verr�a discusso il problema della decomposizione spinodale nell'ambito delmodello ad otto vertici bidimensionale introdotto nella Sezione 2.3, quando il sistema vienera�reddato dalla fase disordinata alla fase ordinata superantiferromagnetica (SAF).Quando un sistema viene ra�reddato da una fase disordinata ad una ordinata, il processo diriordinamento non avviene istantaneamente, bens�� tramite la crescita di domini ordinati delledue (o pi�u) fasi in competizione. Si pensi, per esempio, al caso ferromagnetico del modellostocastico di Ising con dinamica di Metropolis (si veda l'Appendice B): se all'istante t =0 il sistema viene portato dalla fase paramagnetica a quella ferromagnetica, il sistema deveriordinarsi tramite la crescita di domini di spin pi�u e di spin meno a partire da una con�gurazionecompletamente disordinata. Dopo lavori pioneristici come [Lif, LS, Wa], �e stata dedicata grandeattenzione al problema, come �e testimoniato da alcuni lavori di rassegna [Gun, Br].Un problema analogo �e quello della decomposizione spinodale nelle leghe binarie, problemastudiato per molte decadi in metallurgia, dove gli stadi �nali di crescita sono noti come \Ost-wald ripening". La maniera pi�u semplice di pensare a questo problema �e quella di trasformarloin un modello di Ising interpretando spin pi�u e meno come atomi di tipo A e B [MLK, RKLM].Le propriet�a di equilibrio del modello di Ising descrivono molto bene le caratteristiche statichedelle leghe binarie, ma dal punto di vista dinamico c'�e una di�erenza profonda: la dinamicadi Metropolis permette l'inversione di uno spin, che nel linguaggio delle leghe binarie corris-ponderebbe alla trasformazione di un atomo di tipo A in un atomo di tipo B, o viceversa,cosa ovviamente inammissibile. Quindi nel caso di leghe binarie �e necessario utilizzare unadinamica che conservi il numero totale di spin pi�u e meno, cio�e conservi la magnetizzazione epermetta soltanto lo scambio tra due spin di segno diverso; solitamente si utilizza la dinamicadi Kawasaki [Kaw].Uno degli aspetti pi�u interessanti di questo problema �e che a tempi lunghi, cio�e dopo laprima fase in cui si passa da una con�gurazione completamente disordinata ad una struttura bende�nita di domini, la crescita delle regioni ordinate �e caratterizzata da una sorta di invarianzadi scala [Bat]. Ovvero guardando i domini a tempi lunghi essi sembrano \statisticamente" similia quelli osservati a tempi precedenti, a meno di una variazione della scala. In altri termini siosserva (\ipotizza", dimostrazioni esistono solo nel caso di modelli sempli�cati come il modellounidimensionale di Glauber [DGY]) che a tempi lunghi il sistema �e caratterizzato da una singolalunghezza L(t), la dimensione tipica dei domini ordinati, e che riscalando le lunghezze con L(t)57



Analisi Monte Carlo della crescita di domini anisotropila struttura dei domini �e indipendente dal tempo.L'invarianza di scala �e stata osservata in numerosi lavori sia nel caso di dinamica conservatache in quello di singolo spin 
ip; ma la legge con cui cresce la dimensione tipica dei domini�e diversa nei due casi. In entrambe le situazioni si osserva una legge di potenza L(t) � t
 ,ma l'esponente di crescita 
 risulta dipendere dal fenomeno alla base della crescita dei domini:nel caso di modelli con parametro d'ordine conservato (dinamiche di Kawasaki) la crescita �edovuta alla di�usione del parametro d'ordine da regioni ad alta curvatura verso regioni a bassacurvatura e 
 = 13 [LS, RKLM, MB], mentre per modelli con parametro d'ordine non conservato(dinamiche di Glauber) la crescita �e guidata dalla curvatura e 
 = 12 [Lif, AC, HB].In [CGS1, CGS2] (Allegati 9 e 10) abbiamo studiato come si riordina il modello (2.8) indimensione due quando viene ra�reddato nella fase superantiferromagnetica (lamellare in tredimensioni). Considerare una fase di bassa temperatura anisotropa, permette di porsi delledomande suggestive sulle eventuali propriet�a di anisotropia del processo di crescita.Il ra�reddamento del modello (2.8) nella fase ferromagnetica con J4 = 0 �e stato studiatoin [SHS, RC]. Quando J2 < 0 esistono barriere energetiche che impediscono il raggiungimentodell'equilibrio a temperatura nulla; queste barriere non crescono con la dimensione dei dominia D = 2, cosa che avviene a D = 3 e che implica una dinamica estremamente lenta (crescitalogaritmica delle dimensioni dei domini. Mentre il ra�reddamento del modello (2.8) nella faseSAF in D = 2 �e stato studiato in [SB], dove �e stato mostrato che gli esponenti di crescita sono13 ed 12 rispettivamente nel caso di una dinamica di scambio di spin ed in quello di una dinamicadi singolo spin 
ip.I risultati di [SB] sembrano suggerire che anche nella fase SAF il processo di riordinamentoavvenga secondo lo schema descritto in precedenza, in particolare a tempi lunghi vale l'ipotesidi scala e non si nota alcuna anisotropia nella velocit�a di crescita dei domini. D'altro cantoin [CGS1, CGS2] abbiamo mostrato che le funzioni di correlazione misurate nelle direzioniparallele e trasverse, rispetto ai domini, sono diverse come �e suggerito dalle diverse energie diinterfaccia tra i vari stati fondamentali del modello (le funzioni di correlazione dipendono daidettagli del sistema [Ru]). In altri termini �e vero che i domini crescono con la stessa legge nelledue direzioni, ma la dimensione parallela e quella trasversa dei domini sono diverse.Nella Sezione 3.2 si mostra come nel caso della SAF �e possibile misurare gli esponenti dicrescita. Nella Sezione 3.3 si de�nisce una sorta di funzione di correlazione trasversa ed unalongitudinale rispetto alla direzione dei domini, e si mostra come per queste funzioni valgal'ipotesi di scala. In�ne nella Sezione 3.4 si interpretano i risultati delle simulazioni alla lucedella Teoria di Ohta-Jasnow-Kawasaki.3.2 Misura degli esponenti di crescitaIl diagramma di fase del modello (2.8) in dimensioneD = 2 presenta una linea critica che separala fase paramagnetica da quella superantiferromagnetica nella regione J2 < 0, jJ1j < 2jJ2j e J4piccolo (si veda [Bax]). Nella regione SAF il modello ha quattro stati fondamentali degeneri checonsistono di righe (colonne) di pi�u alternate a righe (colonne) di meno; il parametro d'ordinedella fase SAF �e, quindi, la di�erenza tra le magnetizzazioni delle righe (colonne) pari e dispari.Pertanto la tipica con�gurazione del sistema nel regime di scaling �e un insieme di domini diquattro tipi diversi (si veda Fig. 3.1). In Fig. 3.2 sono state evidenziati, invece, i siti diinterfaccia tra domini diversi.La de�nizione di iterfaccia tra domini di�erenti non �e completamente ovvia nel caso dellafase SAF, perch�e esistono diversi tipi di interfaccia, come �e stato evidenziato nei riquadri diFig. 3.2. Per capire se un sito appartiene ad un dominio o �e un difetto bisogna confrontare58



Analisi Monte Carlo della crescita di domini anisotropi

Figura 3.1. Tipica con�gurazione del modello (2.8) nel regime di scaling. I quadrati bianchie neri rappresentano gli spin meno e pi�u. La �gura �e stata ottenuta in un reticolo 100 � 100,a temperatura zero, dopo 150 interi aggiornamenti del reticolo.

Figura 3.2. In �gura �e rappresentata la stessa con�gurazione mostrata in Fig. 3.1; in questocaso i quadrati neri rappresentano i siti di interfaccia.la con�gurazione del sistema in un intorno di questo sito con tutte le possibili con�gurazionidi un dominio SAF, orizzontali e verticali. Dove per domini orizzontali e verticali si intendonodomini che hanno rispettivamente righe o colonne magnetizzate.Lo schema che �e stato utilizzato in [CGS1, CGS2] �e il seguente: preso un sito (i;j), coni l'indice di riga e j quello di colonna, si denota con s(i;j) lo spin corrispondente. Preso unnumero intero L si denota con B(i;j) il blocco (2L + 1) � (2L + 1) centrato sul sito (i;j) e si
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Analisi Monte Carlo della crescita di domini anisotropicalcolano le due quantit�a seguenti:dh = PLk;l=�L �1� � �s(i+ k;j + l);(�1)ks(i;j)��dv = PLk;l=�L �1� � �s(i+ k;j + l);(�1)ls(i;j)�� (3.1)dove �(�;�) rappresenta la delta di Kroneker. Si osserva che dh e dv rappresentano, rispettiva-mente, la \distanza" in B(i;j) tra la con�gurazione attuale del sistema e le due con�gurazioniSAF orizzontali e verticali. Se dh o dv sono pi�u piccole di un certo numero intero M , allorail sito (i;j) viene considerato appartenente ad un dominio orizzontale o verticale, altrimentiviene considerato un difetto. Si �e visto che tutti i risultati che verranno discussi in seguito sonosostanzialmente indipendenti dalla scelta di L ed M , nell'analisi delle simulazioni si �e usatosempre L = 1 e M = 2.I metodi classici di misura dell'esponente di crescita 
 si basano sullo studio di alcunepropriet�a delle funzioni di correlazione a due punti; questi metodi verranno discussi nella sezionesuccessiva, ora si descrivono altri due metodi di pi�u facile applicazione nel caso della fase SAF.
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 �e quella di studiare come si riduce al crescere deltempo il numero totale dei siti di interfaccia. In Fig. 3.3 �e riportato il logaritmo naturale del60



