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Introduzione

Lo studio degli aspetti sia statici che dinamici delle transizioni di fasi e uno degli argomenti
di interesse della fisica contemporanea. Il comportamento di un sistema statistico al punto
critico e intrinsecamente di difficile descrizione: il carattere cooperativo del fenomeno, 'effettiva
interazione tra tutti i gradi di liberta del sistema, rende il problema molto complicato.

In Meccanica Statistica sono state sviluppate numerose tecniche per lo studio delle proprieta
dei sistemi critici: il Gruppo di Rinormalizzazione ha permesso una comprensione molto pro-
fonda di cio che avviene al punto critico ed e stato un utile strumento per lo studio dettagliato
di alcuni sistemi particolari. D’altro canto approcci piu naif come la Teoria di Campo Medio o
il Metodo Variazionale a Cluster (CVM), pur fornendo delle risposte piu superficiali ed essendo
basati su approssimazioni incontrollate, permettono di studiare il diagramma di fase di modelli
notevolmente complicati ed hanno il pregio di permettere un controllo analitico del problema
per mezzo di un insieme di equazioni in numero abbastanza ridotto. Cio costituisce un grande
vantaggio rispetto ad un’analisi puramente numerica, basata su simulazioni Monte Carlo, in cui
i margini di miglioramento delle proprie misure sono legati soltanto alla possibilita di migliorare
la potenza della macchina su cui si effettuano gli esperimenti numerici.

Il1 Monte Carlo ¢, a sua volta, divenuto una delle tecniche piu usate in Meccanica Statistica
(e non solo) grazie all’aumento della capacita di calcolo dei calcolatori nell’ultimo decennio. La
sua versatilita e relativa facilita di applicazione lo rendono uno strumento adatto a qualsiasi
problema, sia per ’analisi delle proprieta di equilibrio che per lo studio del comportamento
dinamico di un modello. Il suo limite e che le transizioni di fase si osservano solo nel limite
termodinamico, cioe quando il volume tende ad infinito, ed anche i calcolatori piu potenti hanno
grossi problemi quando il numero di gradi di liberta del sistema diventa dell’ordine di 10 —107.

Durante il dottorato di ricerca ho applicato alcuni dei metodi citati in precedenza a diversi
problemi legati allo studio delle transizioni di fase in Meccanica Statistica. Il carattere eteroge-
neo della mia esperienza di dottorato si riflette sulla mia attivita di ricerca che e stata condotta
su tematiche diverse e con linguaggi differenti, pur essendo evidentemente incentrata sull’analisi
delle trasizioni di fase nei modelli di spin. I linguaggi differenti, ma complementari, sono quelli
della Fisica Matematica e della Fisica Teorica, il primo teso ad ottenere risultati rigorosi che
permettano di fondare la Meccanica Statistica su solide basi matematiche; il secondo teso allo
studio di modelli che descrivono le piu svariate situazioni fisiche, ma che per la loro complessita
intrinseca permettono solo 1’uso di tecniche approssimate. In questo lavoro ho raccolto alcuni
di questi lavori che mettono in luce i pregi, ma anche i limiti delle varie tecniche.

In particolare nel Capitolo 1 il Gruppo di Rinormalizzazione, pitt che un metodo per lo
studio di un modello, e 'oggetto dello studio. Fin dalla meta degli anni settanta, si veda per
esempio [CGal, la comunita scientifica si & posta il problema della corretta definizione delle
trasformazioni del gruppo di rinormalizzazione e in [G2, GP, Is| fu osservato per la prima
volta che le trasformazioni del gruppo possono esibire delle “peculiarita”, che a partire dalla



Introduzione

pubblicazione di [EFS] sono note come “patologie” del gruppo di rinormalizzazione. In seguito il
dibattito sul problema ha condotto ad una serie di lavori, per esempio [E1, EFK], in cui vengono
esibiti ulteriori esempi di patologie del gruppo di rinormalizzazione cui fanno da controparte
lavori in cui vengono dimostrati risultati positivi di due tipi: da un lato si mostra come in
alcuni casi in cui si osserva un comportamento patologico questo possa essere opportunamente
“curato” [MO4, MO5], dall’altro si cerca di dimostrare che nei casi di rilevanza fisica queste
patologie non esistono [HK, BMO, CO2, Ke2]. Nel Capitolo 1 dopo una breve introduzione
alla Teoria di Dobrushin per gli stati di volume infinito e alle idee fondamentali del Gruppo
di Rinormalizzazione viene discusso il problema delle patologie e viene mostrato come nel
caso del modello di Ising al punto critico il gruppo di rinormalizzazione non presenti alcun
comportamento patologico [CO2].

Nel Capitolo 2 viene mostrato come il CVM permetta di ottenere notevoli informazioni
sul diagramma di fase di alcuni modelli di superfici su reticolo, per i quali, a causa della
loro complessita, esistono pochi risultati esatti. I modelli di superfici su reticolo sono stati
sviluppati con Iintento di descrivere le proprieta delle membrane [Lip, NPW]. In biologia si
distingue tra due tipi di membrane: le membrane fluide, costituite da un doppio strato di lipidi
in cui si incastrano molecole di proteine e quelle rigide caratterizzate da una rete di proteine.
Nel Capitolo 2 si studiano alcuni modelli di spin su reticolo che sono stati introdotti per la
descrizione del comportamento sia delle membrane fluide che di quelle polimerizzate.

In particolare viene indagato il problema della transizione di folding di una superficie trian-
golata immersa in uno spazio bidimensionale e tridimensionale discreto: si utilizza il CVM per
studiare il diagramma di fase di modelli di spin introdotti in [FG2, BFGG] per la descrizione
di questo fenomeno e per stabilire I’ordine della transizione; I’aspetto interessante e che mentre
modelli continui come quello introdotto in [KN] esibiscono una transizione critica, i modelli su
reticolo suggeriscono che la transizione sia discontinua.

Per quanto riguarda i modelli di membrane fluide si mostra come il CVM possa essere
utilizzato per descrivere in modo dettagliato il diagramma di fase della versione di Ising del
modello ad otto vertici. In realta si tratta di un modello dalle vaste applicazioni fisiche, che
spaziano dalla meccanica statistica delle superfici [CCGM] alla teoria delle stringhe [SW]. Come
modello di superfici il modello ad otto vertici presenta un diagramma di fase estremamente ricco
che permette di spiegare molte delle fasi che si osservano in una miscela ternaria, per esempio
una miscela di acqua, olio e surfatante.

Nel Capitolo 3 viene affrontato, mediante simulazioni Monte Carlo, lo studio della decompo-
sizione spinodale in una fase superantiferromagnetica, cioe in una fase di bassa temperatura con
periodicita uno, ovvero costituita da una successione di strisce di spin uno e meno uno larghe un
passo reticolare. Quando un sistema viene raffreddato da una fase disordinata ad una ordinata,
il processo di riordinamento non avviene istantaneamente, bensi tramite la crescita di domini
ordinati delle due (o piu) fasi in competizione. Si pensi, per esempio, al caso del modello di
Ising ferromagnetico: se ad un certo istante il sistema viene portato dalla fase paramagnetica
a quella ferromagnetica, il sistema deve riordinarsi tramite la crescita di domini di spin piu e
di spin meno a partire da una configurazione completamente disordinata.

Un problema analogo e quello della decomposizione spinodale nelle leghe binarie, problema
studiato per molte decadi in metallurgia, dove gli stadi finali di crescita sono noti come “Ostwald
ripening”. La maniera piu semplice di studiare questo problema e quella di considerare il
modello di Ising interpretando spin piu e meno come atomi di tipo A e B [MLK, RKLM]
e considerando, pero, una dinamica che conservi la magnetizzazione in modo da impedire la
trasformazione di atomi di tipo A in atomi di tipo B.

Uno degli aspetti piu interessanti di questo problema e che a tempi lunghi, cioe dopo la
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prima fase in cui si passa da una configurazione completamente disordinata ad una struttura ben
definita di domini, la crescita delle regioni ordinate e caratterizzata da una sorta di invarianza
di scala [Bat]: guardando i domini a tempi lunghi essi sembrano “statisticamente” simili a
quelli osservati a tempi precedenti e la loro dimensione tipica L(t) cresce con legge di potenza
L(t) ~ t7. L’esponente di crescita 7 risulta dipendere dalla dinamica del modello: nel caso di
modelli con parametro d’ordine conservato (dinamiche di Kawasaki) v = 3 [LS, RKLM, MB],
mentre per modelli con parametro d’ordine non conservato (dinamiche di Glauber) v =
[Lif, AC, HB].

Il caso del raffreddamento in una fase a strisce permette di porsi delle domande interessanti
circa le proprieta di anisotropia del fenomeno di crescita. Nel Capitolo 3 si vedra come per mezzo
di simulazioni Monte Carlo sia possibile affrontare questo problema, misurare gli esponenti di
crescita ed osservare un comportamento anisotropo nel senso che le correlazioni misurate lungo
la direzione parallela ai domini risultano diverse da quelle misurate nella direzione trasversa.

Infine il Capitolo 4 e dedicato allo studio del comportamento metastabile di alcuni modelli
di spin; questo studio viene condotto sia mediante simulazioni numeriche sia mediante la teoria
delle grandi deviazioni che permette di ottenere dei risultati rigorosi nel limite di bassa tem-
peratura. Lo schema che si segue per la definizione e lo studio degli stati metastabili ¢ quello
proposto in [CGOV], noto come pathwise approach, che si basa sulla convinzione che il fenome-
no della metastabilita sia un fenomeno genuinamente dinamico, non interpretabile mediante la
meccanica statistica degli stati di equilibrio [I, LR].

In particolare dopo una descrizione generale del tipo di risultati che possono essere ottenuti
con il pathwise approach nel caso del modello di Ising bidimensionale, vengono discussi alcune
situazioni fisicamente interessanti che ho affrontato durante il dottorato. In primo luogo si
mostra come la scelta delle condizioni al bordo possa influenzare la vita media dello stato
metastabile ed il meccanismo di uscita [CL], poi si studia il caso in cui sono presenti due
stati metastabili in competizione. Questa situazione viene realizzata considerando il modello
di Blume-Capel [CO2]| e si mostra come modificando i parametri del modello venga modificata
la traiettoria tipica che il sistema segue durante I'uscita dalla fase metastabile.

Il lavoro e organizzato nel modo seguente: ogni capitolo ha una sua introduzione al problema
e nelle varie sezioni vengono esposti i risultati ottenuti sull’argomento con riferimento a lavori
apparsi su riviste scientifiche che vengono allegati alla fine del capitolo stesso.

1
2
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Capitolo 1

Patologie del Gruppo di
Rinormalizzazione

1.1 Introduzione

L’introduzione del gruppo di rinormalizzazione per lo studio dei fenomeni critici e per la carat-
terizzazione delle proprieta del punto critico risale ad un lavoro di Di Castro e Jona-Lasinio del
1969 [DJ]; ma la prima vera applicazione ad un modello concreto & apparsa nel lavoro di Wilson
[Wi] del 1970. Dopo questi lavori pioneristici il gruppo di rinormalizzazione ¢ stato uno degli
strumenti fondamentali per lo studio delle proprieta critiche di numerosi modelli di Meccanica
Statistica [NL1] e per la comprensione profonda del carattere universale dei fenomeni critici.

L’idea alla base della teoria del gruppo di rinormalizzazione ¢ che se un sistema al pun-
to critico viene guardato su una scala piu grande di quella di partenza, integrando a livello
microscopico alcuni gradi di liberta, le proprieta fisiche del sistema restano invariate.

Questa operazione viene effettuata trasformando il sistema di partenza (sistema oggetto)
in uno nuovo sistema (sistema immagine) nel modo seguente: si considera un sistema definito
su un reticolo quadrato finito A C Z2, ad ogni vertice del reticolo i & associata una variabile
o; che assume valori in uno spazio finito e discreto S, per esempio S := {—1, + 1}, ad ogni
configurazione o € 2, := S¥ viene associata I'energia H,(c) e le proprieta di equilibrio del
sistema a temperatura 1/ sono descritte dalla misura di Gibbs j45(0).

Si considera, poi, un nuovo reticolo A’ di passo piu grande di A e ai suoi vertici vengono
definite delle nuove variabili, dette variabili rinormalizzate o variabili immagine o} Vi € A',
che assumono valori in uno spazio S’. Infine si fornisce una regola per costruire la misura di
equilibrio del sistema immagine a partire da quella del sistema oggetto, ovvero si pone

1y (o) ==Y paglo)T(oc —0o') Vo' e ) = S (1.1)

oEN)

dove T(0c — o¢') & un nucleo di probabilita che contine la definizione della trasformazione di
rinormalizzazione. Solitamente il nucleo T'(c — ¢') viene definito in modo che le variabili o}
corrispondano all’integrazione delle vecchie variabili su una piccola scala: per esempio le nuove
variabili possono essere la media delle vecchie variabili su certi blocchi in cui & stato suddiviso
il reticolo A (block averaging transformation). Al sistema immagine puo essere associata anche
una nuova hamiltoniana ponendo

1

H'. (o) : 5

log 1ty 2(0") + cost 1.2
EHap
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da cui e possibile estrarre le interazioni fra le variabili immagine. In altri termini e stata definita
una trasformazione tra il sistema oggetto (A,024,14,5) e quello immagina (A',£2), 'y 5) .

Lo schema descritto in precedenza crolla se si considera il caso di volume infinito: in questo
caso, infatti, la nozione di hamiltoniana ha solo senso formale e la definizione di stato di
equilibrio va data seguendo la Teoria di Dobrushin degli stati di volume infinito (si veda la
Sezione 1.2). Una trasformazione di rinormalizzazione, allora, va vista necessariamente come
una trasformazione tra misure piuttosto che tra hamiltoniane. Ma una volta costruita la misura
{1ty g © spontaneo chiedersi se questa ha significato fisico, cioe¢ se ¢ gibbsiana nel senso che ¢
derivabile da un opportuno potenziale che descriva l'interazione tra le variabiali immagine (per
la definizione precisa di gibbsianita di una misura si rimanda alla Sezione 1.2).

Questo problema fu posto gia nel 1975 da M. Cassandro e G. Gallavotti in [CGa| nel
caso del Modello di Ising al punto critico; in seguito, in [G2, GP, Is] fu osservato che in
alcuni casi le trasformazioni di rinormalizzazione esibiscono delle “peculiarita”, nel senso che la
misura immagine non e gibbsiana. Questi primi esempi furono chiariti da A.C.D. van Enter, R.
Fernandez e A.D. Sokal in [EFS], in cui furono esibiti altri esempi di “patologie” del gruppo di
rinormalizzazione. In seguito questo problema ¢ stato indagato a fondo e in numerosi altri lavori,
tra cui [E1, EFK], sono stati messi in risalto altre situazioni in cui il gruppo di rinormalizzazione
esibisce un comportamento patologico nel senso descritto in precedenza.

Per i dettagli sui metodi utilizzati per dimostrare I'esistenza delle patologie si rimanda alla
Sezione 1.4, qui ci si limita ad osservare che 'idea chiave sta nel mostrare che alla temperatura
1/ a cui si sta studiando il modello oggetto, almeno uno dei modelli intermedi esibisce una
transizione di fase, ovvero e sotto il suo punto critico; dove per modello intermedio si intende
un modello nelle variabili oggetto o;, definito sul reticolo A, ma con misura di equilibrio data

da
pa5(0)T (0 — o)

Ynean Baps(mT(n — o)

cioe fissata una configurazione rinormalizzata o', una configurazione o viene pesata tenendo
presente quanto essa ¢ “compatibile” con o’.

Parallelamente ai risultati sulle patologie del gruppo di rinormalizzazione e stato profuso un
notevole sforzo per tentare di dimostrare risultati positivi di due tipi: possibilita di “curare” le
patologie del gruppo di rinormalizzazione, quando queste si presentano, tentativo di dimostrare
che nei casi di interesse fisico, per esempio block averaging transformation applicata al modello
di Ising al punto critico, le trasformazioni sono ben definite, cioe la misura rinormalizzata e
gibbsiana. In [MO4] F. Martinelli ed E. Olivieri hanno dimostrato, per mezzo di metodi basati
sulla cluster expansion, che la patologia esibita dalla trasformazione di decimazione per alcuni
valori dei parametri del modello di Ising puo essere eliminata quando si considera la stessa
trasformazione definita su un passo piu grande; in altri termini anche se dopo il primo passo di
rinormalizzazione si ottiene una misura non gibbsiana, iterando per un numero sufficientemente
elevato di volte la trasformazione si ripristina la gibbsianita della misura. Invece in [MO5] &
stato visto come la patologia esibita dalla block averaging transformation possa essere eliminata
premettendo un passo di decimazione.