Analisi Monte Carlo della crescita di domini anisotropinumero totale A dei difetti in funzione in funzione del logaritmo naturale del tempo. La �gurasi riferisce ad un reticolo 512� 512, a temperatura �nita � = 1 e parametri J1 = 0:1, J2 = �1e J4 = 0:1. I dischi e i quadrati neri (�gura in alto e �gura in basso) sono i risultati ottenuti inuna simulazione Monte Carlo mediando su 50 storie indipendenti del sistema, rispettivamentecon dinamica di Metropolis e Kawasaki. I risultati numerici soddisfano alla legge di scalaA � t�
 con 
 = 12 nel caso di dinamica di singolo spin 
ip e 
 = 13 nel caso della dinamica diKawasaki. Ci�o conferma i risultati di [SB] dove la misura di 
 �e stata e�ettuata secondo unoschema completamente diverso (si veda l'Allegato 10).In [CGS1, CGS2] �e stato anche osservato che sia la validit�a della legge di scala, sia la stimadi 
 non dipendono n�e dai parametri J1, J2 e J4, n�e dalla temperatura. Nel caso di dinamicadi singolo spin 
ip �e stata considerata anche la situazione � = 1, ovvero il riordinamento atemperatura zero (dinamica di Bagno Termico) [HB].
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Figura 3.4. Il logaritmo naturale del tempo di contrazione �L �e riportato in funzione dellogaritmo naturale di L. I dischi neri sono i risultati Monte Carlo ottenuti mediando su 10prove indipendenti nel caso di temperatura zero, con parametri J1 = 0:1, J2 = �1 e J4 = 0.La pendenza della linea continua �e 2.Un modo alternativo per la misura dell'esponente di crescita consiste nello studio dellacontrazione di una goccia di una fase immersa nel mare di una fase diversa. In [Br] �e mostratocome il tempo tipico in cui avviene questa contrazione scala con la dimensione della gocciainiziale con l'inverso dell'esponente di crescita: in altri termini, detto �L il tempo di contrazionedi una goccia quadrata di taglia L, si ha �L � L 1
 . Nel caso della dinamica di singolo spin
ip abbiamo studiato la contrazione di una goccia di una certa fase SAF immersa in tutti idiversi possibili sfondi; in Fig. 3.4 �e stato riportato il logaritmo naturale di �L in funzione dellogaritmo naturale di L. I dati numerici confermano la legge di scala e l'esponente trovato �e 2,in perfetta armonia con il risultato 
 = 12 .
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Analisi Monte Carlo della crescita di domini anisotropi3.3 Funzioni di correlazione longitudinale e trasversaIl metodo classico con cui si misurano gli esponenti di crescita nel caso della decomposizionespinodale in seguito al ra�reddamento in una fase ferromagnetica, si basa sullo studio dellepropriet�a della funzione di correlazione a tempi uguali. In sostanza, denotato con st(i;j) ilvalore dello spin al tempo t sul sito (i;j), si considera:C(r;t) =< st(i+ rx;j + ry)st(i;j) > (3.2)con la media estesa a tutti i siti del reticolo e a storie diverse del sistema. Questa funzione �etipicamente diversa da zero all'interno di un dominio e nulla all'esterno, quindi il suo primozero �e una stima della dimensione tipica L(t) dei domini. Alternativamente si pu�o considerarela sua trasformata di Fourier S(k;t), detta anche fattore di struttura, e stimare la dimensionetipica dei domini con la posizione del suo massimo. Inoltre la funzione di correlazione (3.2) inregime di invarianza di scala �e tale che scelta opportunamente una funzione f si haC(r;t) = f  rL(t)! : (3.3)Nel caso di ra�reddamento nella fase SAF, la funzione (3.2) oscilla su scala uno, quindinon permette di stimare le dimensioni dei domini. In [CGS1] abbiamo introdotto due funzioniche permettono di calcolare le correlazioni tra gli spin misurate in direzione longitudinale etrasversa ai domini. Considerato il sito (i;j) si de�nisce �(i;j) uguale a uno se il sito appartienead un dominio orizzontale, zero se appartiene ad un dominio verticale e si calcolaC`(r;t) = hst (i;j) st (i+ �(i;j)r ; j + (1� �(i;j))r) iCt(r;t) = h(�1)rst (i;j) st (i+ (1� �(i;j))r ; j + �(i;j)r) i (3.4)dove la media �e e�ettuata su tutti i siti che non sono dei difetti e su storie indipendenti delsistema. Queste funzioni di correlazione hanno la propriet�a di annullarsi all'esterno dei domini,quindi il loro primo zero, o il massimo del relativo fattore di struttura fornisce una stima diL(t). L'analisi delle simulazioni e�ettuata con questi nuovi estimatori fornisce risultati analoghia quelli discussi nella sezione precedente.Un altro aspetto molto interessante delle funzioni (3.4) �e che in regime di scala soddisfanoad una propriet�a di collasso come la (3.3) con due opportune funzioni f` e ft. In Fig. 3.5�e mostrato il comportamento di scala delle funzioni (3.4) nel caso della dinamica di singolospin 
ip: i dati ottenuti a tempi diversi sono stati riportati in funzione della variabile di scalaz = rpt e si osserva come tutte le funzioni si sovrappongono perfettamente (i dettagli relativiai parametri utilizzati nelle simulazioni sono nella didascalia). Risultati analoghi (si veda laFig. 3.6) vengono ottenuti nel caso della dinamica di Kawasaki, ma in quel caso la variabile discala �e z = rt1=3 e il regime di scala viene raggiunto a tempi molto pi�u elevati; ci�o costringe asimulazioni molto pi�u lunghe.Si osserva che le funzioni di scala longitudinale e trasversa f` e ft sono diverse e analoghirisultati sono stati ottenuti considerando le funzioni de�nite in [SB] secondo uno schema com-pletamente diverso da quello illustrato in precedenza. Nel caso della dinamica di Kawasakila di�erenza �e meno evidente ma comunque pu�o essere spiegata con gli stessi argomenti: lapresenza di un accoppiamento J1 > 0 favorisce i domini longitudinali rispetto a quelli trasversi,in e�etti simulazioni e�ettuate con gli stessi parametri di quelli usati in Fig. 3.5 e Fig. 3.6, macon J1 con segno opposto, forniscono �gure analoghe con f` e ft invertite. Inoltre �ssati J2 e62
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Figura 3.5. Funzioni di scala f`(z) e ft(z), z = r=pt nel caso della dinamica di singolo spin
ip a T = 0, J1 = 0:1, J2 = �1 e J4 = 0. I dati numerici sono stati ottenuti mediando su 50storie indipendenti di un reticolo 400 � 400. Le correlazioni longitudinali (sopra) e trasverse(sotto) sono mostrate ai tempi 180(�), 220( ), 260(�), 300( ), 340(4), 380(}), 420(?) e 460(�).La linea continua rappresenta il miglior �t eseguito con la funzione OJK.
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Figura 3.6. Funzioni di scala f`(z) e ft(z), z = r=t1=3 nel caso della dinamica di kawasaki a� = 1, J1 = 0:4, J2 = �1 e J4 = 0. I dati numerici sono stati ottenuti mediando su 50 storieindipendenti di un reticolo 800 � 800. Le correlazioni longitudinali (sopra) e trasverse (sotto)sono mostrate ai tempi 68000(�), 70000( ) e 72000(4).J4 si ha che f` �e pi�u grande di ft se J1 > 0, viceversa se J1 < 0 e il comportamento di questedue funzioni �e simmetrico nello scambio J1 ! �J1.Il comportamento delle funzioni di correlazioni pu�o essere spiegato con il seguente argomento63



Analisi Monte Carlo della crescita di domini anisotropieuristico: per semplicit�a si considerano solo interfacce tra domini paralleli alle direzioni delreticolo e si suppone J4 = 0. In Fig. 3.2 sono messe in evidenza tre di queste interfacce: asinistra un'interfaccia tra un dominio verticale ed uno orizzontale, che riduce sia la correlazionelongitudinale che quella trasversa. L'interfaccia mostrata al centro riduce solo le correlazionitrasverse, mentre quella a destra riduce solo quelle longitudinali. A T = 0 l'eccesso di energiadell'interfaccia al centro �e 2J2� J1, mentre per quella di destra si ha 2J2+ J1; la di�erenza delsegno di J1 spiega il diverso comportamento delle funzioni di correlazione al variare del segnodi J1.3.4 Teoria Ohta-Jasnow-KawasakiEsistono varie teorie che permettono di prevedere il comportamento della funzione di correla-zione (3.2), ma quella che presenta il miglior accordo con le simulazioni numerica sembra essere[HB] quella di Ohta-Jasnow-Kawasaki [OJK]. Anche se le nostre funzioni (3.4) non sono dellevere e proprie funzioni di correlazioni a due punti abbiamo osservato che l'accordo con le pre-visioni OJK �e comunque sorprendentemente buono. In Fig. 3.5 le linee continue rappresentanoil miglior �t eseguito con la funzione proposta da OJK.
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Figura 3.7. Collasso delle funzioni di correlazione del modello di Ising a temperatura �nita.I dati sono stati ottenuti mediando su 250 storie indipendenti, nel modello di Ising anisotropocon Jx = 2 e Jy = 1, e su 447 storie nel caso del modello isotropo Jx = Jy = 1, nel caso di unreticolo quadrato 400 � 400. Dall'alto verso il basso sono riportate le correlazioni lungo l'assex del modello anisotropo, quelle del modello isotropo e, in�ne, le correlazioni lungo l'asse y nelcaso anisotropo. I dati si riferiscono ai tempi 350( ), 450( ) e 500(4). Le linee continue sonoi migliori �t con la legge OJK.La funzione di scala della teoria OJK �e la seguente:f(z) = 2� sin�1[exp(�z2=D)] (3.5)dove z = r=t1=2, D = 8(d�1)=d e d la dimensione del reticolo. Questa fornisce il comportamentolineare di Porod [Po] a piccoli z della funzione f(z) � 1� �z con � = 2p2=(�pD). In praticai risultati Monte Carlo possono essere paragonati alla previsione teorica imponendo lo stesso64



Analisi Monte Carlo della crescita di domini anisotropicomportamento di Porod. Applicando questa procedura ai nostri dati si �e ottenuto: �` = 0:383e �t = 0:414 per J1 = 0:1, rispettivamente per il caso longitudinale e quello trasverso. Lasimmetria discussa in precedenza corrisponde al fatto che nel caso J1 = �0:1 i valori deiparamtri � si scambiano, infatti si trova: �` = 0:406 e �t = 0:376.I risultati discussi in precedenza mostrano che la funzioni di OJK descrive bene i risultatinumerici anche nel caso in cui il sistema �e anisotropo. Il modello di campo pi�u semplice con untermine cinetico anisotropo �e cosituito dal modello di Ginzburg-Landau dipendente dal tempo@'@t = Bx@2'@x2 +By @2'@y2 � V 0(') (3.6)dove V (') �e l'usuale potenziale a doppia buca. Il cambiamento di variabili x ! x0 = pBxx ey ! y0 = qByy elimina l'anisotropia e restituisce l'equazione usuale della teoria OJK [Br]. Male correlazioni in termini delle vecchie variabili spaziali hanno un comportamento anisotropo emostrano diverse pendenze di Porod con �x=�y = qBy=Bx.Il comportamento anisotropo del modello (3.6) �e stato controllato studiando il comporta-mento di scala del modello di Ising con accoppiamento Jx e Jy lungo i due assi del reticolo. InFig. 3.7 sono riportate le funzioni di correlazioni lungo i due assi e viene fatto il confronto conla funzione OJK (per i dettagli sui parametri usati nelle simulazioni si rimanda alla didascalia).Inoltre sono riportati anche i dati relativi all'usuale modello di Ising nel caso Jx = Jy = 1.L'argomento precedente suggerisce �x=�y = qJy=Jx: i valori misurati forniscono il rapporto�y=�x = 1:548 che non �e lontano da quello sperato 1.414 e conferma il fatto che la teoria OJKriproduce bene le simulazioni anche nel caso anisotropo. L'accordo cresce notevolmente se siconsidera il caso a temperatura zero: il rapporto misurato �e, infatti, �y=�x = 1:4304.
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Allegato 9Anisotropic dynamical scaling in a spin model with competing interactions.E.N.M. Cirillo, G. Gonnella, S. Stramaglia, Phys. Rev. E 56, 5065, 1997

RiassuntoSi discutono alcuni risultati sulle propriet�a cinetiche della crescita di do-mini in un modello con interazioni in competizione ra�reddato dalla faseparamagnetica ad una fase a strisce. Gli esponenti di crescita sono � = 1=2e � = 1=3 rispettivamente nel caso di dinamica di singolo spin-
ip e dispin-exchange. Comunque le funzioni di correlazione misurate in direzioneparallela ai domini sono diverse da quelle misurate in direzione trasversa.Nel caso della dinamica di singolo spin-
ip i nostri dati possono essere stu-diati usando una versione anisotropa della teoria di Ohta-Jasnow-Kawasaki.
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Analisi Monte Carlo della crescita di domini anisotropi
Allegato 10Monte Carlo study of the growth of striped domains.E.N.M. Cirillo, G. Gonnella, S. Stramaglia, Proceedings of the Conference "Morphology andkinetics of phase separating complex 
uids", Preprint BARI-TH/97-283

RiassuntoSi analizza il comportamento di scala dinamico in un modello di spin bidi-mensionale con interazioni in competizione dopo un rapido ra�reddamentonella fase a strisce. Si misurano gli esponenti di crescita studiando le pro-priet�a di scala delle interfacce e del tempo di contrazione di una gocciadi una fase immersa in una fase di�erente. I nostri risultati confermanole previsioni di un lavoro precedente. Le funzioni di correlazione misuratenella direzione parallela e trasversa rispetto alle strisce sono diverse, comeviene suggerito dall'esistenza di diverse energie di interfaccia tra gli statifondamentali del modello. Le nostre simulazioni mostrano un comporta-mento anisotropo delle funzioni di correlazione sia nel caso di dinamiche disingolo spin-
ip sia in quello di dinamiche di spin-exchange.
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Capitolo 4Metastabilit�a nei modelli di spin
4.1 IntroduzioneUn sistema �sico �e in uno stato metastabile se, �ssati i parametri termodinamici, esso si trova inuna fase diversa da quella favorita termodinamicamente. Lo stato di vapore sovrasaturo �e unafase metastabile della materia, perch�e essa si trova nella fase di vapore, nonostante la pressionee la temperatura vengano scelti in modo che la fase liquida sia favorita termodinamicamente(fase di equilibrio stabile).Un secondo esempio di fase metastabile lo si ritrova studiando il comportamento dei mate-riali ferromagnetici al di sotto della temperatura di Curie: l'isteresi magnetica di uno qualsiasidi questi materiali prevede stati in cui il campo magnetico esterno e la magnetizzazione delferromagnete hanno verso opposto. La termodinamica non li prevede come stati stabili di unferromagnete; si tratta di stati metastabili.Le propriet�a fondamentali di uno stato metastabile possono essere riassunte come segue[PL]:� nel sistema �e presente una sola fase, anche se i parametri termodinamici assumono valoritali che lo stato di equilibrio dovrebbe consistere di due o pi�u fasi. In corrispondenza dipiccole variazioni dei parametri termodinamici lo stato del sistema subisce cambiamentipiccoli e reversibili in accordo con le leggi della termodinamica.� Se il sistema �e isolato, l'uscita dalla fase metastabile avviene mediante delle 
uttuazionilente e casuali, che possono indurre la crescita della fase stabile; ma tali 
uttuazioni sonocos�� poco probabili, che la vita media dello stato metastabile �e lunghissima, praticamentein�nita.� L'uscita dalla fase metastabile, spontanea o indotta dall'esterno, �e un processo irreversi-bile.La Meccanica Statistica ha sviluppato un ben de�nito formalismo che permette di studiarele propriet�a di un sistema all'equilibrio; manca, invece, una formulazione teorica organica chepermetta di studiare gli stati di non-equilibrio [I, LR]. Anche per il problema della metasta-bilit�a non esiste un formalismo generale analogo a quello gibbsiano; in altre parole non esisteuna teoria universalmente accettata che permetta di calcolare grandezze relative ad uno statometastabile di un sistema (per esempio la sua vita media) a partire dalle interazioni elementarifra i suoi costituenti microscopici (atomi, molecole, ioni, ...).�E di grande utilit�a, pertanto, studiare in modo rigoroso il problema della metastabilit�a nelcaso di alcuni modelli \semplici" quali i modelli stocastici di spin su reticolo [Lig]. Nell'ambito71