Per quanto riguarda la seconda classe di risultati positivi & stato dimostrato in [HK] un
teorema che assicura la gibbsianita della misura rinormalizzata se, fissata la temperatura inversa
[ a cui si studia la trasformazione, “tutti” i possibili modelli intermedi sono sopra il loro punto
critico, cioe sono in assenza di transizione di fase. Si osserva che mentre per dimostare I’esistenza,
della patologia e sufficiente mostrare che almeno un modello intermedio e sotto il suo punto
critico, per dimostrare la buona definizione della trasformazione e necessario controllare che tutti
i modelli intermedi siano in regime di unicita di fase. In [HK] il teorema descritto in precedenza

pap,0(0) = (1.3)
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¢ stato usato per dimostrare la buona definizione della decimazione e della trasformazione di
Kadanof nel caso del modello di Ising ad alta temperatura.

Il caso del modello di Ising al punto critico ovviamente ¢ di gran lunga piu interessante
e complicato: in [Ke2] & stato mostrato, usando risultati di [Kel], che al punto critico del
modello di Ising bidimensionale alcuni modelli intermedi sono sopra il loro punto critico quando
si considera la trasformazione nota come majority rule. Ma per quanto osservato in precedenza
cio non permette di concludere nulla sulla buona definizione della trasformazione, perche e
necessario controllare tutti i modelli intermedi.

Questo & esattamente il problema che ho affrontato in [CO2] in collaborazione con E. Olivieri,
ma la strategia usata si differisce da quella di [Ke2]: per dimostrare che tutti i modelli intermedi
sono sopra il loro punto critico alla temperatura critica di Ising, abbiamo mostrato che tutti
questi modelli soddisfano ad una condizione di taglia finita [DS1, DS2] che assicura il rapido
decadimento delle correlazioni, cioé assicura che le ipotesi del teorema di [HK] siano soddisfatte.
La verifica delle condizioni di taglia finita & stata condotta tramite simulazioni Monte Carlo
effettuate con una nuova dinamica particolarmente adatta al nostro problema, che costituisce
un notevole miglioramento rispetto alla strategia seguita in [BMO] dove una domanda analoga
e stata posta nel caso di un singolo modello intermedio relativo alla trasformazione di block
averaging.

In questo capitolo vengono discussi alcuni dei risultati illustrati in precedenza; il capitolo
si articola nel modo seguente: la Sezione 1.2 & dedicata ad una rapida carrellata sulla teoria
degli stati di volume infinito, in particolare viene mostrato come sia possibile definire questi
stati nel caso del modello di Ising; nella Sezione 1.3 si illustrano le idee fisiche alla base del
gruppo di rinormalizzazione con riferimento al caso del modello di Ising bidimensionale. La
Sezione 1.4 presenta alcuni esempi di patologie, mentre nell’ultima sezione vengono illustrati i
risultati ottenuti nel caso del modello di Ising al punto critico in [CO2]. In particolare vengono
discussi prima gli aspetti teorici del calcolo, mettendo evidenza come i nostri risultati siano
possibili solo grazie alla profonda conoscenza degli aspetti sia statici [D, DS1, DS2| che dinamici
[MOS, MO1, MO2, MO3, AH, SZ] degli stati di Gibbs, poi quelli numerici.

1.2 Modello di Ising in volume infinito

In questa sezione viene illustrata la Teoria di Dobrushin per gli stati di volume infinito con
particolare attenzione al caso del Modello di Ising.

Si consideri il reticolo £ := Z2 e I'insieme S costituito da tutti i suoi sottoinsiemi finiti; ad
ogni sito € L viene associata la variabile di spin o, € {—1, + 1}, si definisce configurazione
del sistema la collezione o := (0y)zer € lo spazio delle configurazioni 2 := {—1, + 1}*. Dato
un sottoinsieme A C L si definiscono in modo analogo gli oggetti o4 e {24; infine si osserva che
nel seguito, data una configurazione o € {2 ed un insieme A C L, con il simbolo o, si indichera
anche la restrizione di o all’insieme A.

Lo spazio {2 € uno spazio topologico rispetto alla topologia prodotto delle topologie discrete
sui singoli spazi finiti {—1, + 1} di cui esso ¢ il prodotto cartesiano infinito su £. La topologia
discreta su {—1,+1} ¢ quella banale in cui tutti i sottoinsiemi di {—1,+ 1} sono aperti, mentre
la base di aperti della topologia su (2 e costituita dagli insiemi cilindrici

E{:={ocecQ: o4 A} (1.4)

dove A ¢ un sottoinsieme finito di £ e A C (24. Si osserva che A puo ridursi ad una sola
configurazione o, di 2,4, in questo caso il cilindro ¢ costituito da tutte le configurazioni di {2
coincidenti con o, in A ed arbitrarie all’esterno.

7
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Si considera, inoltre, la g-algebra F dei borelliani di {2 rispetto alla topologia dei cilindri,
ovvero JF e la piu piccola o-algebra di {2 contenente tutti i cilindri. In modo analogo si definisce
la o-algebra F, di (2,.

Considerati i due numeri reali h e .J, rispettivamente il campo magnetico esterno e I’interazione
tra spin primi vicini, si introduce il potenziale

—ho, se X = {x}
Px(0):=¢ —Jozo, seX =<xy > (1.5)
0 altrimenti

dove con il simbolo < xy > si indica una coppia di siti primi vicini.
Considerato un sottoinsieme finito A € S si definisce I’hamiltoniana di Ising di volume finito

con condizioni al bordo libere '
HiP (o) = > ®x(0) (1.6)
XcA

¢ chiaro che la somma (1.6) ha contributo non nullo soltanto dai termini relativi alle coppie di
primi vicini e ai singoli siti. E possibile definire 'hamiltoniana considerando anche I’interazione
del sistema con I’esterno del volume finito A, in questo caso si deve fissare una configurazione
T4e nel complementare di A e si definisce

H(0) := Hﬂbere(o) + Wape(oa X Tae) (1.7)

dove con il simbolo o4 X 74 si denota la configurazione coincidente con o, in A e con 74 in A€
e dove ¢ stata introdotta 'interazione

WA,AC(UA XTAc) = Z @X(O'A XTAc) . (18)
XES, XNAAD,XNAED

Si osserva che la somma (1.8) ¢ a priori una somma infinita, per cui nel caso di un generico
potenziale bisogna imporre dei requisiti di convergenza; ma nel caso del modello di Ising, in cui
la sola interazione non nulla e quella tra primi vicini, il numero di termini della somma si riduce
ad un numero finito. In altri termini nel caso del modello di Ising per specificare la condizione
al bordo non e necessario fissare l'intera configurazione 7,4, ¢ bensi sufficiente assegnare il valore
dello spin nei siti di A¢ che sono primi vicini di un sito di A.

Le proprieta di equilibrio del modello di Ising su un volume finito sono descritte dalla misura
di Gibbs di volume finito

TAc eiﬂHXAC (o)
fi's slo) == e (1.9)
A8

dove 3 :=1/T & I'inverso della temperatura e

7= Y e PN (1.10)

0ES2:0 pc =T c

e la funzione di partizione di volume finito.

Il caso fisicamente interessante ¢ quello in cui il volume e infinito, solo in questo caso c’e la
speranza che un modello su reticolo possa presentare una transizione di fase. Ma le definizioni
date in precedenza non si estendono in modo ovvio al caso di volume infinito, infatti se si

definisse
H(o)“:=" Y &x(0)“="=J > o,0,—h> o, (1.11)

XCL <zy> TEA
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si otterrebbe un oggetto dal valore puramente formale, infatti la somma (1.11) ha un valore
finito solo per alcune configurazioni molto particolari, in sostanza si avrebbe energia infinita
per quasi tutte le configurazioni.

La definizione corretta del modello nel caso di volume infinito puo essere data seguendo la
Teoria di Dobrushin [EFS, D, LR]|. L’idea chiave & la seguente: la misura di volume infinito
te 5 € tale che, dato un insieme finito A ed una condizione al bordo 74, la misura di volume
finito /JJZA’C 5 coincide con la misura che si ottiene condizionando pge s all’evento che consiste
nell’avere la configurazione 7. all’esterno di A. Per formalizzare questa definizione si utilizza
la nozione di specificazione: una specificazione e un insieme di probabilita condizionali per
i sistemi definiti su sottovolumi finiti di £; cioe, dato A € S si vuole definire una funzione
mA(0pe,A) con ope € 24, e A € F, che fornisca la probabilita dell’evento A nel volume A
condizionata ad avere la configurazione o, in A°. L’oggetto che si presta a questo scopo € un
nucleo di probabilita definito sullo spazio (£2,F).

Definizione 1.1 Dati due spazi di probabilita (£2,F) e (£2',F') si dice nucleo (kernel) di pro-
babilita di (2,F) in (2',F")

mp: (0,A) € 2 X F' — mp(0,A) € [0,1]
tale che
e Vo € (2, my(0,") é una misura di probabilita su (£2',F")
o VA e F', mp(-,A) é una funzione F-misurabile su 2.

Definizione 1.2 Si dice specificazione una collezione di nuclei (wp)aes di (£2,F) in se stesso
tali che

o VA€ F, mx(-,A) & una funzione Fpc-misurabile
e VB € Fye, ma(0,B) = xp(0), dove xg(o) & la funzione caratteristica

1 O'ACEB

0 altrimenti (1.12)

x5(0) 3:{

e se AC A alloraVo € 2, VA € F si ha
[ ma(dn)ma(nA) = mu(0,4)

Si osserva che le tre condizioni precedenti esprimono rispettivamente la necessita che la misura
di A dipenda solo dal comportamento di o fuori di A, che per osservazioni fuori di A la misura
riproduca la configurazione o, e che ci sia una sorta di compatibilita tra volumi inclusi I'uno
nell’altro.

Definizione 1.3 Data una misura p sullo spazio (2,F) e una specificazione (w4)ses St dice
che la misura € consistente con la specificazione se e solo se

VAe SYA € F siha p(xalFa)=ma(-,A) u— quasi ovunque . (1.13)
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In altri termini prese due configurazioni o4 € 24 e T4c € 24c si ha
P(ER [Tae) = Ta(Tae, EF") (1.14)

cioe la specificazione fornisce la probabilita condizionale di una configurazione su un volume
finito.

Si consideri, ora, un potenziale @ che soddisfi ai requisiti sufficienti ad assicurare la conver-
genza della somma (1.8) e la misura di Gibbs di volume finito /'y 5 introdotta come in (1.9)

per il generico potenziale @. Posto
Tas(T,A) = pi's 5(A) VT € QVA € F (1.15)

si verifica facilmente che (744)4es © una specificazione; tale specificazione ¢ detta gibbsiana.
In alternativa si puo dire che una specificazione gibbsiana ¢ una specificazione che puo essere
dedotta da un potenziale con il procedimento descritto in precedenza.

Definizione 1.4 Si definisce stato di equilibrio di volume infinito di un modello con potenziale
@, una misura g s su (£2,F) consistente con la specificazione gibbsiana (1.15).

In questo modo, quindi, quando @ ¢ il potenziale (1.5) si definisce lo stato di equilibrio ug g del
modello di Ising nel caso di volume infinito.

Nel caso di una specificazione gibbsiana a partire dalla (1.14) si prova che data una confi-
gurazione o, € {2, si ha

pas(BY) = [ Xpza (Dmaa(ronuos(dr) Yoy €2y . (1.16)

Le equazioni (1.16) sono dette di Dobrushin Lanford e Ruelle (DLR) e si prova che sono neces-
sarie e sufficienti per assicurare la gibbsianita di una misura [EFS, Ge].

Per concludere questa breve discussione della teoria di Dobrushin si enuncia un teorema
utile per la caratterizzazione delle misure gibbsiane. Si premettono due definizioni:

Definizione 1.5 Una specificazione (m4)ses € quasi-locale se e solo se

sup Var [71'/1(0'1,'),77'/1(02,')] 126 (1.17)

S
oto?ol, =03,

dove A" D A e dove é stata introdotta la distanza in variazione tra due misure

Var {7@1(01,.),7@1(02,-)] = i‘éI}|WA(017A) —ma(0%A)] . (1.18)

In altri termini in una specificazione quasi-locale la misura 7, (o,) dipende poco dal valore degli
spin di o “molto” lontani da A.

Definizione 1.6 Una specificazione (74)aes € non-nulla se e solo se VA€ S, VA € Fy
mA(0,A) >0 Voe 2 . (1.19)
Teorema 1.1 Una specificazione (m,) acs € gibbsiana se e solo se é non-nulla e quasi-locale.

La condizione necessaria ¢ semplice, per la condizione sufficiente si rimanda a [EFS].

10
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1.3 Le idee fondamentali

Si considera, ora, il modello di Ising in due dimensioni, volume infinito, campo magnetico nullo
(h = 0) e J = 1: tale sistema presenta una transizione di fase del secondo ordine a bassa
temperatura, ovvero esiste un valore critico f. = %log(v/2 + 1) (valore critico di Onsager) in
corrispondenza del quale ’energia libera Fz := —% limy_, o log Zf{eﬁe ha una singolarita essenziale
[I]. Per valori della temperatura inversa 3 < f3, il sistema & nella fase paramagnetica, ovvero
esiste un’unica fase pura pj tale che la magnetizzazione mj := py(oo), ove oo ¢ la variabile di
spin definita nell’origine di £, ¢ nulla. Mentre per 3 > [, il sistema e nella fase ferromagnetica,
esistono due fasi pure coesistenti u§ tali che m§ = u§ (00) = £mg # 0; ovvero nel sistema e
presente una magnetizzazione spontanea mg non nulla.

Le fasi pure sono caratterizzate dal decadimento esponenziale delle correlazioni: considerati
due siti z,y € £, denotata con 1,y la loro distanza si ha

Ty —>00

-
M?}’i(afb; 0y) 1= /L,%i(axay) - N%’i(ax)ﬂ%i(ay) ~ exp(—%) (1.20)

dove §g’i, la lunghezza di correlazione nella corrispondente fase pura, € un numero reale e
strettamente positivo. Cio vuol dire che nelle fasi pure lo spin in un sito x e correlato soltanto
con un numero finito di spin, in particolare con gli spin che distano meno della lunghezza di
correlazione. D’altro canto quando la temperatura tende al suo valore critico la lunghezza di
correlazione diverge con legge di potenza

&G~ T -T. ", (1.21)

dove T, e la temperatura critica. In altri termini, al punto critico il modello manifesta un
comportamento molto peculiare: nonostante l'interazione esista soltanto tra spin primi vicini,
cioe tra spin a distanza uno, al punto critico tutti gli spin sono correlati tra loro.

A T > T, il numero di spin correlati ¢ finito, quindi si puo pensare di approssimare il
sistema con un sistema finito; ma al punto critico il numero di gradi di liberta effettivamente
interagenti e infinito: i fenomeni critici sono fenomeni cooperativi. D’altro canto la divergenza
della lunghezza di correlazione lascia supporre che il sistema sia in regime di tnvarianza di scala,
cioe guardando il sistema su scale diverse esso presenta lo stesso comportamento. Cio suggerisce,
allora, di definire una trasformazione che associ al sistema di partenza (sistema oggetto) un
nuovo sistema (sistema immagine) ottenuto integrando tutti i gradi su una certa scala fissata. In
presenza di invarianza di scala il sistema immagine e quello oggetto avrebbero le stesse proprieta
fisiche; in altri termini un sistema al punto critico dovrebbe essere un punto fisso di questo tipo
di trasformazioni. Tali trasformazioni sono dette trasformazioni di rinormalizzazione.

Un esempio particolare di trasfromazione di rinormalizzazione e la block averaging transfor-
mation (BAT).

Definizione 1.7 (Trasformazione BAT) Si suddivide il reticolo L in quadrati L x L dis-
giunti; ognuno di questi blocchi viene denotato con Bil’L; al blocco i-esimo viene associata la

nuova variabile )

ot =5 2 (05— nsloy)) (1.22)

jeBb*t
I possibili valori della variabile rinormalizzata sono

1 —L? -L?4+2 +L?
1,L

; — i) = . 1.23
0.1, + L G%;’L /'I’/B(O-]) L ) L PR L ( )

11
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Si denota con ob* una configurazione di queste nuove variabili, con 2% il nuovo spazio delle

configurazioni e con FYF la relativa o-algebra dei borelliani. Si dice che o € §2 ¢ compatibile
con un insieme misurabile A € F5L se e solo se applicando la trasformazione (1.22) la con-
figurazione o viene trasformata in une elemento di A. Si definisce il nucleo di probabilita di

(2,F) in (VL FLLY

I | 1 o compatibile con A LL
Ty, (0,A) == { 0 altrimenti Vo e 2, VAeF (1.24)
e la nuova misura
pyH(A) = / na(do)xa(o)TE (0,4) VA € FYF (1.25)

Il nuovo sistema di spin cosi ottenuto viene denotato con il simbolo S™.