Metastabilit�a nei modelli di spindi questi modelli �e possibile porre problemi matematicamente ben de�niti e stabilire dei risultaticerti. La chiari�cazione concettuale che ne deriva �e certamente di grande utilit�a in un campo incui esistono solo teorie semi-fenomenologiche, ricche di assunzioni \ad hoc" e di approssimazioniincontrollate.Un grande impulso in questo senso �e stato dato dal lavoro [CGOV] in cui �e stato propo-sto un \nuovo" approccio al problema della metastabilit�a, oggi noto come pathwise approach.Questo metodo �e stato applicato con successo alla descrizione dell'uscita di un sistema dallafase mestabile per numerosi modelli di spin. In [NS1, NS2, Sc1] �e stato risolto il problema nelcaso del modello di Ising con accoppiamento ferromagnetico tra primi vicini, utilizzando delletecniche, per�o, estremamente ad \hoc". In [KO1, KO2] sono state introdotte delle tecniche pi�ugenerali e sono state applicate, rispettivamente, al modello di Ising asimmetrico ed al modellodi Ising con accoppiamento tra primi e secondi vicini. In [NO] �e stato studiato il modello diIsing con campo magnetico alternato e in [BC] �e stato risolto il problema della metastabilit�anel caso del modello di Ising in tre dimensioni.Tutti i lavori precedenti si riferiscono al caso di volume �nito, campo magnetico �nito etemperatura che va a zero. Altri regimi molto interessanti dal punto di vista �sico e matematico,ma molto pi�u complicati (temperatura �nita, reticolo in�nito e campo magnetico tendente azero) sono stati presi in esame in [Sc2, SS]. Ancora aperti restano problemi come la metastabilit�anel caso di dinamiche conservate e di dinamiche parallele [BCLS].Il caso di temperatura �nita �e stato studiato in modo esaustivo anche dal punto di vista dellesimulazioni Monte Carlo per esempio in [Bi, BM, BS, LNR, M, TM1]; una descrizione chiara ecompleta di questi risultati numerici pu�o essere trovata in [RTMS, No1, No2, RG, RSNR]. Ilcaso di temperatura �nita �e stato studiato anche con il metodo della matrice di trasferimentoin [PS1, PS2, GRN].In questo capitolo dopo alcuni brevi richiami sul pathwise approach applicato al caso delmodello di Ising, verranno discussi alcuni modelli di interesse �sico studiati in collaborazionecon il Prof. E. Olivieri (Dipartimento di Matematica, II Universit�a di Roma) e con il Prof. J.L.Lebowitz (Mathematics Department, Rutgers University, NJ). In particolare nella Sezione 4.3si discuter�a l'e�etto delle condizioni al bordo sull'uscita dalla fase metastabile, nella Sezione4.4 si esaminer�a il caso di stati metastabili in competizione.4.2 Il pathwise approachIl problema degli stati metastabili �e di natura puramente dinamica, la sua descrizione dal puntodi vista della Meccanica Statistica di equilibrio �e inadeguata. In [CGOV] �e stato proposto unmodo rigoroso di de�nire gli stati metastabili, oggi noto come pathwise approach, ma solo in[NS1, NS2] �e stato possibile utilizzare questo approccio per studiare casi di interesse �sicocome il Modello di Ising in due dimensioni. Nel seguito vengono illustrati i risultati in [NS1]seguendo, per�o, lo schema pi�u generale proposto in [OS1, OS2]. In Appendice C sono elencatealcune de�nizioni che verranno utilizzate nel corso di questa sezione ed in seguito.Si consideri il Modello di Ising in due dimensioni de�nito su un quadrato �nito � =f1;:::;Mg � Z2 (si veda la Sezione 1.2) con condizioni periodiche al bordo e con campo magne-tico h. Si considera, quindi, lo spazio delle con�gurazioni 
� e la misura di Gibbs di equilibrio��;�;h associata all'hamiltoniana che per comodit�a viene riscritta nel modo seguente:H(�) = �J2 X<x;y>�(x)�(y)� h2 Xx2� �(x) 8� 2 
� : (4.1)72



Metastabilit�a nei modelli di spinSi denota con �t la con�gurazione del modello all'istante t = 0;1;::: e si suppone che il sistemaevolva secondo la dinamica di Metropolis (si rimanda all'Appendice B per la sua de�nizione).Si considera il caso h > 0 e piccolo: il minimo assoluto dell'energia H(�) del modello �eottenuto in corrispondenza della con�gurazione +1 in cui tutti gli spin assumono valore +1.D'altro canto, se h �e piccolo, anche la con�gurazione �1 in cui tutti gli spin sono �1 �e unminimo locale di H(�) pur non essendo il suo minimo assoluto.Nell'ambito del pathwise approach porre il problema della metastabilit�a del modello di Isingvuol dire considerare l'evoluzione del modello quando questo viene preparato nella con�gurazio-ne iniziale �1. In altri termini si considera il processo (�t)t2N con condizione iniziale �0 = �1,con temperatura molto bassa (limite � !1) e ci si chiede se il sistema esibisce comportamentemetastabile ovvero se in qualche senso viene intrappolato nel minimo locale �1.L'evoluzione sotto la dinamica di Metropolis favorisce i salti verso con�gurazioni ad energiaminore, una volta \proposta" una transizione verso uno stato ad energia pi�u bassa essa vienee�ettuata con probabilit�a uno; mentre transizioni che comportanto variazioni di energia�H > 0vengono pagate in probabilit�a con un fattore exp(���H). Ci�o suggerisce che se il sistemaparte da una con�gurazione � 2 
� esso tender�a a raggiungere un minimo locale dell'energiaconnesso con � tramite una successione di salti tra con�gurazioni ad energia via via minore. Inaltri termini, a partire da � il sistema giunger�a in un tempo dell'ordine dell'unit�a in un minimolocale accessibile tramite un cammino in discesa.D'altro canto il sistema pu�o e�ettuare dei salti contro la deriva, ma tali eventi avvengono conprobabilit�a esponenzialmente piccola in �, quindi richiedono un tempo tipico esponenzialmentelungo in �. In sostanza il processo �e regolato da due scale di tempi: i tempi dell'ordinedell'unit�a, in cui il sistema rilassa verso il fondo del bacino d'attrazione di un certo minimolocale, e i tempi esponenziali in �, che il sistema impiega per giungere sulla frontiera di un bacinod'attrazione e quindi per uscirne. �E chiaro, quindi, che i minimi locali dell'hamiltoniana giocanoun ruolo fondamentale nella descrizione della dinamica del modello, perch�e il sistema spender�ala maggior parte del tempo e�ettuando delle 
uttuazioni aleatorie attorno ad essi, senza usciredal loro bacino d'attrazione, �no a quando grazie ad un 
uttuazione di piccola probabilit�agiungono sulla frontiera del bacino d'attrazione e, in un tempo dell'ordine dell'unit�a, entranonel bacino d'attrazione di un nuovo minimo locale. L'evoluzione del sistema pu�o essere pensatacome una successione di salti tra diversi minimi locali che avvengono su una scala di tempoesponenzialmente lunga in �.Il primo passo nella comprensione del problema �e la caratterizzazione dei minimi localidell'hamiltoniana:Lemma 4.1 Si consideri il modello (4.1) con J > h > 0 e M > 2, � 2 M se e solo se�(x) = �1 8x 2 � eccetto per i siti che si trovano all'interno di alcuni rettangoli R1;:::;Rngiacenti sul reticolo duale �+ �12 ;12�, non interagenti e con lati di lunghezza maggiore o ugualea due.I minimi locali, quindi, sono delle gocce rettangolari di spin pi�u immerse in un mare di spinmeno. Si denota con R(l1;l2), ove 0 � l1;l2 � M , l'insieme di tutte le con�gurazioni con tuttispin �1 tranne quelli in un rettangolo di lati l1 e l2. Inoltre, considerato un minimo locale� 2 R(l1;l2), esso verr�a denotato con il simbolo Rl;m dovel := minfl1;l2g e m := maxfl1;l2g : (4.2)A questo punto ci si pone il problema di capire cosa accade al sistema quando esso parte daun minimo locale Rl;m: dopo un tempo abbastanza lungo esso uscir�a dal suo bacino d'attrazione73



Metastabilit�a nei modelli di spine raggiunger�a una nuova con�gurazione stabile, ma si vuole capire quale. In alti termini si vuolecapire se una goccia tende a crescere o a contrarsi.Il meccanismo di crescita pi�u e�ciente �e la comparsa di una protuberanza: uno spin menoadiacente ad uno dei lati del rettangolo viene trasformato in +1 (si veda la Fig. 4.1). L'in-cremento in energia �e �H = 2J � h, quindi il tempo tipico necessario per osservare l'evento �e�cresc � exp(�(2J � h)).Il meccanismo di contrazione pi�u e�ciente �e l'erosione d'angolo: a partire da uno degliangoli del lato pi�u corto del rettangolo Rl;m vengono in successione trasformati in �1 tutti glispin di una striscia tranne uno (si veda la Fig. 4.1). Il tempo tipico che bisogna attendere perosservare tale fenomeno �e dell'ordine �contr � exp(�h(l � 1)), perch�e l'erosione di uno spin inun angolo costa +h dal punto di vista energetico.!l m m! ! ! � � � � � � !l m m m m
Figura 4.1. In alto �e ra�gurato il meccanismo di comparsa di una protuberanza, in bassoquello di erosione d'angolo per una goccia di spin +1 immersa nel mare di spin �1.Dal confronto dei tempi �cres e �contr emerge che postol� := �2Jh �+ 1 (4.3)dove con [a] si denota la parte intera del numero reale a, ovvero il pi�u grande numero interominore di a, si ha che il tempo tipico di crescita �e inferiore a quello di contrazione se l �l�. Questa osservazione suggerisce che l� gioca il ruolo di lunghezza critica, cio�e permette didiscriminare tra gocce sottocritiche e supercritiche, dove si �e de�nitoDe�nizione 4.1 Considerato un minimo locale � 2 M� supercritico () P (��+1 < ���1) �!1�! 1� sottocritico () P (���1 < ��+1) �!1�! 1 (4.4)Si dimostra, infatti, il seguente Lemma che discrimina tra gocce supercritiche e sottocritiche efornisce la stima asintotica del tempo di contrazione e di crescita.Lemma 4.2 Considerato il rettangolo Rl;m, preso " > 0 si ha74