Si osserva che la nuova misura e normalizzata correttamente come conseguenza della corretta
normalizzazione del nucleo T(fl. Iterando la trasformazione si ottengono sistemi definiti su scala
sempre piu grande: SbL S%L . gml

L’idea alla base della teoria del gruppo di rinormalizzazione ¢ che al crescere di n, se il
modello di partenza & al punto critico, il sistema S™% presenta sempre le stesse proprietd
fisiche; mentre se il sistema di partenza e in una regione con lunghezza di correlazione finita,
allora le variabili rinormalizzate tendono a disaccoppiarsi, cio¢ nel limite n — oo il sistema S™ "
tende ad un sistema di variabili indipendenti.

Prima di discutere questo punto si premette un lemma che assicura che iterare la BAT
equivale a considerare un solo passo della stessa trasformazione, ma su una taglia molto piu
grande.

Lemma 1.1 Con le notazioni introdotte in precedenza:
gl = gtL” (1.26)

La dimostrazione ¢ immediata, infatti identificando correttamente i siti dei reticoli rinormaliz-
zati si ha o™ = olF.

Per studiare, allora, I'effetto dell’iterazione della trasformazione di rinormalizzazione e suf-
ficiente studiare il sistema S'* quando L — oco. Si considera il caso h = 0 e T > T,, pertanto
si ha 1

ot = 7 > o . (1.27)

jeBh*t
Quando L ¢ molto grande, le variabili presenti nella somma (1.27) sono praticamente indi-

pendenti, quindi per il teorema del limite centrale per la somma di variabili indipendenti la
Lo i.L . . .
variabile 0, tende ad avere una distruzione gaussiana

2

]_ 1 _m
1,L, 1,L L—o0 ;

o = ~ e 2 128
1,L

dove \; ¢ la varianza di o;>”. A priori la varianza J\; dipende sia dalla taglia L sia dalle

condizioni al bordo del blocco Bi1 L ma sfruttando il decadimento esponenziale delle correlazioni

tipico della fase di alta temperatura, si puo mostrare che A; b % dove x := (&‘g—,(fi))hio =

Bus(oi Xjec 05) € la suscettivita. Infatti

1 o 1
Nﬂ(UiLL;UiLL):ﬁ Z K | 05 Z Ok b2 Iz Z s (%’Z%) = Ug (%’Z%)

1L 1,L 1L
JEB; kEB; JEB; kel kel

3

12
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dove si e usato il decadimento esponenziale delle correlazioni per estendere la somma dal blocco
B}"" a tutto il reticolo L.

Si osserva, infine, che al punto critico a causa della divergenza della lunghezza di correlazione
il ragionamento precedente fallisce, infatti comunque grande si scelga la scala L, le variabili nella
somma (1.27) non possono essere considerate approssimativamente indipendenti.

Lo schema illustrato in precedenza, pur sembrando del tutto naturale, non e stato mai di-
mostrato in modo rigoroso dopo quasi trent’anni dalla sua prima formulazione. L’interesse dei
risultati esatti di questo tipo e del tutto evidente, inoltre negli ultimi anni e stato accresciuto
dalla pubblicazione di numerosi lavori (si veda, per esempio, [EFS]) in cui sono stati discussi
alcuni aspetti patologici delle trasformazioni di rinormalizzazione. Parallelamente si e svilup-
pata, o meglio ha trovato nuovo vigore, una linea di ricerca tesa a mostrare in modo rigoroso
che nei casi di interesse fisico (per esempio il punto critico del modello di Ising) lo schema del
gruppo di rinormalizzazione ¢ corretto.

1.4 Alcuni esempi di patologie del gruppo di rinormaliz-
zazione

In questa sezione viene illustrato I’esempio di Israel sull’esistenza delle patologie del gruppo di
rinormalizzazione: 'esempio, proposto per la prima volta in [G2, GP] e formalizzato in [Is],
viene discusso nel piu profondo dettaglio in [EFS]|. Nel seguito descriverd per sommi capi la
dimostrazione della non gibbsianita della misura rinormalizzata, per chiarire il ruolo giocato
dai modelli intermedi. In primo luogo si definisce la trasformazione di decimazione nel caso del
modello di Ising e ci si limita a considerare il caso J =1, h=0¢e [ < (.:

Definizione 1.8 (Trasformazione di decimazione) Si considera il modello di Ising definito
sul reticolo L := Z2; si denota con o € 2, := {1, + 1}* una configurazione, con F. la o-
algebra dei borelliant e con pg la misura di equilibrio con @ parametri h,J e (3 specificati in
precedenza. Si denota con L' il nuovo reticolo ottenuto a partire da L prendendo un sito
ogni due (si veda la Fig. 1.1). Considerato il sito v = (x1,x9) € L' si denota con 2x il
sito (2x1,2x9) € L, quindi si definisce la trasformazione che ad ogni o € 2 associa una
configurazione o' € {—1,+ 1} =: 2%, sul reticolo L'

oL =09 Vrel

Per costruire la misura del modello immagine si definisce il nucleo di probabilita T : (£2¢,F;) —
(£27.,F ) nel modo sequente:

1 otalecheo' € A
0 altriment:

T(0,A) := { Vo € 2, VA e Fp,

dove F}, € la o-algebra dei borelliani su §2).,; quindi si definisce:

Hy(A) = / 15(do)xa(0)T(0,A) VA€ Fy

Si osserva che la definizione precedente corrisponde a costruire la misura rinormalizzata som-
mando su tutti i vecchi spin che non si trovano sul reticolo £'; inoltre si osserva che le nuove
variabili non sono altro che i vecchi spin che si trovano su siti di £ con coordinate pari.

Si dimostra il seguente risultato:

13
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Figura 1.1. Le linee continue rappresentano il reticolo £, i dischi neri i siti del reticolo £'.

Teorema 1.2 Con le notazioni introdotte in precedenza, se 3 > %COSh_l(l ++/2) ~ 1.734.,
dove 3. ¢ il valore critico di Onsager, allora la misura rinormalizzata u’ﬂ non ¢ gibbsiana.

Per dimostrare il teorema precedente si prova che la misura rinormalizzata /L% non é consistente
con nessuna specificazione quasi-locale e si usa in senso “negativo” il Teorema 1.1 che caratte-
rizza le misure gibbsiane. In altri termini si dimostra che una funzione locale calcolata tramite
la misura rinormalizzata, per esempio la quantita juj3(o7,)) (il valor medio dello spin immagine
nell’origine), dipende fortemente dai valori degli spin immagine molto lontati se gli spin vici-
ni vengono scelti in modo opportuno; cioe il valore di pj(0p) cambia di una quantita finita
se viene calcolato condizionando la misura immagine in modo diverso su siti arbitrariamente
lontani dall’origine. Il problema, quindi, si riduce a determinare questa configurazione “oppor-
tuna” che e in grado di trasportare l'informazione da molto lontano fino all’origine. L’idea e
di considerare una configurazione in corrispondenza della quale il relativo modello intermedio
e in regime di transizione di fase, ovvero ha piu fasi consistenti.
Piu precisamente, a partire da ,u’ﬂ si costruisce la specificazione con cui la misura rinorma-
lizzata e consistente:
my (0" A") = pp(Allolye) (1.29)

per ogni A’ sottoinsieme finito di £, o' € (2., e A" € F},. La specificazione ¢ quasi locale se e
solo se comunque si prenda un volume finito A" C £’ accade che

sup Var [W/y (0'1,-),7TA/(0'2,-)} =
o/l 12 ol =12
’ A’ A’
= sup sup |mu (0™, A — ma(0,A)] 22500 (1.30)

P ) R — ’ U
o'to'2 ol =0Tt ATETT,

dove A" C L' finito e A" D A’. La strategia che si segue per dimostrare che la specificazione
(A7) A finitoc 22 ON € quasi-locale ¢ la seguente: determinare un particolare evento A’ € FJ.,, per
esempio 'evento A" = {0, = +1}, e far vedere che la misura di questo evento cambia molto

14
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se si condiziona a due configurazioni coincidenti nei pressi dell’origine, ma diverse lontano
dall’origine stessa. Per essere piu precisi bisogna dimostrare che esiste una configurazione ¢’
tale che & possibile trovare un § > 0 tale che in ogni intorno di ¢’ esistono due configurazioni o'
e o', coincidenti in un certo A’ C £’ finito, ma arbitrariamente grande, e diverse all’esterno, e

imo(c™ {op = +1}) — mo(c? {op = +1})| > 6 >0 (1.31)

Il primo problema da risolvere, quindi, ¢ determinare la configurazione ¢’: si definiscono i
modelli intermedi

Definizione 1.9 (Modelli intermedi) Si consideri o' € (2}, si dice modello intermedio re-
lativo a o' un modello nelle vecchie variabili o € 2, con misura di equilibrio

i p(A) o= LHAIDXADT(OT) g

J ps(do)T (o,0")

Nel caso di volume infinito la notazione e necessariamente complicata, ma si osserva che un
modello intermedio corrispondente a ¢’ altri non & che il modello di Ising con il vincolo di
considerare soltanto quelle configurazioni tali che il valore dello spin su siti z € L' sia 0. Infatti
dalla Definizione 1.8 si ha T'(0,0') = X{o,,—0o'}(0) da cui si ottiene g 5(A) = pg(Alog = o').

Ora si osserva che se esiste un modello intermedio i, 3 che € sopra il suo punto critico,
allora le grandezze calcolate su un volume finito A C £ devono essere discontinue rispetto a
variazioni delle condizioni al bordo. L’idea ¢ che prendendo o' e 0 uguali a ¢’ all’interno di
A’ ma diverse tra loro all’esterno, deve essere possibile sfruttare le “proprieta” di discontinuita,
della misura intermedia per trovare un ¢ in corrispondenza del quale sia valida la (1.31).

A questo punto si mostra come sia possibile realizzare il progetto enunciato in precedenza:
si considera la configurazione o)), completamente antiferromagnetica sul reticolo £' e si prova
che il modello intermedio 1, 5 ha due fasi coesistenti se

B> %coshl(l +v2) . (1.32)

Infatti, il modello intermedio e definito sul reticolo £ con gli spin che cadono sul sottoreticolo
coincidente con £ uguali agli spin di o}, (si veda la Fig. 1.2). Ma il contributo all’hamiltoniana
delle coppie di spin primi vicini in cui vi e uno degli spin fissati ¢ nullo, perche i vari contributi
si cancellano a due a due. Quindi il modello intermedio diventa equivalente al modello di Ising
con accoppiamento J = 1, temperatura % e definito sul reticolo £” ottenuto rimuovendo in £
tutti i siti del sottoreticolo coincidente con L' (si veda Fig. 1.2).

Come nel caso della decimazione nel modello di Ising unidimensionale, a questo punto, e
possibile sommare su tutti gli spin che hanno due soli siti primi vicini: si ottiene un modello
di Ising su reticolo Z? con accoppiamento tra primi vicini 3 logcosh23. Allora il modello
intermedio ha transizione di fase se 3 ¢ maggiore di un certo 3 definito dall’equazione

%logcosh 28 =0, (= %log(l + ‘/5))

dalla precedente si ottiene facilmente la condizione (1.32).
Per caratterizzare le proprieta di discontinuita della misura p,r g5 si procede nel modo
seguente: preso un numero intero e positivo R, si considera

Ng:={0": o' =0l su Ay, o' arbitraria altrove} (1.33)
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Figura 1.2. A sinistra € rappresentata la configurazione o}, sul reticolo £, mentre a destra &
rappresentato il reticolo £".

dove A’ & un quadrato centrato nell’origine di £’ e di lato 2R + 1. Si osserva che al variare di
R la famiglia degli insiemi Ny costituisce una base di intorni di o}, nella topologia dei cilindri.
Poi si dimostra [EFS] che esiste un numero 6 > 0 tale che comunque si prenda un Ny esistono
due sottoinsiemi non vuoti Ny e N_ di Ny e due costanti ¢y e c_ tali che

cp—c_>9
por+ g(00) > ¢y sedteN; . (1.34)
tor—5(00) <c_ seo’” € N_

Fissato R, gli insiemi aperti N3 vengono definiti scegliendo un opportuno R’ > R e ponendo:
Ny :={0": o =0} suAgr, 0’ = +1su Ar/ \ Ag, o' arbitraria altrove} .

Le disequazioni (1.34) caratterizzano il comportamento discontinuo della misura intermedia
relativa a o7, in un intorno di questa configurazione; ma dalla definizione di intorno, nella to-
pologia dei cilindri, e anche chiaro che deve essere possibile mettere in relazione la discontinuita
della misura intermedia con la forte dipendenza dagli spin lontani della misura rinormalizzata.
In [EFS] si dimostra, infatti, a partire dalle (1.34), che esiste un § > 0 tale che comunque si
prenda un intorno N di o}, & possibile prendere R abbastanza grande in modo che N%,%Jrl,i -

N e si ha
15(oplo™ in {O}°) — ps(oplo’™ in {O}€) > 6 >0 (1.35)

con o'* € N§,§+1,f La (1.35) mette in luce che il valore d’attesa dello spin rinormalizzato
nell’origine dipende fortemente da cio che avviene arbitrariamente lontano da essa e constituisce
la prova che la specificazione con cui uj ¢ consistente non ¢ quasi-locale e, quindi, la misura
rinormalizzata non ¢ gibbsiana.

In [EFS] Papproccio descritto in precedenza & stato generalizzato ed applicato a numerosi
casi interessanti, per esempio la transformzazione di Kadanoff, quella di block averaging e la
majority rule.
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1.5 Assenza di patologie per il modello di Ising critico

Nella sezione precedente sono stati mostrati alcuni esempi di trasformazioni del gruppo di
rinormalizzazione che esibiscono un comportamente patologico; in questa sezione, invece, in
un caso di grande interesse fisico, come il modello di Ising bidimensionale al punto critico,
si “dimostra” che le trasformazioni del gruppo di rinormalizzazione sono ben definite, cioe la
misura rinormalizzata ¢ gibbsiana [CO2] (si veda 1’Allegato 1).

In realta l'espressione “si dimostra” non e completamente corretta, perche tramite una
catena di implicazioni logiche basate su risultati di R.L. Dobrushin, F. Martinelli, E. Olivierie S.
Shlosman, si riduce la dimostrazione alla stima di una grandezza e la misura di questa quantita
viene effettuata per mezzo di una simulazione numerica. La misura di questa grandezza, d’altro
canto, & molto delicata e in [CO2] & stata sviluppata una dinamica, chiamata dynamical surgery
(generalizzando la terminologia introdotta in [DS1]), adatta al nostro problema. In questa
sezione verranno descritti i risultati di [CO2] e per i dettagli tecnici si rimanda all’Allegato 1.

Si considera il modello di Ising critico, cioe con le notazioni introdotte nelle sezioni precedenti
si considera il caso J =1, h =0 e 3 = [3,; si denota la misura di equilibrio con il simbolo pg,.
Si definisce poi la trasformazione di rinormalizzazione nota come majority rule [NL1, NL2]J:

Definizione 1.10 (Trasformazione MR) Si suddivide il reticolo L in blocchi 2 x 2 denotati
con B;; al blocco i-estmo viene associata la variabile immagine

o { Sign Y iep, 05 s€ Yep, 05 # 0
T

oy altrimenti ’
3

dove oy rappresenta lo spin in alto a sinistra nel blocco By, ovvero il primo spin in ordine
lessicografico. Si denota con o' una configurazione delle variabili immagine, con L' il nuovo
reticolo, con (2, = {1, + 1}” il nuovo spazio delle configurazioni e con Fy, la relativa o-
algebra dei borelliani. Per costruire la misura del modello immagine si definisce il nucleo di
probabilita T : (27,F) — (27, F) nel modo sequente:

1 otalecheo' € A
0 altrimenti

T(0,A) := { Vo € 2, VA e F.

quindi st definisce:
5, (A) = [ 1 (d0)xa(0)T(0,4) VA €

Inoltre, considerata una configurazione o’ si definiscono i modelli intermedi come nel caso della
decimazione (Definizione 1.9); in questo caso un modello intermedio & un modello di Ising in cui
in ogni blocco B; sono ammesse soltanto 8 delle 16 possibili configurazioni. Piu precisamente,
si dividono le 16 possibili configurazioni di un blocco 2 x 2 in due classi Cy e C_ nel modo
seguente:

e configurazioni di blocco appartenenti alla classe C',.
— 4+ [+ =77+ =1[+ =17+ +][++][++]]+ +
e B e e I e I e I e I o I I I
e configurazioni di blocco appartenenti alla classe C_
- —17-=-17T--=-171--1[7-+17-+17-+1[+ -
— = |-+ |+ |+ +]--]|-+]]|+-]|--
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Ebbene nel modello intermedio (i, g, in corrispondenza del blocco B; vanno considerate solo le
8 configurazioni di Cy, se 0} = +1, di C_ si 0} = —1.

La strategia seguita in [CO2] per dimostrare che la misura rinormalizzata fu3, © gibbsiana
consiste nell’utilizzare il Teorema 1.1 di [HK] che in sostanza dice: considerati tutti i possibili
modelli intermedi p7, - definiti sul volume finito V' e con condizioni al bordo 7, se questi sod-
disfano ad una condizione di decadimento esponenziale delle correlazioni (che assicura ’assenza
di transizione di fase nel limite termodinamico), allora la misura rinormalizzata & gibbsiana. In
realta piuttosto che verificare direttamente le ipotesi del teorema di Haller e Kennedy, I'idea
e verificare che tutti i modelli intermedi soddisfano ad una condizione di strong mizing, da
cui, con gli argomenti della dimostrazione di [HK], si deduce direttamente la gibbsianita della
misura rinormalizzata.

Definizione 1.11 (Strong Mixing) Un misura di Gibbs p’y definita sul volume finito A e
con condizioni al bordo T soddisfa ad una condizione di strong mixing con costanti C e vy se e
solo se per ogni A C A

sup  Var(uj 4.y n) < Ce 1 HsHa) (1.36)

T,T(y)E.QAc

dove TW) = 7, per ognix # y e Wy a € la relativizzazione di pjy al sottovolume A C A. Questa
condizione viene denotata con il simbolo SM(A,Cy).

In sostanza dire che una misura ¢ SM(A,C,y) vuol dire che cio che avviene all’interno del volu-
me /A dipende poco dal bordo, cioe in ogni sottovolume di A non “cambia nulla” se la condizione
al bordo viene cambiata in un punto, perche I'influenza del bordo decade in modo esponenziale
quando ci si allontana dal punto in cui la condizione al bordo e stata modificata. Nella ter-
minologia introdotta da Dobrushin e Shlosman una misura che soddisfa ad una condizione di
strong mixing in tutti i volumi finiti e detta completamente analitica: se un sistema ¢ in regime
di completa analiticita non solo si dimostra ’unicita della misura di gibbs, e quindi I'assenza di
transizione di fase, ma una serie di ulteriori proprieta, equivalenti fra loro, che caratterizzano
completamente la misura stessa [DS2].
Assieme alla nozione di strong mixing si definisce quella di weak mizing:

Definizione 1.12 (Weak mixing) Un misura di Gibbs p7y definita sul volume finito A e con
condizioni al bordo T soddisfa ad una condizione di weak mizing con costanti C' e v se e solo
se per ogni A C A

sup  Var(ujapha) <C > eV (1.37)
7,7 €2y zEAyEOAT
dove OAT = {x € A°: |z —y| = 1}. Questa condizione viene denotata con il simbolo

WM(A,Cy).

La nozione di weak mixing e piu debole di quella di strong mixing, infatti esistono esempi di
modelli [Sc3] che soddisfano a condizioni di weak mixing, ma non a condizioni di strong mixing.
Nel caso bidimensionale, pero, F. Martinelli, E. Olivieri e R.H. Schonmann hanno provato la
loro equivalenza nel senso illustrato dal seguente teorema [MOS]:

Teorema 1.3 (Martinelli, Olivieri, Schonmann) Si consideri il caso bidimensionale: se
esistono due costanti C' e v tali che la misura di Gibbs 7y soddisfa alla condizione W M (A,Cy)
per ogni volume finito A, allora esistono due costanti positive C' e ' tali che la misura di Gibbs
ply soddisfa alla condizione SM(A,C' ') per tutti i volumi A sufficientemente regolari, cioé per
tutti © volums multipli di un quadrato suficientemente grande.
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Poiche usando gli argomenti sviluppati da Haller e Kennedy e l'ipotesi che tutti i modelli
intermedi siano strong mixing su volumi sufficientemente regolari ¢ possibile dimostrare la
gibbsianita della misura rinormalizzata, allora, grazie al Teorema 1.3, il nostro problema si
riduce a verificare che tutti i modelli intermedi sono “weak mixing” su tutti i volumi finiti.

Le condizioni di weak e strong mixing sono delle condizioni di “taglia finita”, perche sono
delle proprieta che un sistema deve soddisfare su un volume finito; ma per poter dedurre dei
risultati sulla misura di volume infinito e necessario che queste siano valide per tutti i sotto-
volumi finiti o perlomeno per tutti i sottovolumi sufficientemente regolari. In [DS1] Dobrushin
e Shlosman hanno introdotto una condizione di taglia finita, che chiamero DSU(A,9), tale che
se esiste un volume finito sufficientemente grande A in cui il sistema soddisfa alla condizione
DSU(A,)), allora si possono dedurre una serie di proprieta del modello nel limite termodina-
mico, per esempio ['unicita della misura di Gibbs di volume infinito, in altri termini I’assenza
di transizione di fase. La condizione DSU, quindi, ¢ una condizione di volume finito molto
forte: per ottenere informazioni sul limite termodinamico non bisogna esaminare direttamente
la misura di volume infinito, oppure la misura di volume finito su tutti i sottovolumi finiti, ma
basta studiare il sistema in un volume finito, purche sia sufficientemente grande.

In particolare in [DS1] & stato dimostrato il seguente teorema:

Teorema 1.4 (Dobrushin, Shlosman) Se DSU(V,0) ¢ soddisfatta per un volume sufficien-
temente grande V' e per un 6 < 1, allora esistono due costanti positive C' e v tali che la
condizione WM (A,C\y) é soddisfatta per ogni volume finito A.

Dal punto di vista della dimostrazione della gibbsianita della misura rinormalizzata juj, @
possibile usare i risultati enunciati in precedenza e ridursi a verificare che esiste un volume finito
sufficientemente grande V' tale che tutti i modelli intermedi soddisfano la condizione DSU(V,9).
Si enuncia, quindi, la condizione DSU:

Definizione 1.13 (Condizione DSU) Si consideri una metrica sullo spazio di singolo spin
S :={—1,+ 1}, preso un volume finito V si definisce la metrica su SV :

pv(ovay) = plosm) Vovamgy €SV .
zeV

St dice che la condizione DSU,(V,0) é soddisfatta se e solo se esiste un insieme finito V' e un
numero § > 0 tali che: per ogni x € OV esiste a, > 0 tale che comunque si prenda una coppia
di condizioni al bordo T,7' € SV con 1, = T, ber ogni y # x si ha

Dy (165,185) < 0tp(Ts,7L)

> oa, <8V|

xedV+

dove é stata introdotta la distanza di Vasserstein

Dpv(ﬂd(/;,u(/’) = inf Z pv (ovnv)pov.mv) (1.38)
RER (LY 1Y) oy €SV

con K(uiy,p13,) Uinsieme di tutte le rappresentazioni congiunte di i, e .

Dire che un sistema soddisfa alla DSU(V,d) con un ¢ < 1 vuol dire che cambiando la condizione
al bordo in un punto le due misure di Gibbs in V' sono molto vicine, nel senso che la loro distanza
di Vasserstein e piu piccola del rapporto | a‘vlﬂ
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Per verificare che tutti i modelli intermedi soddisfano alla condizione DSU si procede nel
modo seguente: si fissa un volume V| si sceglie una configurazione immagine ¢’ e si considera
il modello intermedio pj, ./ 5 con condizione al bordo 7. Poi si calcola la quantita

) )

oV

(z)
Vi 6e) T
V]

T, 7(@)
EVgr 5. = Doy (W01 6, 1V00 6, (1.39)

dove si e scelta la metrica p := 1 — 6, ,» sullo spazio di singolo spin S = {—1, + 1}. E facile
convincersi che se

TTx

Eviorp. = sup  sup &g <1
€OVt rcgovt
allora il modello intermedio relativo alla configurazione o’ soddisfa alla condizione DSU,(V,9)
con un 0 < 1. In definitiva il problema di dimostrare la gibbsianita della misura rinormalizzata
si riduce a mostrare che la quantita £y, 5, ¢ minore di uno per tutti i modelli intermedi.

La grandezza €y, 5, € stata misurata mediante simulazioni Monte Carlo. In [BMO)] ¢ stato
posto un problema analogo nel caso della trasformazione di block averaging, ma il calcolo
numerico e stato effettuato con 1'usuale dinamica di Metropolis che ha permesso la misura di
un estremo inferiore dell’estimatore £y, g, e cio e chiaramente non sufficiente per dedurre la
validita della condizione DSU. In [CO2], invece, ¢ stata introdotta una nuova dinamica che
permette di misurare un estremo superiore di €y, g, € quindi di “dimostrare” numericamente
che tutti i modelli intermedi soddisfano la condizione di Dobrushin e Shlosman e che quindi la
misura rinormalizzata ¢ gibbsiana.

L’idea alla base della dinamica e la seguente: per calcolare esattamente la distanza di Vas-

. . (z) . . . . .
serstein tra le due misure pf, 1 5 € pf, . 5 si dovrebbe essere in grado di determinare la misura
’ ’

congiunta p* € K(u(/,g,yﬂc,u{/(a) 5.) che minimizza la somma (1.38), ma cio risulta troppo diffici-

le. D’altro canto e possibile calcolare la distanza di Vasserstein tra tra le misure relativizzate
ad un singolo blocco (si veda la Sezione 4 dell’Allegato 1), allora si puo considerare un Monte
Carlo in cui due copie del sistema, che differiscono solo per la condizione al bordo in un punto,
evolvono simultanemente e ad ogni passo la coppia di sistemi viene aggiornata in accordo con
la misura congiunta che realizza il minimo nella distanza di Vasserstein su un singolo blocco.

Se si lascia evolvere il sistema per un tempo sufficientemente lungo, la coppia di sistemi ter-
malizza su una misura congiunta che, sperabilmente, non ¢ molto lontana dalla p*. Calcolando
la media temporale della distanza tra due configurazioni, quindi, si calcola la somma (1.38) con
una misura congiunta vicina alla p* che ottimizza la somma stessa, quindi si riesce a stimare la
distanza di Vasserstein. In realta, poiche il Monte carlo non realizza esattamente la misura p*
cio che si misura non ¢ esattamente £y, 5., ma soltanto un suo estremo superiore Uy, .. Ma
cio € comunque un risultato che per noi e sufficiente, infatti se la nostra misura ¢ minore di uno,
a maggior ragione lo sara la grandezza £y, 5. e quindi avremo “dimostrato” numericamente che
tutti i modelli intermedi soddisfano la condizione DSU. Ovviamente questa strategia presenta
un rischio: se il Monte Carlo realizza una misura congiunta troppo lontana da p*, puo accadere
che noi misuriamo qualcosa che sia molto maggiore di &y, 5, e che addirittura sia maggior di
uno, pur essendo £y, 5. < 1.

Dal punto di vista numerico il calcolo ha due aspetti contrastanti: a livello intuitivo ci si
aspetta che la distanza tra le misure cresca con il crescere del volume perche quando il volume
cresce la differenza tra due configurazioni ha piu spazio per propagarsi. Ma se il volume diventa
abbastanza grande, tipicamente maggiore della lunghezza di correlazione del modello, allora la
distanza tra le misure (}rovrebbe essere costante rispetto al volume. Inoltre il nostro estimatore

oVH|

(1.39) ha il fattore VT che tende a farlo decrescere quando il volume cresce, quindi questo
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I Uyp,  Alyg,
2 1452 0.0074
3 1.122 0.0071
4 0.877 0.0046
8 0.436 0.0026

16 0.207 0.0016

Tabella 1.1. Misura Monte Carlo di Uy,s,, ovvero dell’estremo superiore di Uy, g, su tutti
i modelli intermedi considerati nelle simulazioni, eseguita per diversi volumi. La variabile [
rappresenta la semilunghezza del lato del quadrato V.

argomento intuitivo suggerisce che quanto piu ¢ grande il volume tanto piu facile dovrebbe
essere la misura di valori piccoli di v, g, per tutti i modelli intermedi.

Ma, d’altro canto, quando si considerano volumi troppo grandi il numero di possibili modelli
intermedi ed il numero di possibili condizioni al bordo che bisogna controllare, in altri termini il
numero totale di esperimenti numerici che bisogna effettuare, cresce esponenzialmente. In [CO2]
abbiamo cercato di ottimizzare questi aspetti contrastanti considerando volumi sufficientemente
grandi, per assicurarci che il nostro estimatore fosse minore di uno, ma limitandoci ad eseguire
una statistica su tutti i possibili modelli intermedi e su tutte le possibili condizioni al bordo.

Per la descrizione dettagliata di tutti i risultati numerici e del metodo seguito per eseguire la
statistica si rimanda alla Sezione 5 dell’Allegato 1, qui si delinenano le idee guida e si espongono
i risultati principali.

In primo luogo la quantita Uy, 5, ¢ stata misurata per volumi crescenti eseguiendo una
statistica cieca sui modelli intermedi e sulle condizioni al bordo, cioe per ogni volume sono stati
scelti a caso un certo numero di modelli intermedi e di condizioni al bordo.

[ risultati in Tabella 1.1 suggeriscono che nel caso [ = 4 tutti i modelli intermedi soddisfano
la condizione

uvyo',’ﬂc <1 (1.40)

e che quindi [ = 4 e il valore abbastanza grande del lato del volume sufficiente per i nostri
scopi. Ma, gia ad [ = 4 non e possibile considerare tutti i modelli intermedi e tutte le possibili
condizioni al bordo, in effetti il risultato in Tabella 1.1 e stato ottenuto considerando soltanto
50 dei 2'¢ modelli intermedi e 60 coppie di possibili condizioni al bordo. Quindi & possibile che
esista un modello (o una condizione al bordo) particolarmente sfortunato, in corrispondenza
del quale risulti Uy, g, > 1.

Inoltre si osserva che la distanza tipica, guv,(,,,ﬁc, fra le due copie del sistema, cresce da 0.530
a 0.8415 quando si passadal = 1 al = 3 e poi resta approssimativamente costante, confermando
la descrizione intuitiva del fenomeno data in precedenza; e cio costituisce una ulteriore conferma
che il volume corrispondente ad [ = 4 dovrebbe essere sufficiente per affermare che tutti i modelli
intermedi soddisfano DSU.

Ma per poter supportare questa tesi si ¢ anche cercato di fare una sorta di “statistica
intelligente”: si e considerato il caso [ = 6, in modo da avere un estimatore abbastanza piccolo
(tra 0.436 e 0.877, come suggerisce la Tabella 1.1) e allo stesso tempo degli esperimenti numerici
non troppo lunghi (alcuni giorni di CPU su un alpha 125). La statistica intelligente ¢ stata
effettuata cercando di individuare i modelli intermedi piu pericolosi (o' antiferromagnetica o
lamellare) e la regione in cui la differenza tra le due copie del sistema si propaga a partire dal
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punto in cui le due condizioni al bordo sono diverse. Alla fine abbaimo ottenuto
Uyp, =0.633 Alyg, =0.011 ,

che ci permette di affermare con notevole confidenza che in corrispondenza di [ = 6 tutti i
modelli intermedi soddisfano la condizione di taglia finita di Dobrushin e Shlosman e che | in
virtu della catena di implicazioni logiche discusse in precedenza, la misura rinormalizzata /JJQ;C
e gibbsiana.
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Allegato 1
Renormalization-group at criticality and complete analiticity of constrained mo-
del: a numerical study.

E.N.M. Cirillo, E. Olivieri, Journ. Stat. Phys. 86, 1117-1151, 1997

Riassunto

Si studia la trasformazione nota con il come di Majority Rule appliacata
alla misura di Gibbs del modello di Ising bidimensionale al punto critico.
Lo scopo ¢ dimostrare che la trasformazione ¢ ben definita nel senso che la
misura rinormalizzata ¢ gibbsiana. Studiamo la validita della condizione di
taglia finita di Dobrushin-Shlosman per i sistemi intermedi corrispondenti
a diverse configurazioni del modello immagine. E noto che DSU implica,
nel caso bidimensionale, la completa analiticita, da cui segue la gibbsianita,
come ¢ stato mostrato recentemente da Haller e Kennedy. Si introduce un
algoritmo Monte Carlo per calcolare la distanza di Vasserstein tra misure
di Gibbs di volume finito con diverse condizioni al bordo. Otteniamo delle
forti indicazioni numeriche che la condizione DSU & verificata per volumi
abbastanza grandi e per tutti i modelli intermedi.
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Capitolo 2

Applicazione del CVM ad alcuni
modelli di superfici

2.1 Introduzione

In questo capitolo verra mostrato come il CVM permetta di ottenere notevoli informazioni
sul diagramma di fase di alcuni modelli di superfici su reticolo, per i quali, a causa della loro
complessita, esistono pochi risultati esatti.

I modelli di superfici su reticolo sono stati sviluppati con I'intento di descrivere le proprieta
delle membrane [Lip, NPW]. In biologia si distingue tra due tipi di membrane: le membrane
fluide sono costituite da un doppio strato di lipidi in cui si incastrano molecole di proteine. I
lipidi, che costituiscono la struttura portante della molecola, hanno proprieta amfifile, posseg-
gono una parte idrofila, la testa, ed una idrofoba formata da due code; le dimensioni tipiche
di queste molecole sono dell’ordine di 10 — 20 Angstrom. Le proteine, invece, sono i siti attivi
della membrana e sono costituiti da una catena di aminoacidi. I lipidi sono molto mobili e for-
niscono alla membrana il carattere di fluido incompressibile bidimensionale, mentre le proteine
diffondono lentamente nel fluido di lipidi.