Metastabilit�a nei modelli di spin� l < l� ) Rl;m �e sottocritico eP (e�(l�1)h��" < �Rl;m�1 < e�(l�1)h+�") �!1�! 1� l � l� ) Rl;m �e supercritico eP (e�(2J�h)��" < �Rl;m+1 < e�(2J�h)+�") �!1�! 1Se si considera un minimo locale con pi�u di un rettangolo questo sar�a sottocritico se tutti i suoirettangoli lo sono; �e possibile dimostrare una versione pi�u forte del Lemma 4.2 che fornisce unadescrizione pi�u dettagliata della contrazione e della crescita delle gocce (si vedano i Lemma 3e 4 in [KO1] e il Teorema 1 in [NS1]).La dimostrazione del Lemma 4.2 procede nel modo seguente: si considera il bacino d'attra-zione B(Rl;m) e la sua frontiera @B(Rl;m). Per uscire da B(Rl;m) il sistema deve necessariamenteattraversare la sua frontiera: �e intuitivo che lo far�a in corrispondenza di quella con�gurazioneche minimizza l'energia del sistema sull'insieme @B(Rl;m). Pertanto il primo passo, nella dimo-strazione del Lemma, �e il calcolo del minimo dell'energia sulla frontiera del bacino d'attrazione.Nel caso l < l� si prova che questo minimo �e realizzato dalla con�gurazione P1 ottenuta apartire da Rl;m trasformando in meno tutti gli spin pi�u che si trovano su uno dei suoi due laticon lunghezza minima tranne uno. Per dimostrare che quando il sistema giunge sulla frontieravi giunge in P1 si stima dall'alto e dal basso il tempo di primo arrivo sulla frontiera. Per lastima dal basso si usa il Lemma di reversibilit�a:Lemma 4.3 (di reversibilit�a) Si considerino �;� 2 
� e si supponga H(�) < H(�), allorapreso " > 0 si ha P (��� > e�(H(�)�H(�))��") �!1�! 1La stima dall'alto, invece, procede esibendo esplicitamente un evento che porta il sistema inP1 e che ha un probabilit�a non molto bassa, cio�e detto ERl;m!P1 questo evento e preso � > 0deve accadere P (ERl;m!P1) > exp[��(H(P1)�H(Rl;m))���]. Tale evento pu�o essere costruitoconsiderando un cammino in salita che congiunge Rl;m con P1. Per i dettagli si rimanda a[NS1, KO1, CO1].Si consideri, ora, il sistema con condizione iniziale �1: il sistema presenter�a 
uttuazionialeatorie attorno a tale minimo dell'hamiltoniana e su tempi abbastanza lunghi si formerannodelle piccole gocce di pi�u all'interno del mare di meno. Queste gocce, destinate a scomparire,persisteranno per un tempo dell'ordine di �contr e poi il sistema torner�a in �1. Si pone ilproblema di capire se il sistema esce dalla fase metastabile, in quanto tempo e in che modo.�E intuitivo che l'uscita non pu�o avvenire per coalescenza di numerose piccole gocce, perch�equeste tendono a scomparire in tempi rapidissimi, molto minori del tempo necessario a formarnealtre. �E quindi necessario aspettare una 
uttuazione di bassa probabilit�a che generi una gocciasu�cientemente grande per invadere tutto il sistema, cio�e una goccia supercritica, ma tale chesia la pi�u piccola possibile. Tale goccia �e detta protocritica ed �e un rettangolo di lati l� e l�� 1con una protuberanza adiacente ad uno dei due lati pi�u lunghi. Questa con�gurazione vienedenotata con P: si osserva che la goccia pu�o essere traslata in un punto qualsiasi del sistema,pertanto P indica in realt�a un insieme di con�gurazioni.In modo pi�u preciso si pone� := H(P)�H(�1) = 2Jl� � h(l�2 � l� + 1) (4.5)75



Metastabilit�a nei modelli di spine si introduce il tempo in cui il sistema visita �1 per l'ultima volta prima di giungere in +1:���1 := supft < ��1+1 : ��1t = �1g : (4.6)Poi si de�nisce il primo istante che il sistema giunge nella goccia protocritica dopo ���1, ovvero��P := infft > ���1 : ��1t = Pg (4.7)e si dimostraTeorema 4.1 Dato " > 0 si ha� P (��P < ��1+1 ) �!1�! 1� P (e����" < ��1+1 < e��+�") �!1�! 1Il Lemma 4.2 e il Teorema 4.1 forniscono una descrizione abbastanza accurata del comporta-mente del sistema nella fase metastabile e della sua uscita: partendo da �1 il sistema passaun tempo molto lungo \vicino" alla con�gurazione �1; di tanto in tanto appaiono delle piccolegocce di pi�u che scompaiono in un tempo dell'ordine di �contr. Solo dopo un tempo molto lungo,in confronto alla durata tipica delle 
uttuazioni, il sistema \nucleer�a" la goccia protocritica Pe raggiunger�a la fase stabile. �E possibile dare una descrizione molto pi�u dettagliata del mec-canismo di uscita: �e possibile scrivere il tubo di traiettorie che il sistema segue durante la suaprima escursione da �1 a +1. Si rimanda a [Sc1, KO1].Per dimostrare il Teorema 4.1 �e cruciale l'introduzione di una sorta di bacino d'attrazioneallargato della con�gurazione �1: in sostanza si de�nisce un insieme A � 
� che contiene tuttele con�gurazioni sottocritiche. Una volta che uno ha de�nito questo oggetto la dimostrazioneprocede mostrando che il minimo dell'energia sulla frontiera di A �e dato dalla con�gurazioneprotocritica: allora il sistema per giungere in +1 deve uscire da A, ma per uscire da A deveattraversarne la frontiera e ci�o avver�a nel punto ad energia pi�u bassa, cio�e attraverso la gocciaprotocritica.Le con�gurazione � 2 A devono essere tali che se il sistema ha una di esse come statoiniziale, allora con grande probabilit�a giunger�a in �1 prima che in +1; cio�e se � 2 A e deveaccadere P (���1 < ��+1) �! 1 nel limite � !1. Caratterizzare le con�gurazioni che godono diquesta propriet�a non �e impresa banale, infatti una generica � 2 
� pu�o essere estremamentecomplicata. Si costruisce allora una applicazione che ad ogni � 2 
� associa un minimo locale �̂e la condizione di appartenenza al bacino A viene data su �̂; ci�o non alcuna comporta di�colt�aperch�e la criticit�a dei minimi locali �e nota dal Lemma 4.2. L'applicazione S : � �! �̂,viene de�nita costruendo il pi�u grande minimo locale, partendo da � ed e�ettuando una seriedi singoli spin 
ip favoriti energeticamente; la locuzione \pi�u grande" va intesa nel senso dellarelazione d'ordine parziale de�nita su 
� nel modo seguente� � � () �(x) � �(x) 8x 2 � : (4.8)Si illustra ora in dettaglio la de�nizione dell'insieme A: sia � 2 
�, si de�nisce c(�) l'unionedi tutti i quadrati unitari chiusi centrati sui siti x 2 � tali che �(x) = +1. Evidentementec(�) �e un sottoinsieme del piano su cui giace il reticolo. Assegnare la con�gurazione � �e deltutto equivalente ad assegnare l'insieme c(�). Si de�niscono, quindi, i contorni di c(�) comele componenti connesse massimali della frontiera di c(�); in sostanza un contorno 
 �e unapoligonale chiusa sul reticolo duale. 76



Metastabilit�a nei modelli di spinSi introducono le componenti connesse massimali c1;c2;:::;ck dell'insieme c(�), tali oggettisono degli ?{cluster, nel senso che i siti appartenenti ad essi possono essere connessi per sitiprimi o secondi vicini. Una con�gurazione � 2 
� pu�o essere identi�cata con la collezionefc1;:::;ckg. Ad ognuno degli ?{cluster cj viene associato il rettangolo circoscritto R(cj) il pi�upiccolo rettangolo chiuso contenente cj tracciato sul reticolo duale. Si dice che una con�gura-zione � �e ammissibile se e solo se tutti i rettangoli R(c1);:::;R(ck) hanno i lati minori o ugualiad M � 1; cio�e nelle con�gurazioni ammissibili gli ?{cluster di spin +1 non devono estendersisu tutto il reticolo.Il sottospazio di 
� costituito da tutte le con�gurazioni ammissibili viene indicato con 
��.Se � 2 
� allora si possono de�nire i contorni esterni degli ?{cluster cj; infatti se � 2 
��, esisteun'unica componente di spin �1 che invade tutto il reticolo, allora si dir�a contorno esterno 
jdi cj il sottoinsieme della frontiera di cj costituito da tutti i segmenti unitari del reticolo duale,che separano uno spin +1 di cj da uno spin �1 della componente che invade tutto il reticolo.Si osserva che ogni lato di R(cj) contiene almeno un segmento appartenente a 
j.Si considerino, ora, i rettangoliR1;:::;Rm, si dice che costituiscono una catena � := fR1;:::;Rmgse e solo se comunque si scelgano due di essi Rn ed Rp con n;p 2 f1;:::;mg, si possa determinareuna sequenza di rettangoli Ri1 ;:::;Rik 2 � tale che Ri1 = Rn, Rik = Rm e Ril, Ril+1 sonointeragenti 8l = 1;:::;k � 1.Si de�nisce, ora, l'applicazione S : � �! �̂:De�nizione 4.2 La de�nizione dell'applicazione viene data in sei passi: data una con�gura-zione � 2 
��1. si considerano c(�), le sue componenti massimali c1;:::;ck ed i rettangoli R(c1);:::;R(ck);2. vengono trasformati in +1 tutti gli spin �1 che si trovano all'interno dei rettangoliR(c1);:::;R(ck), in modo che questi ultimi contengano solo spin +1;3. a partire dai rettangoli R(c1);:::;R(ck) vengono costruite tutte le possibili catene massimali�(1)1 ;:::; �(1)k1 ;dette catene di prima generazione; la generica catena �(1)j �e massimale nel senso cheaggiungendo ad essa uno qualsiasi dei rettangoli R(c1);:::;R(ck) che non le appartiene,l'insieme di rettangoli cos�� ottenuto non costituisce una catena.4. Si de�nisce una legge che permette di passare dalle catene di r{esima generazione, a quelledi (r + 1){esima generazione: si considera l'oggetto[R2�(r)j R ;che non �e necessariamente uno ?-cluster, ed il suo inviluppo rettangolare R(r)j 8j = 1;:::;kr;a partire da questi kr rettangoli si ottengono le catene di (r + 1)-esima generazione�(r+1)1 ;:::;�(r+1)kr+1 costruendo tutte le possibili catene massimali.5. La procedura illustrata al punto precedente viene iterata �no a quella generazione f -esima,in cui ogni catena consta di un singolo rettangolo�(f)1 = f �R1g;:::; �(f)kf = f �Rkfg ;tali rettangoli sono non interagenti per costruzione.77



Metastabilit�a nei modelli di spin6. L'applicazione S associa ad ogni con�gurazione � 2 
�� la con�gurazione �̂ in cui gli spin+1 sono precisamente quelli racchiusi nei rettangoli �Rj con j 2 f1;:::;kfg.L'applicazione S appena de�nita gode delle seguenti notevoli propriet�a8><>: � � �̂ 8� 2 
��H(�) � H(�̂) 8� 2 
��� � � =) �̂ � �̂ 8�;� 2 
�� ; (4.9)l'ultima delle tre propriet�a si pu�o esprimere dicendo che l'applicazione S �e crescente nel sensodella relazione d'ordine parziale (4.8). La prima e la terza delle (4.9) sono di dimostrazioneimmediata se si tiene presente che durante la costruzione della con�gurazione �̂ non vengonomai invertiti spin +1; mentre per la seconda bisogna tener presente che tutte le operazioni chesi fanno sono favorite energeticamente.In�ne si de�nisce il bacino di attrazione allargato della con�gurazione �1:De�nizione 4.3 Con le notazioni introdotte in precedenza:A := f� 2 
�� : �R1;:::; �Rkf sono sottocriticig ; (4.10)cio�e A �e l'insieme di tutte le con�gurazioni ammissibili, che per e�etto di S vengono trasformatein con�gurazioni in cui tutti gli spin +1 si trovano in rettangoli non interagenti e sottocritici.Si osserva, inoltre, che A costituisce solo una stima del bacino d'attrazione generalizzato di�1, infatti si possono determinare con�gurazioni che non appartengono ad A, ma tali che apartire da esse il sistema giunge con grande probabilit�a in �1 prima che in +1.Dopo aver de�nito l'insieme A �e possibile procedere nella dimostrazione del Teorema 4.1: lospirito della dimostrazione �e simile a quello descritto a proposito del Lemma 4.2, ma i dettaglitecnici sono estremamente pi�u complicati. Si rimandano i dettagli a [NS1, KO1], qui ci si limitaad osservare che, ai �ni della dimostrazione, le propriet�a chiave del bacino d'attrazione allargatoA sono le seguenti:� A �e connesso; �1 2 A e +1 62 A.� Esiste un cammino ! che connette �1 con P contenuto in A e tale cheH(�) < H(P) 8� 2 !; � 6= PEsiste un cammino !0 che connette P con +1 contenuto in Ac e tale cheH(�) < H(P) 8� 2 !0; � 6= P� Il minimo dell'energia sulla frontiera di A �e ottenuto sulla sella protocritica, ovveromin�2@A[H(�)�H(�1)] = H(P)�H(�1) = �e min�2@AnfPg[H(�)�H(P)] > 0� Con probabilit�a pi�u grande di zero, uniformemente in �, il sistema partendo da P raggi-unge +1 prima di visitare �1; ovvero dato " > 0P (�P+1 < �P�1) � e��"e P (�P+1 < e�(2J�h)+�"j�P+1 < �P�1) �!1�! 178