Membrane costituite da un unico strato di molecole amfifile si formano all’interno delle
miscele ternarie, per esempio le miscele di acqua, olio e surfatante (molecola amfifila, per es-
empio la lecitina). In sistemi di questo tipo si osserva una grande varieta di fasi diverse al
cambiare della concentrazione relativa dei costituenti della miscela. Per esempio si osservano
fasi lamellari, in cui acqua e olio si dispongono su strati alternati, separati da strati di surfa-
tante; oppure si formano fasi disordinate in cui ’acqua e ’olio sono racchiuse in piccole micelle
(microemulsione). All’aumentare della concentrazione di surfatante & possibile che si instauri
una fase bicontinua, con un’interfaccia molto disordinata simile ad una spugna.

Un altro tipo di membrane e costituito da quelle che hanno una struttura rigida, per esempio
a causa di una rete di proteine: una rete di spettrine e presente sulla membrana che costituisce
il globulo rosso. Poiche il tempo tipico necessario per rompere o ridistribuire i legami tra le
proteine ¢ molto piu grande della scala di tempo tipica per le fluttuazioni della struttura, il
sistema puo essere visto come una rete con connettivita fissata.

Il passo tipico di una rete di proteine e dell’ordine di 100 nanometri, strutture piu dense
possono essere ottenute nel caso di molecole di lipidi polimerizzabili: esistono vari tipi di mole-
cole fluide che sottoposte all’azione di raggi ultravioletti polimerizzano in reti bidimensionali.
Su una scala grande rispetto al passo della rete, questi sistemi possono essere visti come dei
fogli elastici il cui comportamento e regolato da un’energia di bending, che tende a rendere
piatta la superficie, ed un termine di stretching che controlla la lunghezza dei legami [NP]. E

26



Applicazione del CVM ad alcuni modelli di superfici

stato osservato in [KKN] che per ogni temperatura maggiore di zero al variare del termine di
bending la struttura passa da una fase piatta (flat) ad una fase accartocciata (crumpled).

Nella Sezione 2.2 si studieranno, con la tecnica del CVM, alcuni modelli per la descrizione
della transizione di crumpling, mentre la Sezione 2.3 sara dedicata allo studio della versione di
Ising del modello ad otto vertici che si presta alla descrizione delle varie fasi presenti all’interno
di una miscela ternaria; mentre nella Sezione 2.4 si discuteranno alcuni aspetti di questo modello
in relazione con la Teoria delle Stringhe.

2.2 Il problema del folding

Come si e detto nell’introduzione un problema interessante connesso con i modelli di superfici e
lo studio del folding (ripiegamento) di una superficie polimerizzata (una superficie triangolata).
In modelli di questo tipo vengono introdotti, in generale, due termini di energia: un termine
di stretching che cresce con il crescere della lunghezza del lato condiviso da due poligoni ed un
termine, detto di bending, che tende a far stare sullo stesso piano due poligoni adiacenti, cioe
tende a rendere piatta la superficie. E stato dimostrato che al variare dell'intensita del termine
di bending dell’energia, il sistema subisce una transizione da una fase in cui ¢ piatta ad una
fase in cui ha delle pieghe (rispettivamente flat e crumpled phase).

Il problema di una superficie triangolata immersa in uno spazio ambiente di dimensione
D = 2, con lunghezza dei lati dei triangoli fissata, ¢ stato affrontato in [KJ, FG1, FG2J;
in questo caso i vettori normali alle facce triangolari che costituiscono la superficie puntano o
verso 1’alto o verso il basso, cio suggerisce una descrizione del problema in termini di un modello
di Ising:

e si considera il reticolo esagonale (duale del reticolo triangolare);

e ad ogni sito viene associata una variabile di spin o; € {—1, 4 1} il cui valore ci dice se la
normale alla superficie punta verso 1’alto o verso il basso;

e siimpone che gli spin su un esagono regolare soddisfino al vincolo 3=;cesagono i = —6,0,+6,
cio assicura che la superficie sia continua, non abbia tagli;

e |'energia di bending viene scritta come interazione ferromagnetica tra spin associati a siti
primi vicini: —K 3 ;. 0,05;

e viene introdotto un campo magnetico h che rompe la simmetria o; — —o;.

In [FG1] questo modello & stato studiato con il metodo della matrice di trasferimento, in
particolare, e stata determinata una transizione del primo ordine ad h =0e a K =0.114+0.01
tra flat phase ed una crumpled phase.

Nel lavoro [CGP1] il modello di folding triangolare ¢ stato generalizzato, supponendo che
la superficie triangolare possa presentare tagli; cio € stato realizzato supponendo che il vincolo
sugli esagoni elementari possa essere violato, ma a cio e stato assegnato un costo L > 0 in
termini di energia. Pertanto il caso L = 0 corrisponde al puro modello di Ising su reticolo
esagonale, mentre il caso L. — oo corrisponde al puro modello di folding. In altre parole
I’hamiltoniana e stata definita come segue:

—% = KZO’in + hZO'Z + L Z o ({Ui}iEesagono) ) (21)
B -

(i5) i esagoni

27



Applicazione del CVM ad alcuni modelli di superfici

05— SIS S S S
h ol . -
I
]
B A N N B
-15 -1 -0.5 0 0.5 1 15

Figura 2.1. Diagramma di fase del modello (2.1) nel caso L = 0: modello di Ising. Le linee
continue e quella tratteggiata indicano transizioni del primo e del secondo ordine rispettiva-
mente.

ove la prima somma e effettuata su tutti i siti primi vicini e la funzione  vale uno se il vincolo
sulle celle elementari e soddisfatto, altrimenti vale zero.

Questo modello & stato studiato con il CVM: seguendo lo schema proposto in [A] si deve
minimizzare ’energia libera

floo) = —SKTr(ssapa(s1,52)) — Wk(sipn(s1) = ST pol{s:})

1 3 1 1
+§T1"(P6 In pg) — §Tr(/’2 In py) + §T1"(P1A Inpia) + §TY(P1B In p1p)

+A(Trps — 1), (2.2)

dove Tr vuol dire traccia, ' ¢ la somma sulle configurazioni che soddisfano il vincolo che
definisce il modello, p14(B), p2 € ps sono rispettivamente le matrici densita di sito, coppia ed
esagono e, infine, A ¢ un moltiplicatore di Lagrange che assicura la giusta normalizzazione di
ps e, di conseguenza, di py; e di piap). La minimizzazione dell’energia libera (2.2) e stata
effettuata mediante le equazioni di iterazione naturale [Kil, Ki2] (per maggiori dettagli si
rimanda all’Allegato 2 [CGP1]).

Nel caso L = 0, corrispondente al modello di Ising su reticolo esagonale, si ottiene il classico
diagramma di fase (Fig. 2.1) e la transizione critica tra fase ferromagnetica e paramagnetica
viene trovata a K = —0.6214; il risultato e in ottimo accordo con il valore esatto K = % log(v/3+
2) >~ 0.6585 [HKW]. Nelle sezioni 3 e 4 dell’Allegato 2 & descritto come questo diagramma di
fase si deforma al crescere di L fino a considerare il caso di puro folding. In Fig. 2.2 & riprodotto
il diagramma di fase del modello (2.1) nel caso L = 1.6: i due punti critici che limitano il ramo
superiore ed inferiore della linea del primo ordine hanno coordinate K = 0.175, h = 0.0076 e
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Figura 2.2. Diagramma di fase del modello (2.1) nel caso L = 1.6. Le linee continue e quella

tratteggiata indicano transizioni del primo e del secondo ordine rispettivamente. I dischi neri

rappresentano punti critici le cui coordinate sono date in Sezione 2.2. Il riquadro in alto a
destra € un ingrandimento della regione del diagramma di fase racchiusa nel quadrato.

K =0.262, h = 0.0009.

Il diagramma di fase del modello (2.1) nel caso di puro folding (L — oo) & mostrato in Fig.
2.3: i nostri risultati sono in ottimo accordo con quelli ottenuti in [FG2], ma tali risultati sono
stati estesi alla regione K < 0 dove e stata trovata una transizione del primo ordine. Comunque,
I’aspetto piu interessante del diagramma 2.3 € che anche il CVM prevede una transizione non
critica tra la fase flat e quella folded.

Questi risultati sono in contrasto con quelli ottenuti nel caso del modello di membrana
polimerizzata introdotto in [KN]; tale modello e stato studiato sia con un approccio alla Landau-
Ginzburg [NP, PKN, DG, AL, PK] sia mediante simulazioni numeriche [BEW, RK, HW, WS]:
tutti questi risultati mostrano che al variare dell’energia di bending il sistema manifesta una
transizione di fase critica da una fase crumpled ad una fase flat. Cosa accade, allora, se il
modello di superficie triangolata con lunghezza dei legami fissa viene immerso in uno spazio
ambiente tridimensionale?

In [BFGG] ¢ stato proposto un modello in cui la superficie triangolata (varieta bidimen-
sionale) viene immersa in un reticolo cubico a facce centrate (fcc), quindi in uno spazio di
dimensione D = 3. In questo modello le placchette della superficie triangolata “poggiano”
sulle facce del reticolo fcc, quindi due placchette adiacenti formano un angolo che puo assumere
soltanto quattro valori (si veda la Fig. 2.4).

In [BFGG] questo modello ¢ stato scritto come un modello di spin: una coppia di variabili
di spin z;,0; € {—1,+ 1} viene associata ad ogni placchetta della superficie triangolata, ovvero
ad ogni sito del reticolo esagonale bidimensionale duale della superficie triangolata. I valori di
queste variabili su due placchette adicenti (per esempio j = 1 e j = 2) determinano ’angolo
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Figura 2.3. Diagramma di fase del modello (2.1) nel limite di puro folding. Le linee continue
e quella tratteggiata indicano transizioni del primo e del secondo ordine rispettivamente.

fra le due placchette in accordo con le seguenti prescrizioni:

2_; = +1, Z_; = +1 = assenza di piega
2_; =1, Z_; =+1 = piega acuta
% =1, Z_; = —1 = piega ottusa
2= 41, 2= -1 = piega completa

z2 o2

(2.3)

(si veda la Fig. 2.4). Perché una configurazione delle variabili z; e o; possa corrispondere
effettivamente ad una configurazione della superficie triangolata sul reticolo fcc, le variabili di
spin devono soddisfare i due vincoli seguenti:

6
> o;=0mod 3 , (2.4)

i=1
dove l'indice ¢ e associato ai sei vertici di una cella elementare del reticolo esagonale, e
61— ZiZi+1
> — A =0mod2 ¢=12 (2.5)
i=1 2 7

dove zp =z e

)1 se 2}21% =cmod 3
| 0 altrimenti
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1

Figura 2.4. I quattro modi in cui & possibile piegare due placchette adiacenti della superficie

triangolare immersa nel reticolo fcc. Da sinistra verso destra e dall’alto verso il basso: as-

senza di piega, piega acuta (70°32'), piega ottusa (109°28') e piega completa. I dischi scuri
rappresentano i vertici in una cella elementare del reticolo fcc.

0.5

02—t ‘
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K

Figura 2.5. Diagramma di fase del modello (2.7).

Nel lavoro [CGP2] ¢ stata definita I’hamiltoniana di questo modello

K
H(O’,Z) = —g ZO’Z'O'j(l + QZlZJ) — thzi,l(Sgi,l 5 (27)
(17) g
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per ogni configurazione (0,z) ed & stato studiato il suo comportamento all’equilibrio termodina-
mico con il CVM (per i dettagli tecnici si rimanda all’Allegato 3). La funzione (2.7) ¢ stata defi-
nita associando a due placchette adiacenti il costo energetico —K cos f con 6 ’angolo tra le due
normali alle placchette; tale contributo puo essere scritto nella forma —% > (i) 0;0j(1+22;2;) in
termini delle variabili di spin. Per rompere la simmetria dell’hamiltonia sotto la trasformazione
Z; — —z; e 0; — —0; Vi e stato introdotto il campo h.

Il diagramma di fase del modello (2.7) ¢ stato riportato in Fig. 2.5. Si osserva che per ogni
valore del campo A si trova una transizione del primo ordine da una fase flat ad una fase folded.
I1 CVM, quindi, suggerisce che non e sufficiente immergere la superficie triangolata nel reticolo
fce per ottenere le proprieta critiche della transizione di crumpling.

2.3 Le miscele ternarie

Lo studio delle miscele ternarie in Meccanica Statistica e stato condotto mediante I’introduzione
di modelli di spin definiti su reticolo cubico tridimensionale. Gli spin +1 e —1 rappresentano
due elementi della miscela, per esempio acqua e olio, mentre il surfatante e rappresentato dalle
superfici di Peierls che separano le isole di piu da quelle di meno. Le varie fasi possone essere
controllate introducendo dei parametri opportuni nell’hamiltoniana del modello.

0.3

0.2 [ty gy

0.5 | b

0.L [t

0.05 [

0,05 [

O N N S N B A

Figura 2.6. Diagramma di fase del modello (2.8) nel caso J; = Jo. F,P e AF denotano
rispettivamente le fasi ferromagnetica, paramagnetica ed antiferromagnetica.

Un modello particolarmente interessante e quello in cui si considera l’accoppiamento tra
spin primi vicini, secondi vicini e placchette. L’hamiltoniana del modello ¢ la seguente

H:= J1 Z 0035 + J2 Z 005 + J4ZUinUkUl s (28)

<tj> <<Lig>> ;D;c
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1 12
Bs

Figura 2.7. Diagramma di fase del modello (2.8) nel piano 3;, — Bs per diversi valori di (¢.

Le diverse curve, da destra verso sinistra, si riferiscono ai valori 8¢ = —0.2, — 0.1, — 0.04,0.

I simboli F, AF e RI denotano rispettivamente le fasi ferromagnetica, antiferromagnetica e
random isotropic, ovvero paramagnetica.

dove Jy, J, e Jy sono numeri reali, o; € {—1, 4+ 1} ¢ la variabile di spin associata al sito i e le
tre somme sono eseguite rispettivamente su tutte le coppie di siti primi vicini, secondi vicini e
su tutte le placchette del reticolo cubico tridimensionale. I parametri J;, J5 e J4 possono essere
espressi in termini dei parametri 8g, Sc e (1, che rappresentano, rispettivamente, il costo in
termini di energia di una placchetta, di due placchette ad angolo retto e di quattro placchette
che condividono un lato [CCGM]:

B  Bc Br , Be

Bs + b1,
9 +ﬁc’7 J2 g 4 ) J4 3 + 4 ( 9)

Valori positivi di (¢ favoriscono le configurazioni piatte, in sostanza (o corrisponde ad una
energia media di curvatura; mentre valori positivi del termine [ inibiscono la presenza di
contatti tra le varia superfici, nel limite 3, — oo si ha un modello di superfici autoevitantesi
(self-avoiding).

Il modello (2.8) ¢ stato introdotto come un semplice modello statistico atto a descrivere
il comportamento delle superfici random [NPW, CCGM, Ka] e delle microemulsioni [GS]; di
recente € stata proposta la sua interpretazione come modello discreto di stringhe (gonihedric
Ising model) [ASSS, SW, SSW, JM, PW, CGJP].

Il comportamento critico della versione bidimensionale del modello (2.8) & stato studiato a
lungo ed &, oramai, ben noto [Le, Bax]; il caso tridimensionale ¢ un problema tutt’ora aperto.
[ risultati ottenuti con la teoria di campo medio [CCGM, GLM] suggeriscono che il diagramma
di fase di tale modello sia estremamente ricco e che presenti fasi ordinate lamellari e bicontinue
e fasi di disordine strutturato e non-strutturato [W, CGM]. Il diagramma di fase appare molto
interessante perché riproduce alcune delle fasi che vengono osservate sperimentalmente.

Ji
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Figura 2.8. Diagramma di fase del modello (2.8) nel caso J; = 0. La linea continua e quella
a tratti rappresentano, rspettivamente, una transizione del primo e del secondo ordine.
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Figura 2.9. La linea continua, quella tratto-punto e quella a tratti rappresentano rispettiva-
mente ’energia libera della fase ferromagnetica, paramagntica e lamellare nel caso J; = 0.
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Figura 2.10. Diagramma di fase del modello (2.8) nel caso Jy/Jo = —2. La linea continua e

quella a tratti rappresentano, rspettivamente, una transizione del primo e del secondo ordine.

11 disco nero rappresenta il punto tricritico, lei cui coordinate sono Ji"¢ = 0.273 e Ji¢ = —0.05.

Nel lavoro [CG] abbiamo affrontato il problema della descrizione del diagramma di fase del
modello (2.8) utilizzando la “Lower Bound Renormalization Group Transformation” (LBRG)
introdotta da Kadanoff in [K]. Per la definizione della trasformazione e per tutti gli aspetti
tecnici relativi si rimanda alla Sezione 2 dell’ Allegato 4, qui si descrivono i prncipali risultati di
interesse fisico. In Fig. 2.6 e riportato il diagramma di fase nel piano J, = J5: la transizione di
Ising viene descritta molto bene, il punto critico viene trovato a (. = 0.23925 e per 'esponente
critico della lunghezza di correlazione si trova v = 0.6288, mentre le migliori stime ottenute in
[FL] con raffinate procedure Monte Carlo sono (. = 0.22165 e v = 0.6289 + 0.0008.

Una diversa rappresentazione del diagramma di fase puo essere data in termini dei parametri
Bs, Bc e Br; in Fig. 2.7 & rappresentato il diagramma di fase del modello (2.8) nel piano 3;, — s
a diversi valori del parametro f¢c. A valori grandi di g la fase ferromagnetica descrive una
fase con piccole superfici diluite; quando (g decresce viene favorita la presenza di superfici e si
ottiene una fase in cui 'interfaccia invade tutto il sistema. Ma se 31 e sufficientemente grande
si stabilisce una fase completamente isotropica, la fase paramagnetica.

La trasformazione LBRG, pur fornendo degli ottimi risultati pe la transizione di Ising, ha dei
grossi limiti in altre regioni dello spazio dei parametri: per esempio per J; < 0 e per per J, < 0.
Cio si spiega perche in quelle regioni la trasformazione non rispetta le simmetrie degli stati
fondamentali dell’hamiltoniana. Per esempio, la transizione F-P a .J; piccolo e stata studiata in
dettaglio anche mediante simulazioni numeriche [CCGM, Ka| e sono stati trovati alcuni punti
tricritici con esponenti classici; mentre la LBRG non prevede 'esistenza di punti tricritici sulla
linea di transizione F-P: nell’approssimazione LBRG la transizione e critica lungo tutta la linea
(superficie).

Per studiare le regioni del diagramma di fase non accessibili mediante la LBRG in [CGJP,
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CGP3, CGP4] abbiamo utilizzato I’approssimazione di cubo del CVM (si veda I’Appendice A,
[Kil, A, M]) e il calcolo degli esponenti critici ¢ stato effettuato con il cluster variation-Padé
approzimant method (CVPAM) [Pel, Pe2]. In particolare ¢ stato studiato il diagramma di
fase del modello (2.8) nella regione J, < 0 dove si osserva una transizione di fase tra le fasi
ferromagnetica e paramagnetica ed una fase caratterizzata da una successione alternata di piani
di spin piu e meno alti un passo reticolare (fase lamellare).

Nel caso bidimensionale le linee che delimitano la fase ferromagnetica e la superantiferro-
magnetica (’equivalente della fase lamellare in due dimensioni) non si incontrano mai, ovvero
la fase paramagnetica si estende fino all’infinito; in altri termini scegliendo opportunamente
il rapporto .J,/.J; nel caso bidimensionale si osserva la fase paramagnetica per temperatura
arbitrariamente bassa [Bax].

Nel caso tridimensionale, invece, la fase paramagnetica e racchiusa in una zona limitata: in
Fig. 2.8 ¢ rappresentato il diagramma di fase del modello (2.8) ottenuto con il CVM nell’ap-
prossimazione di cubo nel caso J; = 0. La linea che separa la fase ferromagnetica da quella
paramagnetica € una linea del secondo ordine; il punto critico del modello di Ising standard
¢ aJ; = 0.218 (la stima del punto critico del modello di Ising standard & molto piu accurata
rispetto a quella fornita dalla LBRG). La fase lamellare ¢ separata da quella ferromagnetica
e da quella paramagnetica da una linea del primo ordine che nel limite di bassa temperatura

si avvicina asintoticamente alla linea Jo, = —J;/4 [St]. La linea critica interseca la line di
coesistenza nel “critical end point” di coordinate J{™ = 0.865 e J$™! = —0.2176. Lungo la
linea Jo = —.J; /4 il sistema manifesta un transizione critica dalla fase ferromagnetica a quella

paramagnetica (alta temperatura); la natura critica di questa transizione ¢ evidente in Fig. 2.9
dove sono stati disegnati gli andamenti dell’energia libera delle tre fasi.

All’interno della fase paramagnetica e possibile distinguere tra due regioni: una detta non-
strutturata, per valori grandi di J,, caratterizzata dal decadimento esponenziale delle correlazio-
ni, ed una detta strutturata in cui il decadimento esponenziale ¢ accompagnato da oscillazioni
su una piccola scala. Queste oscillazioni su piccola scala segnalano la presenza di strutture
ordinate sulla scala di qualche passo reticolare: si tratta di una fase di microemulsione con
presenza di micelle [CGT].

Modificando il valore del rapporto J;/Jo la topologia del diagramma di fase resta simile a
quella descritta nel caso J; = 0, ma quando J;/.J, diventa piu piccolo di —1/4 allora sulla linea
ferro-para compare un punto tricritico; ovvero la transizione ferromagnetica-paramagnetica
diventa del primo ordine quando la linea si avvicina alla fase lamellare. A titolo di esempio in
Fig. 2.10 ¢ stato riportato il diagramma di fase del modello (2.8) nel caso Jy/Jo = —2; sulla
linea ferro-para compare un punto tricritico le cui coordinate sono J¢ = 0.273 e Ji¢ = —0.05.

2.4 Il modello goniedrico

I1 comportamento del modello lungo la linea Jy/.JJ; = —1/4 ¢ di particolare interesse, perché
lungo quella linea il modello (2.8) coincide con il “gonihedric Ising model” [ASSS, SW, SSW,
JM, PW, CGJP]. Tale modello, infatti, ¢ definito scegliendo i parametri J;,.Jo,J; nel modo

seguente
K 11—k
J1 = 2/€ﬁ s J2 = —Eﬁ e J4 = 5 ﬂ s (210)
con K un parametro reale e positivo e ( la temperatura inversa. In altre parole il modello
goniedrico ¢ il modello (2.8) con s = 0 e fc = 1; Bs = 0 implica che 'estensione della
superficie non e controllata da un parametro esterno, mentre 3o = 1 implica che le superfici
piatte sono preferite.
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K
0 025 05 1 2 5 10
T.TCVM 0550 0.464 0.443 0.427 0.421 0.420 0.420
T MCHWM 0505 - 044 044 044 044  0.44

T-' MFPM 0,325 031 0.278 0.167 0.09 0.0335 0.02

Tabella 2.1. Risultati ottenuti in [CGJP] per la temperatura inversa di transizione . del
gonihedric Ising model per diversi valori di «.

La caratteristica principale del modello goniedrico e I’elevato grado di degenerazione degli
stati fondamentali: tutte le possibili sequenze di piani di spin piu alternati a piani di spin meno
(nel caso Jy/J; > —1/4) sono minimi degeneri dell’energia. La situazione cambia drasticamente
quando (s # 0: per valori positivi di Gs lo stato fondamentale & quello ferromagnetico, mentre
per valori negativi lo stato fondamentale e costituito da una sequenza di piani di spin piu
alternati a piani di spin meno (massima estensione della superficie).

Nel lavoro [CGJP] e stato trovato che il modello (2.10), a bassa temperatura, manifesta la
transizione dalla fase paramagnetica a quella ferromagnetica per ogni valore di k > 0. Inoltre, si
e ottenuto che la transizione ¢ critica per k > 0.87, mentre per piccoli valori di x la transizione
e del primo ordine. In Tabella 2.1 sono riportati i valori di 5 ai quali si manifesta la transizione
per alcuni valori di x e i nostri risultati vengono confrontati con risultati ottenuti in precedenza
mediante simulazioni Monte Carlo e teoria di campo medio. Per una descrizione piu dettagliata
dei risultati ottenuti si rimanda agli Allegati 5,6 e 7.

Di recente numerosi studi basati su sviluppi ad alta temperatura [SSS] e su simulazioni
Monte Carlo [JM] hanno posto il problema dell’'universalita degli esponenti critici del modello
goniedrico (I'esistenza di una fase con ordine su larga scala ¢ stata dimostrata analiticamente
nel caso Jy = 0 in [PW]). In [SSS, JM] & stata proposta la congettura che il modello goniedrico
sia nella classe di universalita del modello di Ising bidimensionale, ma ulteriori misure Monte
Carlo [BEJM] forniscono stime degli esponenti critici incompatibili con la congettura su esposta.
Anche simulazioni precedenti effettuate in [H| non riescono a dare una stima definitiva degli
esponenti critici.

In [CGJP, CGP3] l'analisi degli esponenti critici effettuata con il metodo CVMPAM mo-
stra la presenza di forti effetti di crossover, probabilmente dovuti alla vicinanza della fase
lamellare, che potrebbero essere responsabili dei risultati contrastanti ottenuti nelle simulazioni
[JM, BEJM]; il valore trovato per I'esponente della magnetizzazione & = 0.062 £ 0.003 che ¢
in buon accordo con i risultati di precedenti simulazioni 3/v = 0.04(1) e v = 1.2(1) [JM].

Per tentare di approfondire il problema abbiamo effettuato in [CGP4] delle simulazioni
Monte Carlo con l'algoritmo di Metropolis. In Fig. 2.11 e riportato il calore specifico in
funzione della temperatura inversa nel caso x = 1 per diversi valori della taglia del reticolo
(L =12,16,18). I dati sono stati ottenuti medianto su 2000 misure decorrelate per ogni valore
di L e della temperatura inversa 3. La stima del tempo di decorrelazione e stata di 1000
iterazioni (una iterazione corrisponde ad un intero aggiornamento del reticolo) nei casi piu
sfavorevoli. Questi tempi sono molto pin grandi di quelli usati in [JM, BEJM]| ma sono stati
necessari per ottenere delle stime stabili del calore specifico.

I nostri dati sono stati interpolati con la curva Chay/b[(8 — 8.)% + 1] e i valori dei parametri
Chax € (. ottenuti per i diversi valori di L sono riportati in Tabella 2.2. 1l fit della posizione
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Figura 2.11. Misura del calore specifico del modello goniedrico nel caso x = 1. I dischi, i
quadrati e i triangoli si riferiscono rispettivamente ai casi L = 12,16,18. Le linee continue
rappresentano l'interpolazione ottenuta mediante la funzione Chax/b[(8 — B¢)? + 1].

L Oma,x /BC

8  2.8041 £0.0237 0.41182 £ 0.00021
10 4.3707£0.0706  0.41872 £ 0.00018
12 6.1137£0.0334  0.42300 £ 0.00010
16 9.4068 £ 0.0586  0.42794 £ 0.00004
18 10.6710 £ 0.0883 0.42937 £ 0.00002

Tabella 2.2.  Valori di Cpax € B. per diverse scelte della dimensione L del reticolo.

del picco con la funzione [, = Bt + al~v fornisce le stime Berit = 0.4370 £ 0.0001 e 1/v =
1.483 £0.001. Poiche la miglior stima di 1/v per il modello di Ising ¢ 1/v = 1.594 4+ 0.004 [FL]
sembra necessario dover considerare reticoli molto piu grandi per chiarire in modo definitivo la
classe di universalita del modello goniedrico.

Questo problema mette in luce alcuni limiti del Monte Carlo: a causa della presenza di tre
fasi “praticamente” coesistenti, i tempi di decorrelazione delle grandezze misurate sono molto
elevati e cio implica la necessita di esperimenti numerici molto lunghi. Pertanto ci si limita
a considerare reticoli abbastanza piccoli L < 18, ma cido comporta una scarsa affidabilita del
finite-size scaling.
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2.5 Accoppiamenti a soglia

Nella sezione precedente si e visto come, per effetto di interazioni in competizione, e possibile
avere delle fasi di bassa temperatura costituite da un alternarsi regolare di strutture unidi-
mensionali. Pit precisamente il modello (2.8) in due dimensioni esibisce la fase superantiferro-
magnetica, una struttura modulata con passo uno, quando si considera un accoppiamento tra
secondi vicini antiferromagnetico e abbastanza intenso. Il modello di Ising con accoppiamento
assiale tra secondi vicini (ANNNI model) & il piu semplice tra i modelli che descrivono strutture
modulate con passo aribitrario; tali strutture possono essere osservate sperimentalmente nelle
leghe binarie [Y, Se].

Nel lavoro [CS] & stato proposto un modello in cui ogni spin tende ad allinearsi con la
maggioranza degli spin che lo circondano ed e stato mostrato che il modello presenta una fase
di bassa temperatura caratterizzata da strisce di spin “su” alternate a strisce di spin “giu”
(striped phase).

I1 modello ¢ definito sul reticolo bidimensionale A = Z2, ad ogni sito ¢ € A & associata una
variabile di spin s; € {—1,+ 1}, £ := {—1, + 1}" rappresenta lo spazio delle configurazioni,
un suo generico elemento s € (2 rappresenta una configurazione del sistema e la sua energia e
data dall’hamiltoniana del sistema

H(s):=—0 Y sipi(s) Vse 2, (2.11)

1€A

dove (3 & un numero reale positivo (I'inverso della temperatura) e

bi(s) := sign {Zg: sij} Yied, (2.12)

=1

dove con s;; 7 = 1,...,9 sono stati denotati i nove spin associati ai siti appartenenti al quadrato
3 x 3 B; centrato sul sito 7. Il comportamento del sistema all’equilibrio ¢ descritto dalla funzione
di partizione
Zu(5) = Y exp(~H(s)) . (2.13)
sef?

Se # > 0 il modello ¢ caratterizzato da un accoppiamento di tipo ferromagnetico, cioe gli
spin vicini tendono ad allinearsi, ma si tratta di un accoppiamento diverso da quello tra spin
primi vicini tipico dell’usuale modello di Ising. Si puo parlare di “accoppiamento ferromagnetico
con soglia” nel senso di seguito descritto: se s; = 41, nel modello di Ising il contributo del sito
1 all’energia totale del sistema e tanto piu basso, quanto piu alto € il numero di spin + tra i suoi
primi vicini; cioe se il numero degli spin + primi vicini aumenta, si ottengono configurazioni
ad energia sempre piu bassa. Nel modello (2.11), invece, il contributo all’energia totale del
sistema da parte del sito 7 ha due soli possibili valori: +/ se il numero di spin + in B; € minore
di cinque, —f altrimenti; quindi dal punto di vista del sito ¢ la situazione energeticamente
preferibile viene raggiunta quando in B; \ {¢} ci sono almeno quattro spin -+, non vi & nessun
ulteriore vantaggio se il numero di spin + in B; \ {i} diventa maggiore di quattro.

Dal punto di vista entropico & preferibile avere solo quattro spin + in B; \ {i} piuttosto che
averne piu di quattro (al limite 8), perché questa e la situazione in cui si ha il pitt alto numero
di configurazioni possibili. Questa osservazione suggerisce che non e affatto ovvio che a bassa
temperatura il sistema preferisca la fase ferromagnetica.
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1 ‘ Vi ‘ description of [; ‘ typical cluster in [;
1 | +200 | pairs of nearest neighbors sites
2 | 4240 | pairs of next to the nearest neighbors sites
3 | -60 | pairs of second-neighbor sites along the lattice
directions
4 | -40 | two-site clusters with sites at distance /5 lattice
spacings
5 | -20 | pairs of second-neighbor sites along the lattice diagonals

6 | -80 | plaquettes

7 | -40 | four-site clusters containing the center of the block B
and occupying a 3 x 2 rectangular block

8 | -20 | four-site clusters containing the center of the block B
and occupying the whole B

9 | +24 | four-site clusters not containing the center of the block
B and occupying a 3 x 2 rectangular block

10 | 412 | four-site clusters not containing the center of the block
B and occupying the whole B

11 | +12 | six-site clusters containing the center of the block B and
occupying the whole B

12 | 424 | six-site clusters containing the center of the block B and
occupying a 3 X 2 rectangular block

13 | -20 | six-site clusters not containing the center of the block
B and, necessarily, occupying the whole block B

14 | -20 | eight-site clusters containing the center of the block B

15 | +140 | eight-site clusters not containing the center of the block
B

B 8| 8| B8 H HEE DB OB

Tabella 2.3. Lista dei coefficienti ;, introdotti in (2.11). Nella terza colonna vengono des-

critte brevemente le famiglie I cui sono legati i coefficienti ;. Nella quarta colonna viene

rappresentato un tipico elemento ( € Ij: la griglia rappresenta il blocco 3 x 3 B in cui &
contenuto (, i siti di B appartenenti a ( sono rappresentati dai dischi neri.