Metastabilit�a nei modelli di spin4.3 Il problema delle condizioni al bordoLa scelta delle condizioni al bordo nel caso di volume �nito in
uenza notevolmente le propriet�adinamiche della fase metastabile. Questo problema �e stato messo in evidenza in [RKLRN, SG]e in [CL] �e stato studiato approfonditamente, sia nel senso dei risultati esatti sia in quello dellesimulazioni Monte Carlo, nel caso del modello di Ising con le condizioni al bordo libere [TM2].Tra le possibili scelte delle condizioni al bordo, quelle libere hanno un certo interesse tecno-logico: durante il processo di registrazione di un nastro magnetico le diverse parti del materialesono esposte a diversi campi magnetici, ci�o risulta in domini con diversa orientazione dellamagnetizzazione. Questi materiali devono essere in grado di mantenere il loro stato di ma-gnetizzazione per tempi lunghissimi anche in presenza di deboli campi magnetici esterni. Lostudio dell'uscita dalla fase metastabile in presenza di condizioni al bordo periodiche trascural'e�etto dei domini che circondano quello preso in esame, questo e�etto pu�o essere modellizzatoscegliendo delle condizioni al bordo libere.
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Figura 4.2. Lunghezze critiche �1 e �2 in funzione del campo magnetico esterno h. La lineacontinua e quella tratteggiata rappresentano le previsioni teoriche (4.11). I cerchi e i quadratineri rappresentano, rispettivamente, le stime numeriche di �1 e �2.Si considera, quindi, il modello (4.1), con la dinamica di Metropolis e con le condizionial bordo libere; inoltre si scelgono i parametri J >> h > 0 e ci si pone la domanda dellametastabilit�a come descritto nella sezione precedente. Dal punto di vista dei risultati rigorosi latecnica utilizzata �e simile a quella descritta nel caso di condizioni al bordo periodiche, pertantosi rimanda a [CL] (Allegato 11), qui si discutono gli aspetti principali.Le caratteristiche qualitative dello stato metastabile non cambiano rispetto al caso dellecondizioni al bordo periodiche studiato in [NS1, RTMS, Sc1, TM1] e descritte nella Sezione 4.2,ma dal punto di vista quantitativo le stime sono diverse: si osserva sia una diversa dimensionecritica, sia una diversa vita media �� � exp(�J2=h) dello stato metastabile, contro la stima79



Metastabilit�a nei modelli di spin�period� � exp(4�J2=h) valida nel caso di condizioni al bordo periodiche. La vita media dellostato metastabile risulta pi�u piccola perch�e le condizioni al bordo libere favoriscono l'inversionedi spin meno che si trovano vicini al bordo.Questo e�etto giusti�ca anche la necessit�a di introdurre due dimensioni critiche�1 := �Jh �+ 1 e �2 := �Jh�+ 1 ; (4.11)la prima caratteristica delle gocce con un lato sul bordo o a distanza uno da esso, la secondacaratteristica delle gocce lontane dal bordo. Ovviamente la dimensione critica delle gocce vicineal bordo �e pi�u piccola, perch�e le condizioni al bordo libere ne favoriscono la crescita.Ma la novit�a pi�u interessante �e la seguente: mentre nel caso del modello di Ising concondizioni al bordo periodiche la goccia critica �e un quadrato di lato [2Jh ]+1 posto in un qualsiasipunto del toro, nel caso delle condizioni al bordo libere si tratta ancora di un quadrato, conlato [Jh ] + 1, ma posto in uno dei quattro angoli del reticolo quadrato. In altri termini, non solola geometria, ma anche la posizione nel reticolo della grande 
uttuazione che permette l'uscitadalla fase metastabile pu�o essere prevista.I risultati descritti in precedenza sono stati discussi in [CL] sia con metodi esatti nel limitedi bassa temperatura, sia con simulazioni Monte Carlo a � �ssato. Nel seguito descrivo come�e stato possibile misurare la lunghezza critica e come si �e messa in evidenza la nucleazione nelvertice del reticolo.
-1

-0.5

0

0.5

1

84000 84100 84200 84300 84400

-1

-0.5

0

0.5

1

37200 37300 37400 37500 37600 37700

time (in unit MCS)

m
ag

ne
ti

za
ti

on
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Metastabilit�a nei modelli di spinesempio [RTMS, TM1], dove sono stati usati campi magnetici e temperature pi�u elevate. Lascelta dei parametri �e dovuta alla necessit�a di confrontare il dato numerico con la previsioneteorica che �e valida solo nel limite T ! 0, pertante �e necessario porre il sistema nella cosiddettasingle droplet region, ovvero nella regione in cui l'uscita dalla fase metastabile avviene mediantela nucleazione di una singola goccia [RTMS].Per stimare �1 abbiamo �ssato � e h, abbiamo posto il sistema nella con�gurazione in cuitutti gli spin sono �1 eccetto quelli in un quadrato di lato l posto in un angolo del reticolo,abbiamo lasciato evolvere il sistema ed abbiamo ripetuto l'esperimento per valori decrescenti dil. Il valore pi�u piccolo di l per cui la goccia cresceva �e stato scelto come stima di �1. In modoanalogo si �e proceduto per la stima di �2.In Fig. 4.2 (si veda anche la Fig. 1 dell'Allegato 11) �e riportata la media su 60 misureindipententi di �1 e �2, ottenute con temperature inverse rispettivamente uguali a � = 10e � = 6. La linea solida e quella tratteggiata rappresentano il risultato esatto (4.11) validonel limite � ! 1, mentre i cerchi e i quadrati neri rappresentano, rispettivamente, le stimenumeriche di �1 e �2. L'accordo �e eccellente, ma la struttura a scala non viene riprodotta daidati numerici perch�e �, sebbene sia stato scelto grande, non �e in�nito.In Fig. 4.3 (si veda anche la Fig. 2 dell'Allegato 11), invece, viene messa in evidenzala localizzazione della goccia critica: in �gura sono state riportate la magnetizzazione perspin misurata sull'intero reticolo m0 e le quattro magnetizzazione m1, m2, m3 e m4 ottenutemediando su quadrati di lato �1 posti nei vertici del reticolo. Le curve sono tracciate in funzionedel numero di iterazioni (MCS = Monte Carlo Sweeps) relativamente ad una singola storia delsistema, che viene lasciato evolvere dopo essere stato preparato nella con�gurazione �1. Inentrambe le �gure la linea solida rappresenta m0, mentre le linee tratteggiate sono relative allealtre quattro magnetizzazione de�nite in precedenza.In entrambi i casi �e evidente che il sistema passa un tempo molto lungo (circa 104 MCS)nella con�gurazione �1; le 
uttuazioni sono visibili nel caso � = 2, del tutto trascurabili nelcaso � = 3. Dopo questo tempo lungo la magnetizzazione in uno dei quattro angoli diventarapidamente uno (nucleazione della goccia protocritica); una volta avvenuto questo evento rarotutte le altre magnetizzazioni saturano ad uno, cio�e il sistema raggiunge rapidamente la fasestabile.4.4 Modello di Blume-CapelIn [CO1], in collaborazione con il Prof. E. Olivieri, ho a�rontato il problema della metasta-bilit�a nel caso del modello di Blume-Capel bidimensionale; questo problema ha un notevoleinteresse �sico per via della presenza di pi�u stati metastabili in competizione; una versione diquesto modello con debole accoppiamento a lunga portata �e stata analizzata numericamente in[FGRN]. In [CO1] �e stato mostrato, utilizzando risultati di [OS1, OS2], come il meccanismodi uscita dalla fase metastabile e la sua vita media dipendano dai parametri del modello. Dalpunto di vista tecnico il calcolo �e molto simnile a quello illustrato in Sezione 4.2 nel caso delmodello di Ising bidimensionale; ovviamente i problemi dipendenti dal modello che sono statirisolti sono di gran lungo pi�u complicati per via della struttura molto varia dei minimi locali.Per i dettagli si rimanda all'Allegato 12, qui si descrivono i risultati �sicamente pi�u interesanti.Il modello bidimensionale di Blume-Capel �e de�nito su un reticolo �nito � � Z2, ad ognisito reticolare x 2 � �e associata una variabile di spin �(x) 2 f�1;0; + 1g. L'hamiltoniana del
81



Metastabilit�a nei modelli di spinmodello, cio�e l'energia associata ad ogni con�gurazione � 2 f�1;0;+ 1g�, �e data daH(�) := J X<x;y>(�(x)� �(y))2 � hXx2� �(x)� �Xx2� �2(x) ; (4.12)dove J �e una costante reale e positiva (accoppiamento ferromagnetico), h e � sono due numerireali qualsiasi. I parametri h e � hanno rispettivamente il signi�cato �sico di campo magne-tico esterno e di potenziale chimico. Si considera il caso di condizioni al bordo periodiche el'evoluzione del sistema �e descritta dal processo (�t)t2N con dinamica di Metropolis (si vedal'Appendice B).Si denotano con �1, 0 e +1 le con�gurazioni di 
� in cui tutti gli spin sono rispettivamenteuguali a �1, 0 e +1. La struttura degli stati fondamentali �e descritta in modo dettagliatonella Sezione 2 dell'Allegato 12 [CO1], qui ci si limita ad osservare che per � = h = 0 le trecon�gurazioni �1, 0 e +1 sono i soli stati fondamentali del sistema; inoltre si ricorda che permezzo della teoria di Pirogov-Sinai �e possibile dimostrare che questa transizione di fase persisteanche a bassa temperatura ([Bl, C, BrS, DM]).Dal punto di vista della metastabilit�a la regione dello spazio dei parametri pi�u interessante�e quella in cui h e � sono piccoli, il volume �e grande, ma �nito, e la temperatura T tende azero; in altri termini siamo interessati alla regione attorno al punto triplo h = � = T = 0.In particolare si considera la regione h > � dove il minimo assoluto dell'hamiltoniana �e datodalla con�gurazione +1. Il problema che ci si pone �e il solito problema della metastabilit�a: ilsistema viene preparato nella con�gurazione metastabile �1 e si vuole descrivere la sua primaescursione verso la con�gurazione +1. L'aspetto pi�u interessante di questo modello �e che oltrealla fase metastabile �1 c'�e anche quella 0, quale sar�a il suo ruolo non �e assolutamente chiaro apriori. In Fig. 4.4 �e data una rappresentazione schematica del panorama delle energie in questaregione.Come nel caso del modello di Ising un ruolo fondamentale nella descrizione dell'uscita dallafase metastabile �e giocato dalla struttura dei minimi relativi dell'hamiltoniana. Nella regionedello spazio dei parametri che abbiamo considerato e limitandoci alle con�gurazioni in cui �eben de�nito il \mare" di spin �1 si ottiene una struttura complicata dei minimi locali. Sidimostra (Sezione 3 dell'Appendice 12) che le interfacce dirette tra uno spin meno ed un pi�usono instabili, quindi sono proibite nei minimi locali. Inoltre si dimostra che il pi�u generaleminimo locale �e costituito da rettangoli di spin 0 non interagenti immersi nel mare di �1, coneventuali famiglie di rettangoli non interagenti di spin +1 al loro interno; tali con�gurazionisono state chiamate plurirettangoli. In Fig. 3.8 dell'Allegato 12 �e rappresentato un possibileesempio di tali con�gurazioni. Si osserva che come casi particolari dei plurirettangoli ci sonoi semplici rettangoli di zero immersi nel mare di meno e le cosiddette cornici, costituite da unrettangolo di pi�u separato dal mare di meno da un bordo di zero di larghezza unitaria.Come la struttura dei minimi locali suggerisce �e lecito chiedersi se la fase stabile vieneraggiunta direttamente attraverso la nucleazione e la crescita di una cornice, oppure se, tramitela crescita di un rettangolo di zero, si tocca il minimo metastabile 0 prime di giungere nelminimo stabile +1.In modo abbastanza sorprendente si trova che entrambi i meccanismi sono possibili ed �epossibile discriminare tra loro controllando il rapporto h=�. Pi�u precisamente: si suddivide lospazio dei parametri in quattro zone�I := f(�;h) : 0 < h < �g�II := f(�;h) : 0 < � < h < 2�g�III := f(�;h) : 0 < 2� < hg�IV := f(�;h) : 0 < �� < hg (4.13)82



Metastabilit�a nei modelli di spin

Figura 4.4. Panorama dell'energia nel modello di Blume-Capel.e in ognuna di queste zone si trova un particolare meccanismo di uscita e si trova una certastima della vita media T�;h dello stato metastabile. In Fig. 4.5 viene riportata la nostra stimaasintotica dei tempi T�;h in funzione di � ad h �ssato.

Figura 4.5. Gra�co della funzione 1� log T�;h in funzione di h a � �ssato.83



Metastabilit�a nei modelli di spinNella regione �I si ha H(0) > H(�1) > H(+1)�e quindi ragionevole aspettarsi e facile provare che nel decadimento �1 ! +1 lo stato 0 nongiochi alcun ruolo; �e su�ciente esibire un meccanismo di transizione che coinvolga una barrieraenergetica minore di H(0)�H(�1). Nelle restanti tre regioni si ha, invece,H(�1) > H(0) > H(+1)quindi non si pu�o dire nulla di ovvio sul ruolo giocato da 0 durante la transizione �1! +1.Nella regione �II si prova che la sella minima locale (con�gurazione protocritica) P1 tra�1 e +1 �e una cornice quadrata di lato interno l� := h2J�(h��)h i + 1 in cui su uno dei lati delquadrato di pi�u sono stati trasformati in zero l� � 1 spin (si veda la Fig. 5.1 dell'Allegato 12).Allora la transizione �1! +1 avviene in modo diretto �e la vita media dello stato metastabile�e data da T�;h � exp(���;h) dove��;h = H(P1)�H(�1) � 8J2h : (4.14)Nella regione �III , invece, la sella protocritica P2 �e un quadrato di zero di lato M� :=h 2Jh��i+1 in cui sono stati trasformati in meno M��1 spin su uno dei suoi quattro lati. Quindiil sistema visiter�a il minimo 0 prima di giungere in +1 e la nucleazione della fase stabile, apartire da 0 avverr�a tramite la formazione di una goccia quadrata P3 di +1 nel mare di zero dilato L� := h 2Jh+�i + 1. Poich�e risulta H(P2) �H(�1) > H(P3) � H(0) si ha che nella regione�III la vita media �e controllata da��;h = H(P2)�H(�1) � 4J2h� � : (4.15)Si osserva che attraversando la linea h = 2� nello spazio dei parametri, ovvero passando dallaregione �II alla regione �III , il meccanismo di uscita e la stima sulla vita media della fase meta-stabile cambiano in modo brusco. Ebbene la linea in questione non ha \nessun signi�cato" dalpunto di vista del comportamente del sistema all'equilibrio, cio�e �e una linea che ha rilevanzasoltanto dinamica, ma non statica. Ci�o non �e sorprendente perch�e nello studio della metasta-bilit�a la regione dello spazio delle fasi che regola il fenomeno �e una regione molto improbabilequando il sistema �e all'equilibrio.In�ne si considera la regione �IV : il meccanismo di uscita �e simile a quello desccritto a pro-posito della regione �III , ma in questo caso la stima sulla vita media �e controllata dall'asintoticasulla transizione 0! +1. Quindi si ha��;h = H(P3)�H(0) � 4J2h+ � : (4.16)
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Metastabilit�a nei modelli di spin
Allegato 11Metastability in the two-dimensional Ising model with free boundary conditions.E.N.M. Cirillo, J.L. Lebowitz, Journ. Stat. Phys. 90, 211-226, 1998

RiassuntoIn questo lavoro viene studiato il comportamento metastabile del modellodi Ising bidimensionale con condizioni al bordo libere nel limite di bassatemperatura. Il sistema viene posto nella con�gurazione in cui tutti gli spinsono negativi e si trova in presenza di un piccolo campo magnetico positivo:si dimostra che l'uscita da questo stato metastabile avviene attraverso laformazione di una goccia critica in uno dei quattro angoli del sistema. Lavita media dello stato metastabile viene calcolata analiticamente nel limiteT ! 0 e h! 0 e via simulazioni Monte Carlo a temperatura e campo ma-gnetico esterno �ssati. Questo sistema modella l'e�etto di domini adiacentiin un sistema magnetico, per esempio un nastro magnetico, quando questoesce dal suo stato metastabile per e�etto di un campo esterno.
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Metastabilit�a nei modelli di spin
Allegato 12Metastability and nucleation for the Blume-Capel model. Di�erent mechanismsof transition.E.N.M. Cirillo, E. Olivieri, Journ. Stat. Phys. 83 , 473-554, 1996

RiassuntoIn questo lavoro vengono studiate la metastabilit�a e la nucleazione nel mo-dello di Blume-capel: un sistema su reticolo bidimensionale con accoppia-mento ferromagnetico tra spin primi vicini tra variabili di spin che assumo-no valori f�1;0; + 1g. Si considera il caso di un volume grande, ma �nito,piccolo campo esterno e potenziale chimico nel limite di temperatura nul-la. Si studia la prima escursione dalla fase metastabile �1 a quella stabile+1. Si calcola il comportamento asintotico del tempo di transizione e sistudia il tubo delle traiettorie durante la transizione. Si mostra, in�ne, cheil meccanismo di transizione cambia improvvisamente quando si attraversala linea h = 2� nello spazio dei parametri del modello.
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Appendice AIl Cluster Variation MethodSi consideri un modello statistico de�nito su un reticolo �nito � � Zd, ad ogni sito i 2 �sia associata una variabile di spin �i che assume valori in un insieme �nito S. Si denota con
 := S� lo spazio delle con�gurazioni, con � 2 
 una con�gurazione del sistema e con H(�) lasua hamiltoniana. Si ipotizza che l'hamiltoniana contenga soltanto interazioni di portata �nita(ipotesi di corto range).Il comportamento del sistema all'equilibrio �e descritto dalla matrice densit�a (misura diGibbs) �G�(�) := e��H(�)Z� ; (A.1)con � := 1T la tempertaura inversa e Z� := Tr�[e��H(�)] (A.2)la funzione di partizione; �e stato introdotto il simboloTrX � X�i2S i2X 8X � � : (A.3)Tutte le funzioni termodinamiche possono essere ricavate a partire dall'energia liberaF� := � 1� logZ� ; (A.4)�e facile veri�care che F� = Tr�[�G�(�)H(�)]� T Tr�[��G�(�) log �G�(�)] ; (A.5)dalla (A.5) si ottiene ovviamente che l'entropia �e data daS = �Tr�[�G�(�) log �G�(�)] : (A.6)La misura di Gibbs pu�o essere de�nita mediante un principio variazionale: si considera lo spazio� costituito da tutte le funzioni �� : � 2 
 ! ��(�) 2 R tali che Tr�[��(�)] = 1 e si de�nisceil funzionale F�(��) := Tr�[��H]� T Tr�[��� log ��] 8�� 2 � ; (A.7)la misura di Gibbs pu�o essere de�nita come quella particolare �G� 2 � che minimizza il funzionale(A.7). Vale banalmente la relazione F(�G�) = F� : (A.8)90



Il Cluster Variation MethodDato un cluster � � � (un cluster �e un qualsiasi sottoinsieme del reticolo �), data �� 2 �si de�nisce la funzione �� := Tr�n��� (A.9)e l'entropia di cluster S� := �Tr�[�� log ��] : (A.10)Si dimostra (si veda, per esempio, [A]) che, postoeS� := X
��(�1)j�j�j
jS
 8� � � ; (A.11)e dato un cluster � � � si ha S� = X��� eS� : (A.12)L'espressione (A.12) �e detta sviluppo in cumulanti dell'entropia di cluster. Sviluppare l'entro-pia in cluster vuol dire scrivere in modo ordinato i contributi all'entropia dei cluster di variedimensioni.Poich�e l'interazione ha portata �nita, deve esistere un cluster ~� che \contiene" tutte leinterazioni (la de�nizione potrebbe essere data in modo pi�u preciso considerando lo sviluppo inpotenziali dell'hamiltoniana); allora si considera la famiglia M costituita da tutti i cluster ditipo ~� e da tutti i loro sotto-cluster. Il funzionale (A.7) pu�o essere scritto nella formaF�(��) = X�2M Tr�[��H�]� T X��� eS� ; (A.13)dove H� �e l'interazione a j�j corpi associata al cluster �.L'ipotesi alla base del CVM �e che per cluster il cui diametro �e maggiore della lunghezzadi correlazione il cumulante eS� �e piccolo; allora nella (A.13) l'ultima somma viene estesa allaclasse M , cio�e si scrive FCVM� (��) = X�2M Tr�[��H�]� T X�2M eS� ; (A.14)e si dimostra [A] FCVM� (��) = X�2M Tr�[��H�]� T X�2M a�S� ; (A.15)dove i coe�cienti a� sono numeri reali tali cheX���; �2M a� = 1 8� 2 M : (A.16)Costruire una certa approssimazione CVM vuol dire considerare un certo cluster massimo~�; ovviamente pi�u �e grande questo cluster tanto migliore �e l'approssimazione. Per minimizzareil funzionale (A.16) si pongono uguali a zero le sue derivate rispetto ai vari termini della matrice�~� e si ottiene un sistema di equazione che viene risolto con il metodo delle iterazioni naturali[Ki1, Ki2].
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Appendice BDinamica di MetropolisPer descrivere la metastabilit�a del modello di Ising �e necessario capire come il punto rappre-sentativo del sistema si muova nello spazio delle con�gurazioni 
�, in altri termini �ssata lacon�gurazione iniziale �0 bisogna capire qual �e la traiettoria che il sistema descrive nello spazio
�.In primo luogo si pu�o osservare che �e sensato richiedere che la dinamica sia stocastica: �ssatala con�gurazione all'istante t, �t = � 2 
�, non �e possibile prevedere in modo deterministicoquale sar�a la con�gurazione all'istante generico t0 > t, tutto ci�o che si pu�o dire �e con qualeprobabilit�a accadr�a �t0 = � 2 
�. Si richiede, inoltre, che la dinamica sia markoviana, cio�e nota�t = �, il comportamento del sistema ad istanti t0 > t pu�o essere previsto indipendentemente daci�o che �e accaduto ad istanti t0 < t. In altri termini se un sistema evolve secondo una dinamicamarkoviana, allora il sistema stesso non ha memoria del \passato", �e su�ciente conoscere il\presente" per prevedere il \futuro". Si richiede, quindi, che la dinamica soddis� alla propriet�adi Markov P (�t+1 = �t+1j�0 = �0;:::;�t = �t) = P (�t+1 = �t+1j�t = �t) (B.1)ove �0;:::;�t+1 sono delle generiche con�gurazioni di 
�. Il processo (�t)t2N soddisfacente (B.1)�e detto catena di Markov. Si richiede, in�ne, che la catena di Markov sia stazionaria, cio�e chea probabilit�a condizionale P (�t+1 = �j�t = �) 8�;� 2 
� sia indipendente dall'istante di tempot. Per de�nire in modo completo la dinamica del sistema bisogna introdurre la funzione ditransizione P (�;�) = P (�1 = �j�0 = �) 8�;� 2 
� (B.2)che deve godere delle propriet�a( P (�;�) � 0 8�;� 2 
�P�2
 P (�;�) = 1 8� 2 
� (B.3)e che fornisce la probabilit�a che il sistema ad un generico istante di tempo salti dallo stato �allo stato �, infatti in virt�u della stazionariet�a della probabilit�a di transizione si pu�o scrivereP (�t+1 = �j�t = �) = P (�;�) 8�;� 2 
�; 8t � 1. Una possibile scelta della funzione ditransizione �e quella di Metropolis: prese due con�gurazioni �;� 2 
� si poneP (�;�) := ( 1j�je��[H(�)�H(�)]+ se 9x 2 � : �x = �0 altrimenti (B.4)dove a+ denota la parte positiva del numero reale a e �x �e la con�gurazione che si ottiene apartire da � cambiando il segno dello spin in x 2 �.92