D’altro canto il modello (2.11) non & strettamente ferromagnetico, nel senso che la sua
hamiltoniana non soddisfa le ipotesi sotto cui sono valide le disuguaglianze di Griffiths [G].
Infatti la sua hamiltoniana puo essere scritta come somma di potenziali a piu corpi e si ottiene
che non tutti questi accoppiamenti sono positivi, cioe certi potenziali, per esempio tutti quelli
a due corpi diversi da primi-vicini e secondi-vicini, sono di tipo antiferromagnetico. In altri
termini I’hamiltoniana puo essere scritta nella forma

H(s) =~ 3% 3 s(0) (2.14)

i=1 (el

dove v; € un numero reale, I; ¢ una famiglia di sottoinsiemi di un blocco di siti 3 X 3 e, preso
¢ € I3, s(¢) e il prodotto degli spin associati ai siti appartenenti a (. L’elenco completo di tutte
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le famiglie I e dei relativi coefficienti ; e dato nella Tabella 2.3. A titolo di esempio si osserva
che I} e la famiglia costituita da tutte le coppie di siti primi vicini e I € quella costituita da
tutte le placchette.

Il diagramma di fase a bassa temperatura e stato studiato utilizzando la trasformazione del
gruppo di rinormalizzazione nota come “majority rule” [NL1, NL2J; la funzione hamiltoniana
rinormalizzata ¢ stata calcolata effettuando una espansione in cumulanti [NL2]. Nell’ambito di
questa approssimazione il modello esibisce una transizione di fase critica a bassa temperatura,
cioe esiste un valore critico (3. del parametro 3, tale che se § < [, il sistema e nella fase
paramagnetica, altrimenti e in una fase a strisce larghe tre passi reticolari.

Per il dettaglio dei calcoli si rimanda all’Allegato 8 [CS], dove & stato studiato anche un
altro modello con accoppiamento ferromagnetico a soglia, ottenuto considerando dei blocchi a
forma di croce al posto dei blocchi quadrati B;.

Verificare la bonta dei risultati ottenuti in [CS] mediante uno studio numerico del problema
e senza dubbio interessante, ma ci si scontra contro la necessita di considerare valori troppo
bassi della temperatura; ’ostacolo potrebbe essere aggirato utilizzando la dinamica “BKL” che

e particolarmente adatta a studiare il comportamento di sistemi statistici a temperatura molto
bassa [BMB, BKL].
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Allegato 2
Folding transitions of the triangular lattice with defects.

E.N.M. Cirillo, G. Gonnella, A. Pelizzola, Phys. Rev. E 53, 1479, 1996

Riassunto

Si generalizza un modello introdotto in lavori recenti per la descrizione della
transizione di folding in un reticolo triangolare e si studia il modello risul-
tante per mezzo dell’approssimazione esagonale del CVM. In particolare
si studia il passaggio dal modello di puro folsing al modello di Ising e si
ottiene una struttura molto ricca nei diagrammi dei fase. I nostri risultati
sono in buon accordo con quelli esatti e con quelli ottenuti per mezzo della
matrice di trasferimento.

43






Applicazione del CVM ad alcuni modelli di superfici

Allegato 3
Folding transition of the triangular lattice in a discrete three-dimensional space.

E.N.M. Cirillo, G. Gonnella, A. Pelizzola, Phys. Rev. E 53, 3253, 1996

Riassunto

Si studia un modello a vertici introdotto in [BFGG] per la descrizione del
“folding” di una superficie triangolare posta sul reticolo a facce cubiche
centrate per mezzo dell’approssimazione esagonale del CVM. Il modello
descrive il comportamento di una membrana polimerizzata posta in uno
spazio tridimensionale discreto. Abbiamo introdotto un’energia di curva-
tura ed un campo che rompe la simmetria e abbiamo studiato il diagramma
di fase del modello risultante. Variando il parametro di curvatura il model-
lo esibisce una transizione di fase del primo ordine tra una fase piatta ed
una in cui la superficie ¢ accartocciata.
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Allegato 4
Renormalization Group results for lattice surface models.

E.N.M. Cirillo, G. Gonnella, J. phys. A: Math. Gen. 28 | 867-877, 1995

Riassunto

Si studia il diagramma di fase di un modello statistico di superfici chiuse
ed aperte costruite su un reticolo cubico. Le superfici chiuse interagenti
posso essere scritte come un modello di Ising, mentre quelle aperte come
un modello di gauge Z(2). Quando le superfici aperte si riducono a quelle
chiuse con pochi difetti, anche il modello di gauge puo essere scritto come
un modello di Ising, Si applica la lower bound renormalization group trans-
formation (LBRG) introdotta da Kadanoff (Phys. Rev. Lett. 34, 1005
(1975)) per studiare il modello di Ising che descrive le superfici chiuse e
quelle aperte con pochi difetti. I nostri risultati vengono paragonati a quel-
li presentati in lavori numerici precedenti. I limiti della LBRG emergono
quando si cerca di descrivere il diagramma di fase in regioni corrispondenti
a stati fondamentali non ferromagnetici.
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Allegato 5
The Phase Diagram of the Gonihedric 3d Ising Model via C'VM.

E.N.M. Cirillo, G. Gonnella, D.A. Johnston, A. Pelizzola, Physics Letters A 226, 59-64, 1997

Riassunto

Per mezzo dell’approssimazione di cubo del CVM si studia il diagramma di
fase del modello goniedrico tridimensionale definito da Savvidy e Wegner.
I risultati ottenuti con il CVM sonoin buon accordo con quelli ottentuti
tramite simulazioni Monte Carlo per le temperature critiche e per ’ordine
della transizione quando il parametro k viene variato. Il valore dell’espo-
nente critico della magnetizzazione 8 = 0.062+0.003 & statop calcolato con
con il metodo degli approssimanti di Pade e risulta in buon accordo con il
valore ottenuto dalle simulazioni.
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Allegato 6
Critical behaviour of the three-dimensional Ising model with nearest neighbor,
next nearest neighbor and plaquette interactions.

E.N.M. Cirillo, G. Gonnella, A. Pelizzola, Phys. Rev. E 55, R17, 1997

Riassunto

Il comportamento critico e multi-critico del modello di Ising tridimensio-
nale con accoppiamento tra primi vicini, secondi vicini e placchette viene
studiato nell’ambito dell’approssimazione di cubo del CVM. Particolare at-
tenzione e rivolta alla linea costituita dai punti ove termina la linea che
separa la fase ferromagnetica e quella paramagnetica: si calcolano gli espo-
nenti (multi)critici e il loro valore suggerisce che la transizione appartiene
ad una nuova classe di universalita. Si fornisce, inoltre, un stima degli
esponenti di crossover.
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Allegato 7
Critical behaviour of the three-dimensional gonthedric Ising Model.

E.N.M. Cirillo, G. Gonnella, A. Pelizzola, Proceedings of the Conference ”Lattice 1997”7, Pre-
print BARI-TH/97-287

Riassunto

approssimazione CVM viene studiato il diagramma di fase del modello go-
niedrico tridimensionale proposto da Savvidy e Wegner. Questo modello
corrisponde all’usuale modello di Ising tridimensionale con accoppiamenti
tra primi vicini, secondi vicini e placchette nella regione con stati fonda-
mentali lamellari degeneri. Il diagramma di fase fornito dal CVM ¢ in buon
accordo con i risultati Monte Carlo e si mostra che il modello & nella stessa
classe di universalita dell’ordinario modello di Ising tridimensionale.
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Allegato 8
Polymerization in a Ferromagnetic Spin Model with threshold.

E.N.M. Cirillo, S. Stramaglia, Phys. Rev. E 54, 1096, 1996

Riassunto

Si propone un modello di spin con un nuovo tipo di interazione ferroma-
gnetica, che puo essere chiamata interazione ferromagnetica a soglia. In
questo modello il contributo di uno spin all’energia totale ha due possibili
valori in funzione del numero di spin ad esso paralleli tra i suoi primi e
secondi vicini. Trasformando il nostro modello nella versione di Ising del
modello ad otto vertici viene messa in evidenza ’esistenza di una fase di
bassa temperatura caratterizzata da una successione alternata di polimeri
di spin positivi e negativi.
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Capitolo 3

Analisi Monte Carlo della crescita di
domini anisotropi

3.1 Introduzione

In questo capitolo verra discusso il problema della decomposizione spinodale nell’ambito del
modello ad otto vertici bidimensionale introdotto nella Sezione 2.3, quando il sistema viene
raffreddato dalla fase disordinata alla fase ordinata superantiferromagnetica (SAF).

Quando un sistema viene raffreddato da una fase disordinata ad una ordinata, il processo di
riordinamento non avviene istantaneamente, bensi tramite la crescita di domini ordinati delle
due (o piu) fasi in competizione. Si pensi, per esempio, al caso ferromagnetico del modello
stocastico di Ising con dinamica di Metropolis (si veda I’Appendice B): se all’istante ¢ =
0 il sistema viene portato dalla fase paramagnetica a quella ferromagnetica, il sistema deve
riordinarsi tramite la crescita di domini di spin piu e di spin meno a partire da una configurazione
completamente disordinata. Dopo lavori pioneristici come [Lif, LS, Wa, & stata dedicata grande
attenzione al problema, come ¢ testimoniato da alcuni lavori di rassegna [Gun, Br].

Un problema analogo ¢ quello della decomposizione spinodale nelle leghe binarie, problema
studiato per molte decadi in metallurgia, dove gli stadi finali di crescita sono noti come “Ost-
wald ripening”. La maniera piu semplice di pensare a questo problema e quella di trasformarlo
in un modello di Ising interpretando spin pitt e meno come atomi di tipo A e B [MLK, RKLM].
Le proprieta di equilibrio del modello di Ising descrivono molto bene le caratteristiche statiche
delle leghe binarie, ma dal punto di vista dinamico c’e una differenza profonda: la dinamica
di Metropolis permette I'inversione di uno spin, che nel linguaggio delle leghe binarie corris-
ponderebbe alla trasformazione di un atomo di tipo A in un atomo di tipo B, o viceversa,
cosa ovviamente inammissibile. Quindi nel caso di leghe binarie & necessario utilizzare una
dinamica che conservi il numero totale di spin pill e meno, cioe conservi la magnetizzazione e
permetta soltanto lo scambio tra due spin di segno diverso; solitamente si utilizza la dinamica
di Kawasaki [Kaw].

Uno degli aspetti piu interessanti di questo problema e che a tempi lunghi, cioe dopo la
prima fase in cui si passa da una configurazione completamente disordinata ad una struttura ben
definita di domini, la crescita delle regioni ordinate ¢ caratterizzata da una sorta di invarianza
di scala [Bat]. Ovvero guardando i domini a tempi lunghi essi sembrano “statisticamente” simili
a quelli osservati a tempi precedenti, a meno di una variazione della scala. In altri termini si
osserva (“ipotizza”, dimostrazioni esistono solo nel caso di modelli semplificati come il modello
unidimensionale di Glauber [DGY]) che a tempi lunghi il sistema ¢ caratterizzato da una singola
lunghezza L(t), la dimensione tipica dei domini ordinati, e che riscalando le lunghezze con L(t)

57



Analisi Monte Carlo della crescita di domini anisotropi

la struttura dei domini ¢ indipendente dal tempo.

L’invarianza di scala e stata osservata in numerosi lavori sia nel caso di dinamica conservata
che in quello di singolo spin flip; ma la legge con cui cresce la dimensione tipica dei domini
¢ diversa nei due casi. In entrambe le situazioni si osserva una legge di potenza L(t) ~ t7,
ma ’esponente di crescita vy risulta dipendere dal fenomeno alla base della crescita dei domini:
nel caso di modelli con parametro d’ordine conservato (dinamiche di Kawasaki) la crescita e
dovuta alla diffusione del parametro d’ordine da regioni ad alta curvatura verso regioni a bassa
curvatura e y = % [LS, RKLM, MB], mentre per modelli con parametro d’ordine non conservato
(dinamiche di Glauber) la crescita ¢ guidata dalla curvatura e v = 4 [Lif, AC, HB].

In [CGS1, CGS2] (Allegati 9 e 10) abbiamo studiato come si riordina il modello (2.8) in
dimensione due quando viene raffreddato nella fase superantiferromagnetica (lamellare in tre
dimensioni). Considerare una fase di bassa temperatura anisotropa, permette di porsi delle
domande suggestive sulle eventuali proprieta di anisotropia del processo di crescita.

Il raffreddamento del modello (2.8) nella fase ferromagnetica con J, = 0 & stato studiato
in [SHS, RC]. Quando J; < 0 esistono barriere energetiche che impediscono il raggiungimento
dell’equilibrio a temperatura nulla; queste barriere non crescono con la dimensione dei domini
a D = 2, cosa che avviene a D = 3 e che implica una dinamica estremamente lenta (crescita
logaritmica delle dimensioni dei domini. Mentre il raffreddamento del modello (2.8) nella fase
SAF in D = 2 ¢ stato studiato in [SB], dove ¢ stato mostrato che gli esponenti di crescita sono
% ed % rispettivamente nel caso di una dinamica di scambio di spin ed in quello di una dinamica
di singolo spin flip.

I risultati di [SB] sembrano suggerire che anche nella fase SAF il processo di riordinamento
avvenga secondo lo schema descritto in precedenza, in particolare a tempi lunghi vale I'ipotesi
di scala e non si nota alcuna anisotropia nella velocita di crescita dei domini. D’altro canto
in [CGS1, CGS2| abbiamo mostrato che le funzioni di correlazione misurate nelle direzioni
parallele e trasverse, rispetto ai domini, sono diverse come e suggerito dalle diverse energie di
interfaccia tra i vari stati fondamentali del modello (le funzioni di correlazione dipendono dai
dettagli del sistema [Ru]). In altri termini & vero che i domini crescono con la stessa legge nelle
due direzioni, ma la dimensione parallela e quella trasversa dei domini sono diverse.

Nella Sezione 3.2 si mostra come nel caso della SAF & possibile misurare gli esponenti di
crescita. Nella Sezione 3.3 si definisce una sorta di funzione di correlazione trasversa ed una
longitudinale rispetto alla direzione dei domini, e si mostra come per queste funzioni valga
Iipotesi di scala. Infine nella Sezione 3.4 si interpretano i risultati delle simulazioni alla luce
della Teoria di Ohta-Jasnow-Kawasaki.

3.2 Misura degli esponenti di crescita

Il diagramma di fase del modello (2.8) in dimensione D = 2 presenta una linea critica che separa
la fase paramagnetica da quella superantiferromagnetica nella regione J, < 0, [J;| < 2|.Jo| e J4
piccolo (si veda [Bax]). Nella regione SAF il modello ha quattro stati fondamentali degeneri che
consistono di righe (colonne) di piu alternate a righe (colonne) di meno; il parametro d’ordine
della fase SAF ¢, quindi, la differenza tra le magnetizzazioni delle righe (colonne) pari e dispari.
Pertanto la tipica configurazione del sistema nel regime di scaling ¢ un insieme di domini di
quattro tipi diversi (si veda Fig. 3.1). In Fig. 3.2 sono state evidenziati, invece, i siti di
interfaccia tra domini diversi.

La definizione di iterfaccia tra domini differenti non ¢ completamente ovvia nel caso della
fase SAF, perche esistono diversi tipi di interfaccia, come e stato evidenziato nei riquadri di
Fig. 3.2. Per capire se un sito appartiene ad un dominio o ¢ un difetto bisogna confrontare
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=

Figura 3.1. Tipica configurazione del modello (2.8) nel regime di scaling. I quadrati bianchi
e neri rappresentano gli spin meno e piu. La figura & stata ottenuta in un reticolo 100 x 100,
a temperatura zero, dopo 150 interi aggiornamenti del reticolo.

[ e

TH

Figura 3.2. In figura e rappresentata la stessa configurazione mostrata in Fig. 3.1; in questo
caso i quadrati neri rappresentano i siti di interfaccia.

la configurazione del sistema in un intorno di questo sito con tutte le possibili configurazioni
di un dominio SAF, orizzontali e verticali. Dove per domini orizzontali e verticali si intendono
domini che hanno rispettivamente righe o colonne magnetizzate.

Lo schema che & stato utilizzato in [CGS1, CGS2| ¢ il seguente: preso un sito (4,5), con
i I'indice di riga e j quello di colonna, si denota con s(i,j) lo spin corrispondente. Preso un
numero intero L si denota con B(i,j) il blocco (2L + 1) x (2L + 1) centrato sul sito (4,5) e si
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calcolano le due quantita seguenti:

dy = Y (1-0(s(+kj+1).(-1)"s(i.5)))
(3.1)
dy = Y (1=0(s(+kj+0,(-1)'s(.4)))

dove 6(-,-) rappresenta la delta di Kroneker. Si osserva che dj, e d, rappresentano, rispettiva-
mente, la “distanza” in B(i,j) tra la configurazione attuale del sistema e le due configurazioni
SAF orizzontali e verticali. Se d;, o d, sono piu piccole di un certo numero intero M, allora
il sito (4,j) viene considerato appartenente ad un dominio orizzontale o verticale, altrimenti
viene considerato un difetto. Si e visto che tutti i risultati che verranno discussi in seguito sono
sostanzialmente indipendenti dalla scelta di L ed M, nell’analisi delle simulazioni si ¢ usato
sempre L =1e M = 2.