Dinamica di Metropolis�E facile veri�care che la dinamica di Metropolis �e reversibile rispetto alla misura di Gibbsdi equilibrio, cio�e soddisfa al principio del bilancio dettagliatoP (�;�)��;�;h(�) = P (�;�)��;�;h(�) 8�;� 2 
� : (B.5)Da tale reversibilit�a si deduce, anche, che la misura di Gibbs �e stazionaria per l'evoluzione delsistema.Nel caso del modello di Blume-Capel discusso nella Sezione 4.4, si utilizza ancora una voltala dinamica di Metropolis, ma la sua de�nizione viene leggermente modi�cata, rispetto alla(B.4), per tenere in conto il fatto che una variabile di spin pu�o assumere tre diversi valori. Inquesto caso la funzione di transizione viene scelta nel modo seguente: prese due con�gurazioni�;� 2 
� si pone P (�;�) := ( 12j�je��[H(�)�H(�)]+ se 9x 2 � : �x = �0 altrimenti (B.6)dove, ora, con �x si denota una con�gurazione ottenuta a partire da � modi�cando in unodei due modi possibili lo spin in x 2 �, si sottolinea che data �, la con�gurazione �x non �eunivocamente determinata.
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Appendice CAlcune de�nizioniSi consideri un reticolo �nito � � Z2, uno spazio �nito e discreto S := f1;2;:::;ng � N e lospazio delle con�gurazioni 
� := S�. Si denota con � una con�gurazione di 
�, con �(x) ilvalore dello spin nel sito x 2 � e, considerata la variabile naturale t = 0;1;2;::::, si denota con ��tla catena di Markov che descrive l'evoluzione del sistema con condizione iniziale ��0 = � ove � �euna con�gurazione di 
�. Si suppone, in�ne, che al sistema sia associata un'hamiltonianaH(�)e che la dinamica sia reversibile rispetto alla misura di Gibbs relativa a questa hamiltoniana.Si danno le seguenti de�nizioni:1. data � 2 
� si denota con �x una con�gurazione tale che �x(x) 6= �(x) e �x(y) =�(y) 8y 2 �. Si sottolinea che data �, la con�gurazione �x non �e determinata in modounivoco.2. Due con�gurazioni �;� 2 
� si dicono prime vicine se e solo se 9x 2 � tale che � = �x.3. Un cammino in 
� �e una sequenza di con�gurazioni �0;�1;:::;�n tale che �i�1 e �i sonoprime vicine 8i = 1;:::;n. Un cammino si dice in discesa se e solo se H(�i+1) � H(�i) perogni i = 0;1;:::;n� 1.4. Dato A � 
� e � 2 
� si de�nisce tempo di primo arrivo del processo ��t su A il tempo� �A := infft � 0 : ��t 2 Ag : (C.1)5. Un minimo locale dell'hamiltoniana H(�) �e una con�gurazione � tale che H(�x) >H(�) 8x 2 �. Un minimo locale verr�a anche detto una con�gurazione stabile, perch�eun processo che parte da un minimo locale impiega un tempo esponenzialmente lungo in� per muoversi dal minimo.6. Si indica con M l'insieme di tutti i minimi locali dell'hamiltoniana.7. Dato � 2 M si de�nisce il suo bacino di attrazioneB(�) := f� 2 
� : tutti i cammini in discesa che partono da � terminano in �g (C.2)Si osserva che, essendo h la pi�u piccola variazione di energia tra due qualsiasi con�gura-zioni di 
�, dopo un numero di passi pari aT := max�2
� H(�)�min�2
� H(�)hun cammino in discesa termina necessariamente in un minimo locale.94



Alcune de�nizioni8. Dato G � 
�, G �e connesso se e solo se 8�;� 2 
� 9 un cammino ! � G che parte da �e termina in �; si dir�a che ! connette � con �.9. Dato un insieme connesso G � 
� si de�nisce frontiera di G l'insieme@G := f� 2 
� : � 62 G; 9x 2 �; �x 2 Gg (C.3)10. Dati due rettangoli R1 e R2 sul reticolo duale � + �12 ;12�, si dice che R1 ed R2 sonointeragenti se e solo se si intersecano oppure sono separati da una distanza reticolare. Duerettangoli che hanno soltanto gli angoli a distanza uno sono considerati non interagenti.

95



Bibliogra�a[A] G. An, J. Stat. Phys. 52, 727 (1988).[AC] S.M. Allen, J.W. Cahn, Acta Metall. 27, 1085 (1979).[AL] J.A. Aronovitz, T.C. Lubensky, Phys. Rev. Lett. 60, 2634 (1988).[AH] M. Aizenman, R. Holley, Rapid convergence to equilibrium of stochastic ising modelsin the Dobrushin-Shlosman regime percolation theory and ergodic theory of in�niteparticle systems, eds. H. Kesten, IMS volumes in Math. and Appl., Berlin Spinger1987, pp. 1-11.[ASSS] R.V. Ambartzumian, G.S. Sukiasan, G.K. Savvidy, K.G. Savvidy, Phys. Lett. B 275,99 (1992).[Bat] S.F. Bates, Science 251, 898 (1991).[Bax] R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London,1982).[Bi] K. Binder, Phys. Rev B 8, 3423 (1973).[Bl] M. Blume, Phys. Rev. 141, 517 (1966).[Br] A.J. Bray, Advanc. in Phys., to appear, cond-mat/9501089.[BC] G. Ben Arous, R. Cerf, \Metastability of the three dimensional Ising model on atorus at very low temperatures." Electronic Journal of Probability 1, 1-55 (1996).[BCLS] S. Bigelis, E.N.M. Cirillo, J.L. Lebowitz, E.R. Speer, \Critical droplets in metastablestates of probabilistic cellular automata." In preparation.[BEJM] M. Baig, D. Espriu, D.A. Johnston, R.P.K.C. Malmini, preprint hep-lat/9703008.[BEW] M. Baig, D. Espriu, J. Wheater, Nucl. Phys. B 314, 587 (1989).[BFGG] M. Bowick, P. Di Francesco, O. Golinelli, E. Guitter, \Three-dimensional Folding ofthe Triangular Lattice." Nucl. Phys. B 450, 463 (1995).[BKL] A.B. Bortz, M.H. Kalos, J.L. Lebowitz, Journ. Comp. Phys. 17, 10-18 (1975).[BM] K. Binder, H. M�uller-Krumbhaar, Phys. Rev. B 9, 2328 (1974).[BMB] G.T. Barkema, J.F. Marko, J. de Boer, Europhys. Lett. 26, 653 (1994).96



BIBLIOGRAFIA[BMO] G. Benfatto, E. Marinari, E. Olivieri, \Some numerical results on the block spintransformation for the 2D Ising Model at the critical point." Jour. Stat. Phys. 78,731-757 (1995).[BS] K. Binder, E. Stoll, Phys. Rev. Lett. 31, 47 (1973).[BiS] K. Binder, D. Stau�er, Phys. Rev. Lett. 33, 1006 (1974).[BrS] J. Bricmont, J. Slawny, Journ. Stat. Phys. 54, 89 (1989).[C] H.W. Capel, Physica 32, 96 (1966); 33, 295 (1967); 37, 423 (1967).[CCGM] A. Cappi, P. Colangelo, G. Gonnella, A. Maritan, Nucl. Phys. B 370, 659 (1992).[CG] E.N.M. Cirillo, G. Gonnella, \Renormalization Group results for lattice surface mo-dels." J. Phys. A: Math. Gen. 28, 867-877 (1995).[CGa] M. Cassandro, G. Gallavotti, \The Lavoisier law and the critical point." Il NuovoCimento 25B, 691 (1975).[CGM] P. Colangelo, G. Gonnella, A. Maritan, Phys. Rev. E 47, 411 (1993).[CGJP] E.N.M. Cirillo, G. Gonnella, D.A. Johnston, A. Pelizzola, \The Phase Diagram ofthe Gonihedric 3d Ising Model via CVM." Physics Letters A 226, 59-64 (1997).[CGOV] M. Cassandro, A. Galves, E. Olivieri, M.E. Vares, \Metastable behaviour of stocha-stic dynamics: A pathwise approach." Journ. Stat. Phys. 35, 603-634 (1984).[CGP1] E.N.M. Cirillo, G. Gonnella, A. Pelizzola, \Folding transitions of the triangularlattice with defects." Phys. Rev. E 53, 1479 (1996).[CGP2] E.N.M. Cirillo, G. Gonnella, A. Pelizzola, \Folding transitions of the triangularlattice in a discrete three-dimensional space." Phys. Rev. E 53, 3253 (1996).[CGP3] E.N.M. Cirillo, G. Gonnella, A. Pelizzola, \Critical behaviour of the three-dimensional Ising model with nearest neighbor, next nearest neighbor and plaquetteinteractions." Phys. Rev. E 55, R17 (1997).[CGP4] E.N.M. Cirillo, G. Gonnella, A. Pelizzola, \Critical behaviour of the three-dimensional gonihedric Ising model." Inviato per i Proceedings della conferenza Lat-tice 97, International Symposium on Lattice Field Theory (Edinburgh, Scotland,July 22 - 26, 1997).[CGS1] E.N.M. Cirillo, G. Gonnella, S. Stramaglia, \Anisotropic dynamical scaling in a spinmodel with competing interactions." Phys. Rev. E 56, 5065 (1997).[CGS2] E.N.M. Cirillo, G. Gonnella, S. Stramaglia, \Monte Carlo study of the growth of stri-ped domains." Inviato per i Proceedings della conferenza Morphology and Kineticsof Phase Separating Complex Fluids (24 - 28 Giugno 1997, Messina).[CGT] E.N.M. Cirillo, G. Gonnella, M. Troccoli, \Correlation functions via CVM: an app-lication to microemulsions." In preparazione.97



BIBLIOGRAFIA[CL] E.N.M. Cirillo, J.L. Lebowitz, \Metastability in the two-dimensional Ising modelwith free boundary conditions." In fase di stampa su Journal of Statistical Physics.[CO1] E.N.M. Cirillo, E. Olivieri, \Metastability and nucleation for the Blume-Capel mo-del. Di�erent mechanisms of transition." Journ. Stat. Phys. 83, 473-554 (1996).[CO2] E.N.M. Cirillo, E. Olivieri, \Renormalization-Group at criticality and complete ana-lyticity of constrained models: a numerical study." Journ. Stat. Phys. 86, 1117-1151(1997).[CS] E.N.M. Cirillo, S. Stramaglia, \Polymerization in a Ferromagnetic Spin Model withThreshold." Phys. Rev. E 54, 1096 (1996).[D] R.L. Dobrushin, \The description of a random �eld by means of conditional proba-bilities and conditions of its regularity." Theor. Prob. Appl. 13, 197-224 (1968).[DJ] C. Di Castro, G. Jona Lasinio, Phys. Lett. A 29, 322-323 (1969).[DG] F. David, E. Guitter, Europhys. Lett. 5, 709 (1988).[DGY] B. Derrida, C. Godr�eche, I. Yekutieli, Phys. Rev. A 44, 6241 (1991).[DM] E.I. Dinanburg, A.E. Mazel, Comm. Math. Phys. 125, 27 (1989).[DS1] R.L. Dobrushin, S. Shlosman, \Constructive criterion for the uniqueness of Gibbs�elds." In Stat. Phys. and Dyn. Syst., Birkh�auser 1985, pp. 347-370.[DS2] R.L. Dobrushin, S. Shlosman, \Completely analytical Gibbs �elds." In Stat. Phys.and Dyn. Syst., Birkh�auser 1985, pp. 371-403.[E1] A.C.D. van Enter, Journ. Stat. Phys. 83, (1996).[EFK] A.C.D. van Enter, R. Fern�andez, R. Koteck�y, Journ. Stat. Phys. 79, 969-992 (1995).[EFS] A.C.D. van Enter, R. Fern�andez, A.D. Sokal, Jour. Stat. Phys. 72, 879-1167 (1993).[FG1] P. Di Francesco, E. Guitter, Europhys. Lett. 26, 455 (1994).[FG2] P. Di Francesco, E. Guitter, \Folding transition of the triangular lattice." Phys. Rev.E 50, 4418-4426 (1995).[FGRN] T. Fiig, B.M. Gorman, P.A. Rikvold, M.A. Novotny, Phys. Rev. E 50, 1930 (1994).[FL] A.M. Ferrenberg, D.P. Landau, Phys. Rev. B 44, 5081 (1991).[G] R.B. Gri�ths, Journ. Math. Phys. 8, 478 (1967); R.B. Gri�ths, Journ. Math. Phys.8, 484 (1967).[G2] R.B. Gri�ths, Physica A 136, 59-69 (1981).[Ge] H.-O. Georgii, Gibbs measures and phase transitions (de Gruyter, Berlin, 1988).[Gun] J.D. Gunton et al., in Phase Transitions and Critical Phenomena, vol. 8, eds. C.Domb, J.L.Lebowitz (Academic Press, New York 1983).98



BIBLIOGRAFIA[GLM] G. Gonnella, S. Lise, A. Maritan, Europhys. Lett. 32, 735 (1995).[GP] R.B. Gri�ths, P.A. Pearce, Phys. Rev. Lett. 41, 917-920 (1978); Journ. Stat. Phys20, 499-545 (1979).[GRN] C.C.A. G�unther, P.A. Rikvold, M.A. Novotny, Phys. Rev. Lett. 71, 3898 (1993);Physica A 212, 194-229 (1994).[GS] G. Gompper, M. Schick, \Self-assembling Amphiphilic Systems", in Phase Transi-tions and Critical Phenomena, eds. C. Domb, J.L. Lebowitz (Academic, London,1994).[H] R.K. Heilmann et al., in Computer Simulation Studies in Condensed Matter PhysicsIV, eds. D.P. Landau, K.K. Mon, H.B. Sch�uttler, Springer Proceedings in Physicsvol. 72 (Springer, Berlin 1993).[HB] K. Humayun, A. Bray, J. Phys. A: Math. Gen. 24, 1915 (1991).[HK] K. Haller, T. Kennedy, \Absence of renormalization group pathologies near thecritical temperature{two examples", University of Arizona Preprint, Austin Archives95-505, (1995).[HKW] A. Hintermann, H. Kunz, F.Y. Wu, Journ. Stat. Phys. 19, 623 (1978).[HW] R. Harnish, J. Wheater, Nucl. Phys. B 350, 861 (1991).[I] S.N. Isakov, \Nonanalytic feature of the �rst order phase transition in the Isingmodel." Comm. Math. Phys. 95, 427-443 (1984).[Is] R.B. Israel, \Banach algebras and Kadano� transformations", in Random Fields(Esztergom, 1979), vol. II, eds. J. Fritz, J.L. Lebowitz, D. Szas (North-Holland,Amsterdam, 1981).[JM] D.A. Johnston, R.P.K.C. Malmini, \Gonihedric 3d Ising Actions", Phys. Lett. B378, 87 (1996).[K] L.P. Kadano�, Phys. Rev. Lett. 34, 1005 (1975).[Ka] M. Karowski, J. Phys. A: Math. Gen. 19, 3375 (1986).[Kaw] K. Kawasaki, in Phase Transitions and Critical Phenomena, vol. 2, eds. C. Domb,M. Green (Academic Press, London 1970).[Ke1] T. Kennedy, Journ. Stat. Phys. 59, 195 (1990).[Ke2] T. Kennedy, \Some Rigorous Results on Majority Rule Renormalization GroupTransformations near the Critical Point." Journ. Stat. Phys. 72, 15 (1993).[Ki1] R. Kikuchi, Phys. Rev 81, 988 (1951).[Ki2] R. Kikuchi, J. Chem. Phys. 60 (1974) 1071.[KJ] Y. Kantor, M.V. Jari�c, Europhys. Lett. 11, 157 (1990).[KKN] Y. Kantor, M. Kardar, D.R. Nelson, Phys. Rev. A 35, 3056-3071 (1987).99



BIBLIOGRAFIA[KN] Y. Kantor, D.R. Nelson, Phys. Rev. Lett. 58, 2774 (1987); Phys. Rev. A 36, 4020(1987).[KO1] R. Kotecky, E. Olivieri, \Droplet dynamics for asymmetric Ising model." Journ.Stat. Phys. 70, 1121-1148 (1993).[KO2] R. Kotecky, E. Olivieri, \Shapes of growing droplets - a model of escape from ametastable phase." Journ. Stat. Phys. 75, 409-507 (1994).[Le] J.M.J. van Leeuwen, Phys. Rev. Lett. 34, 1056 (1975).[Lif] I.M. Lifshitz, Zh. Eskp. Teor. Fiz. 42, 1354 (1962).[Lig] T.M. Ligget, \Interacting Particle System", (Springer-Verlag, New York).[Lip] R. Lipowsky, Nature 349, 475-481 (1991).[LNR] J.Lee, M.A. Novotny, P.A. Rikvold, Phys. Rev. E 52, 356 (1995).[LR] O. Lanford, D. Ruelle, \Observable at in�nity and states with short range correla-tions in statistical mechanics." Commun. Math. Phys. 13, 194-215 (1969).[LS] I.M. Lifshitz, V.V. Slyozov, J. Chem. Solids 19, 35 (1961).[M] T. Morita, J. Stat. Phys. 59, 819 (1990).[MB] J.F. Marko, J.T. Barkema, Phys. Rev. E 52, 2522 (1995).[MLK] J. Marro, J.L. Lebowitz, M.H. Kalos, Phys. Rev. Lett. 43, 282 (1979).[MO1] F. Martinelli, E. Olivieri, Proceedings of 1992 Les Houches Conference on Cellularautomata and Cooperative Systems, eds. N. Boccara, E. Goles, S. Martinez e P.Picco (kluwer 1993).[MO2] F. Martinelli, E. Olivieri, Comm. Math. Phys. 161, 447-486 (1994).[MO3] F. Martinelli, E. Olivieri, Comm. Math. Phys. 161, 487-514 (1994).[MO4] F. Martinelli, E. Olivieri, Jour. Stat. Phys. 72, 1169-1177 (1994).[MO5] F. Martinelli, E. Olivieri, Jour. Stat. Phys. 79, 25-42 (1995).[MOS] F. Martinelli, E. Olivieri, R. Schonmann, Comm. Math. Phys. 165, 33-47 (1994).[No1] M.A. Novotny, Phys. Rev. Lett. 74, 1 (1995).[No2] M.A. Novotny, in Computer Simulation Studies in Condensed-Matter Physics IX,eds. D.P. Landau, K.K. Mon, H.B. Sch�uttler (Springer, Berlin, 1997).[NL1] Th. Niemeijer, M.J. van Leeuwen, \Renormalization theory for Ising-like spin sy-stems." In Phase Transitions and Critical Phenomena, vol. 6, eds. C. Domb, M.S.Green (Academic Press, London 1976).[NL2] Th. Niemeijer, J.M.J. van Leeuwen, Physica 71, 17 (1974); Th. Niemeijer, J.M.J.van Leeuwen, Phys. Rev. Lett. 31, 1411 (1973).100



BIBLIOGRAFIA[NO] F.R. Nardi, E. Olivieri, \Low temperature Stochastic Dynamics for an Ising Modelwith Alternating Field." Markov Proc. and Rel. Fields 2, 117-166 (1996).[NP] D.R. Nelson, L. Peliti, J. Phys. (France) 48, 1085 (1987).[NPW] D.R. Nelson, T. Piran, S. Weinberg, \Statistical Mechanics of Membranes and Sur-faces." (World Scienti�c, Singapore, 1989).[NS1] E.J. Neves, R.H. Schonmann, \Critical Droplets and Metastability for a GlauberDynamics at Very Low Temperatures." Comm. Math. Phys. 137, 209 (1991).[NS2] E.J. Neves, R.H. Schonmann, \Behaviour of droplets for a class of Glauber dynamicsat very low temperatures." Prob. Theor. Rel. Fields 91, 331 (1992).[OJK] T. Ohta, D. Jasnow, K. Kawasaki, Phys. Rev. Lett. 49, 1223 (1982).[OS1] E. Olivieri, E. Scoppola, \Markov chains with exponentially small transition proba-bilities: First exit problem from a general domain - I. The reversible case." Journ.Stat. Phys. 79, 613-647 (1995).[OS2] E. Olivieri, E. Scoppola, \Markov chains with exponentially small transition proba-bilities: First exit problem from a general domain - II. The general case". Journ.Stat. Phys. 84, 987-1041 (1996).[Pe1] A. Pelizzola, Physica A 211, 107 (1994).[Pe2] A. Pelizzola, Phys. Rev. E 49, R2503 (1994).[Po] G. Porod, in Small Angle X-Ray Scattering, eds. O. Glater, O. Kratsky (Academic,New York, 1982).[PK] M. Paczuski, M. Kardar, Phys. Rev. A 39, 6086 (1989).[PKN] M. Paczuski, M. Kardar, D.R. Nelson, Phys. Rev. Lett. 60, 2638 (1988).[PL] O. Penrose, J.L. Lebowitz, \Molecular theory of metastability: An update." Ap-pendix to the reprinted edition of the article \Towards a rigorous molecular theoryof metastability" by the same authors. In Fluctuation Phenomena (second edition),eds. E.W. Montroll, J.L. Lebowitz (North-Holland Physics Publishing, Amsterdam1987).[PS1] V. Privman, L.S. Schulman, J. Phys. A 15, L321 (1982).[PS2] V. Privman, L.S. Schulman, Journ. Stat. Phys. 31, 205 (1982).[PW] R. Pietig, F.J. Wegner, \Phase Transition in Lattice Surface System with GonihedricAction", Nucl. Phys. B 466, 513 (1996).[Ru] A.D. Rutenberg, Phys. Rev. E 54, R2181 (1996).[RC] M. Rao, A. Chakrabarti, Phys. Rev. E 52, R13 (1995).[RG] P.A. Rikvold, B.M. Gorman, in Annual Reviews of Computational Physics I, eds. D.Stau�er (World Scienti�c, Singapore, 1994).101



BIBLIOGRAFIA[RK] R. Renken, J. Kogut, Nucl. Phys. B 342, 753 (1990).[RKLM] M. Rao, M.H. Kalos, J.L. Lebowitz, J. Marro, Phys. Rev. B 13, 4328 (1976).[RKLRN] H.L. Richards, M. Kolesik, P.A. Lindg�ard, P.A. Rikvold, M.A. Novotny, \E�ects ofboundary conditions on magnetization switching in kinetic Ising moldels of nanoscaleferromagnets." Phys. Rev. B 55, 11521 (1997).[RSNR] H.L. Richards, S.W. Sides, M.A. Novotny, P.A. Rikvold, Journ. Magnetism Magn.Materials 150, 37-50 (1995).[RTMS] P.A. Rikvold, H. Tomita, S. Miyashita, S.W. Sides, Phys. Rev. E 49, 5080 (1994).[Sc1] R.H. Schonmann, \The pattern of escape from metastability of a stochastic Isingmodel." Comm. Math. Phys. 147, 231-240 (1992).[Sc2] R.H. Schonmann, \Slow droplet-driven relaxation of stochastic Ising models in thevicinity of the phase coexistence region." Comm. Math. Phys. 161, 1-49 (1994).[Sc3] R.H. Schonmann, \Uniqueness and half-space non-uniqueness of Gibbs states inCzech models." Teor. Math. Phys. 66, 284-293 (1986).[Se] W. Selke, in Phase Transitions and Critical Phenomena, vol. 15, eds. C. Domb, J.L.Lebowitz (Academic Press, New York 1992).[St] J. Stephenson, J. Math. Phys. 11, 420 (1970).[SB] A. Sadiq, K. Binder, Journ. Stat. Phys. 35, 517 (1984).[SG] P.A. Serena, N. Garcia, in Quantum Tunneling of Magnetization - QTM'94, eds. L.Gunther, B. Barbara (Kluwer, Dordrecht, 1995).[SHS] J.D. Shore, M. Holzer, J.P.Sethna, Phys. Rev. B 46, 11379 (1992).[SS] S. Shlosman, R.H. Schonmann, Preprint UCLA (1994).[SSS] G.K. Savvidy, K.G. Savvidy, P.G. Savvidy, Phys. Lett. A 221, 233 (1996).[SSW] G.K. Savvidy, K.G. Savvidy, F.J. Wegner, Nucl. Phys. B 443, 565 (1995).[SW] G.K. Savvidy, F.J. Wegner, Nucl. Phys. B 413, 605 (1994).[SZ] D.W. Stroock, B. Zegarlinski, Comm. Math. Phys. 149, 175-194 (1992).[TM1] H. Tomita, S. Miyashita, Phys. Rev. B 46, 8886 (1992).[TM2] H. Tomita, S. Miyashita, \Statistical properties of the relaxation processes of me-tastable states in the kinetics Ising model (II) - Free boundary conditions." KyotoUniversity, Preprint.[W] B. Widom, J. Chem. Phys. 90, 2437 (1989).[Wa] C. Wagner, Z. Elektrochem. 65, 581 (1961).[Wi] K.G. Wilson, Phys. Rev. D 2, 1438-1472 (1970).102



BIBLIOGRAFIA[WS] J. Wheater, P. Stephenson, Phys. Lett. B 302, 447 (1993).[Y] J. Yeomans, in Solid State Physics, vol. 41 (Academic Press, Orlando, 1988).

103