I metodi classici di misura dell’esponente di crescita 7 si basano sullo studio di alcune
proprieta delle funzioni di correlazione a due punti; questi metodi verranno discussi nella sezione
successiva, ora si descrivono altri due metodi di piu facile applicazione nel caso della fase SAF.
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Figura 3.3. 1l logaritmo naturale del numero totale A dei difetti ¢ riportato in funzione in
funzione del logaritmo naturale del tempo. La figura si riferisce ad un reticolo 512 x 512, a
temperatura finita § = 1 e parametri J; = 0.1, J, = —1 e Jy = 0.1. I dischi e i quadrati
neri (figura in alto e figura in basso) sono i risultati ottenuti in una simulazione Monte Carlo
mediando su 50 storie indipendenti del sistema, rispettivamente con dinamica di Metropolis e

Kawasaki. La pendenza della linea continua e —% in alto, —% in basso.

Si osserva che se il sistema e in regime di invarianza di scala, allora tutte le dimensioni che
descrivono il sistema devono avere un andamento con il tempo simile a quello di L(t), allora
una prima maniera per ricavare ’esponente v € quella di studiare come si riduce al crescere del
tempo il numero totale dei siti di interfaccia. In Fig. 3.3 e riportato il logaritmo naturale del
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numero totale A dei difetti in funzione in funzione del logaritmo naturale del tempo. La figura
si riferisce ad un reticolo 512 x 512, a temperatura finita § = 1 e parametri J; = 0.1, Jo, = —1
e J; = 0.1. I dischi e i quadrati neri (figura in alto e figura in basso) sono i risultati ottenuti in
una simulazione Monte Carlo mediando su 50 storie indipendenti del sistema, rispettivamente
con dinamica di Metropolis e Kawasaki. I risultati numerici soddisfano alla legge di scala
A~t77cony= % nel caso di dinamica di singolo spin flip e v = % nel caso della dinamica di
Kawasaki. Cio conferma i risultati di [SB] dove la misura di y & stata effettuata secondo uno
schema completamente diverso (si veda 1’Allegato 10).

In [CGS1, CGS2] ¢ stato anche osservato che sia la validita della legge di scala, sia la stima
di v non dipendono ne dai parametri J;, Jy e Jy, ne dalla temperatura. Nel caso di dinamica
di singolo spin flip e stata considerata anche la situazione = oo, ovvero il riordinamento a

temperatura zero (dinamica di Bagno Termico) [HB].

log T

A OO N © ©

b b b b b b e e |
3 325 35 375 4 425 45 475 5 525

log L

Figura 3.4. 1l logaritmo naturale del tempo di contrazione 77 € riportato in funzione del

logaritmo naturale di L. I dischi neri sono i risultati Monte Carlo ottenuti mediando su 10

prove indipendenti nel caso di temperatura zero, con parametri J; = 0.1, Jo = —1e Jy = 0.
La pendenza della linea continua & 2.

Un modo alternativo per la misura dell’esponente di crescita consiste nello studio della
contrazione di una goccia di una fase immersa nel mare di una fase diversa. In [Br| & mostrato
come il tempo tipico in cui avviene questa contrazione scala con la dimensione della goccia
iniziale con l'inverso dell’esponente di crescita: in altri termini, detto 77, il tempo di contrazione
di una goccia quadrata di taglia L, si ha 7 ~ L7. Nel caso della dinamica di singolo spin
flip abbiamo studiato la contrazione di una goccia di una certa fase SAF immersa in tutti i
diversi possibili sfondi; in Fig. 3.4 € stato riportato il logaritmo naturale di 77, in funzione del
logaritmo naturale di L. I dati numerici confermano la legge di scala e ’esponente trovato e 2,
in perfetta armonia con il risultato v = %
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3.3 Funzioni di correlazione longitudinale e trasversa

Il metodo classico con cui si misurano gli esponenti di crescita nel caso della decomposizione
spinodale in seguito al raffreddamento in una fase ferromagnetica, si basa sullo studio delle
proprieta della funzione di correlazione a tempi uguali. In sostanza, denotato con s;(i,7) il
valore dello spin al tempo ¢ sul sito (,7), si considera:

C(rt) =< s¢(i 4+ ry,j +1y)s:(isg) > (3.2)

con la media estesa a tutti i siti del reticolo e a storie diverse del sistema. Questa funzione e
tipicamente diversa da zero all’interno di un dominio e nulla all’esterno, quindi il suo primo
zero € una stima della dimensione tipica L(t) dei domini. Alternativamente si puo considerare
la sua trasformata di Fourier S(k,t), detta anche fattore di struttura, e stimare la dimensione
tipica dei domini con la posizione del suo massimo. Inoltre la funzione di correlazione (3.2) in
regime di invarianza di scala e tale che scelta opportunamente una funzione f si ha

Ofrt) = f (%) . (3.3)

Nel caso di raffreddamento nella fase SAF, la funzione (3.2) oscilla su scala uno, quindi
non permette di stimare le dimensioni dei domini. In [CGS1] abbiamo introdotto due funzioni
che permettono di calcolare le correlazioni tra gli spin misurate in direzione longitudinale e
trasversa ai domini. Considerato il sito (7,7) si definisce €(4,5) uguale a uno se il sito appartiene
ad un dominio orizzontale, zero se appartiene ad un dominio verticale e si calcola

O[(T,t) = <3t (laj) St (Z + €(i,j)’l“ ’ ] + (1 - 6(2,]))7‘) > (3 4)
Cy(rt) = ((=1)"s¢ (i.5) ¢ (i + (1 = e(isg))r , j + €(if)r) ) |

dove la media e effettuata su tutti i siti che non sono dei difetti e su storie indipendenti del
sistema. Queste funzioni di correlazione hanno la proprieta di annullarsi all’esterno dei domini,
quindi il loro primo zero, o il massimo del relativo fattore di struttura fornisce una stima di
L(t). L’analisi delle simulazioni effettuata con questi nuovi estimatori fornisce risultati analoghi
a quelli discussi nella sezione precedente.

Un altro aspetto molto interessante delle funzioni (3.4) & che in regime di scala soddisfano
ad una proprieta di collasso come la (3.3) con due opportune funzioni f; e f;. In Fig. 3.5
¢ mostrato il comportamento di scala delle funzioni (3.4) nel caso della dinamica di singolo
spin flip: i dati ottenuti a tempi diversi sono stati riportati in funzione della variabile di scala

r

z= e si osserva come tutte le funzioni si sovrappongono perfettamente (i dettagli relativi

ail parametri utilizzati nelle simulazioni sono nella didascalia). Risultati analoghi (si veda la
Fig. 3.6) vengono ottenuti nel caso della dinamica di Kawasaki, ma in quel caso la variabile di
scala € z = 77 e il regime di scala viene raggiunto a tempi molto piu elevati; cio costringe a
simulazioni molto piu lunghe.

Si osserva che le funzioni di scala longitudinale e trasversa f; e f; sono diverse e analoghi
risultati sono stati ottenuti considerando le funzioni definite in [SB] secondo uno schema com-
pletamente diverso da quello illustrato in precedenza. Nel caso della dinamica di Kawasaki
la differenza € meno evidente ma comunque puo essere spiegata con gli stessi argomenti: la
presenza di un accoppiamento .J; > 0 favorisce i domini longitudinali rispetto a quelli trasversi,
in effetti simulazioni effettuate con gli stessi parametri di quelli usati in Fig. 3.5 e Fig. 3.6, ma
con .J; con segno opposto, forniscono figure analoghe con f, e f; invertite. Inoltre fissati J5 e
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Figura 3.5. Funzioni di scala fi(2) e fi(2), z = r/+/t nel caso della dinamica di singolo spin

flipaT =0, J; =01, Jo =—1¢e Jy = 0. I dati numerici sono stati ottenuti mediando su 50

storie indipendenti di un reticolo 400 x 400. Le correlazioni longitudinali (sopra) e trasverse

(sotto) sono mostrate ai tempi 180(e), 220(m), 260(c), 300(7), 340(A), 380(<>), 420(*) e 460(x).
La linea continua rappresenta il miglior fit eseguito con la funzione OJK.
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Figura 3.6. Funzioni di scala f(z) e fi(2), z = r/t'/3 nel caso della dinamica di kawasaki a

8=1,J1 =04, Jo =—1e Jy =0. I dati numerici sono stati ottenuti mediando su 50 storie

indipendenti di un reticolo 800 x 800. Le correlazioni longitudinali (sopra) e trasverse (sotto)
sono mostrate ai tempi 68000(c), 70000(0) e 72000(A).

Jy si ha che f, e piu grande di f; se J; > 0, viceversa se J; < 0 e il comportamento di queste
due funzioni ¢ simmetrico nello scambio J; — —J;.
Il comportamento delle funzioni di correlazioni puo essere spiegato con il seguente argomento
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euristico: per semplicita si considerano solo interfacce tra domini paralleli alle direzioni del
reticolo e si suppone J; = 0. In Fig. 3.2 sono messe in evidenza tre di queste interfacce: a
sinistra un’interfaccia tra un dominio verticale ed uno orizzontale, che riduce sia la correlazione
longitudinale che quella trasversa. L’interfaccia mostrata al centro riduce solo le correlazioni
trasverse, mentre quella a destra riduce solo quelle longitudinali. A T = 0 I’eccesso di energia
dell’interfaccia al centro e 2.J, — .J;, mentre per quella di destra si ha 2.J, + J;; la differenza del

segno di J; spiega il diverso comportamento delle funzioni di correlazione al variare del segno
di Jp.

3.4 Teoria Ohta-Jasnow-Kawasaki

Esistono varie teorie che permettono di prevedere il comportamento della funzione di correla-
zione (3.2), ma quella che presenta il miglior accordo con le simulazioni numerica sembra essere
[HB] quella di Ohta-Jasnow-Kawasaki [OJK]. Anche se le nostre funzioni (3.4) non sono delle
vere e proprie funzioni di correlazioni a due punti abbiamo osservato che ’accordo con le pre-
visioni OJK & comunque sorprendentemente buono. In Fig. 3.5 le linee continue rappresentano
il miglior fit eseguito con la funzione proposta da OJK.
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Figura 3.7. Collasso delle funzioni di correlazione del modello di Ising a temperatura finita.

I dati sono stati ottenuti mediando su 250 storie indipendenti, nel modello di Ising anisotropo

con J, =2 e J, = 1, e su 447 storie nel caso del modello isotropo J, = J, = 1, nel caso di un

reticolo quadrato 400 x 400. Dall’alto verso il basso sono riportate le correlazioni lungo ’asse

z del modello anisotropo, quelle del modello isotropo e, infine, le correlazioni lungo ’asse y nel

caso anisotropo. I dati si riferiscono ai tempi 350(m), 450(2) e 500(A). Le linee continue sono
i migliori fit con la legge OJK.

La funzione di scala della teoria OJK e la seguente:
2 . 2
f(z) = —sin lexp(—2°/D)] (3.5)
dove z = r/t'/2, D = 8(d—1)/d e d la dimensione del reticolo. Questa fornisce il comportamento

lineare di Porod [Po] a piccoli z della funzione f(z) ~ 1 — az con a = 2v/2/(mv/D). In pratica
i risultati Monte Carlo possono essere paragonati alla previsione teorica imponendo lo stesso
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comportamento di Porod. Applicando questa procedura ai nostri dati si € ottenuto: oy = 0.383
e ap = 0.414 per J; = 0.1, rispettivamente per il caso longitudinale e quello trasverso. La
simmetria discussa in precedenza corrisponde al fatto che nel caso J; = —0.1 i valori dei
paramtri « si scambiano, infatti si trova: a, = 0.406 e oy = 0.376.

I risultati discussi in precedenza mostrano che la funzioni di OJK descrive bene i risultati
numerici anche nel caso in cui il sistema ¢ anisotropo. Il modello di campo pilt semplice con un
termine cinetico anisotropo e cosituito dal modello di Ginzburg-Landau dipendente dal tempo

0%

0 0%
ar " "o

—-B,2° 4B
ot 8x2+

= V'(p) (3.6)
dove V(¢) ¢ I'usuale potenziale a doppia buca. Il cambiamento di variabili x — 2’ = /B,z e
y—y = \/Biy(y elimina ’anisotropia e restituisce I’equazione usuale della teoria OJK [Br]. Ma
le correlazioni in termini delle vecchie variabili spaziali hanno un comportamento anisotropo e
mostrano diverse pendenze di Porod con o,/ = /B,/B;.

Il comportamento anisotropo del modello (3.6) & stato controllato studiando il comporta-
mento di scala del modello di Ising con accoppiamento J, e .J, lungo i due assi del reticolo. In
Fig. 3.7 sono riportate le funzioni di correlazioni lungo i due assi e viene fatto il confronto con
la funzione OJK (per i dettagli sui parametri usati nelle simulazioni si rimanda alla didascalia).
Inoltre sono riportati anche i dati relativi all’'usuale modello di Ising nel caso J, = J, = 1.

L’argomento precedente suggerisce o, /a, = \/J,/Jy: 1 valori misurati forniscono il rapporto
o, /o, = 1.548 che non ¢é lontano da quello sperato 1.414 e conferma il fatto che la teoria OJK
riproduce bene le simulazioni anche nel caso anisotropo. L’accordo cresce notevolmente se si
considera il caso a temperatura zero: il rapporto misurato e, infatti, o, /o, = 1.4304.
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Allegato 9
Anisotropic dynamical scaling in a spin model with competing interactions.

E.N.M. Cirillo, G. Gonnella, S. Stramaglia, Phys. Rev. E 56, 5065, 1997

Riassunto

Si discutono alcuni risultati sulle proprieta cinetiche della crescita di do-
mini in un modello con interazioni in competizione raffreddato dalla fase
paramagnetica ad una fase a strisce. Gli esponenti di crescita sono § = 1/2
e 0 = 1/3 rispettivamente nel caso di dinamica di singolo spin-flip e di
spin-exchange. Comunque le funzioni di correlazione misurate in direzione
parallela ai domini sono diverse da quelle misurate in direzione trasversa.
Nel caso della dinamica di singolo spin-flip i nostri dati possono essere stu-
diati usando una versione anisotropa della teoria di Ohta-Jasnow-Kawasaki.
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Allegato 10
Monte Carlo study of the growth of striped domains.

E.N.M. Cirillo, G. Gonnella, S. Stramaglia, Proceedings of the Conference ”Morphology and
kinetics of phase separating complex fluids”, Preprint BARI-TH/97-283

Riassunto

Si analizza il comportamento di scala dinamico in un modello di spin bidi-
mensionale con interazioni in competizione dopo un rapido raffreddamento
nella fase a strisce. Si misurano gli esponenti di crescita studiando le pro-
prieta di scala delle interfacce e del tempo di contrazione di una goccia
di una fase immersa in una fase differente. I nostri risultati confermano
le previsioni di un lavoro precedente. Le funzioni di correlazione misurate
nella direzione parallela e trasversa rispetto alle strisce sono diverse, come
viene suggerito dall’esistenza di diverse energie di interfaccia tra gli stati
fondamentali del modello. Le nostre simulazioni mostrano un comporta-
mento anisotropo delle funzioni di correlazione sia nel caso di dinamiche di
singolo spin-flip sia in quello di dinamiche di spin-exchange.
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Capitolo 4

Metastabilita nei modelli di spin

4.1 Introduzione

Un sistema fisico e in uno stato metastabile se, fissati i parametri termodinamici, esso si trova in
una fase diversa da quella favorita termodinamicamente. Lo stato di vapore sovrasaturo e una
fase metastabile della materia, perche essa si trova nella fase di vapore, nonostante la pressione
e la temperatura vengano scelti in modo che la fase liquida sia favorita termodinamicamente
(fase di equilibrio stabile).

Un secondo esempio di fase metastabile lo si ritrova studiando il comportamento dei mate-
riali ferromagnetici al di sotto della temperatura di Curie: I'isteresi magnetica di uno qualsiasi
di questi materiali prevede stati in cui il campo magnetico esterno e la magnetizzazione del
ferromagnete hanno verso opposto. La termodinamica non li prevede come stati stabili di un
ferromagnete; si tratta di stati metastabili.

Le proprieta fondamentali di uno stato metastabile possono essere riassunte come segue
[PL]:

e nel sistema e presente una sola fase, anche se i parametri termodinamici assumono valori
tali che lo stato di equilibrio dovrebbe consistere di due o piu fasi. In corrispondenza di
piccole variazioni dei parametri termodinamici lo stato del sistema subisce cambiamenti
piccoli e reversibili in accordo con le leggi della termodinamica.

e Se il sistema e isolato, 'uscita dalla fase metastabile avviene mediante delle fluttuazioni
lente e casuali, che possono indurre la crescita della fase stabile; ma tali fluttuazioni sono
cosl poco probabili, che la vita media dello stato metastabile e lunghissima, praticamente
infinita.

e [’uscita dalla fase metastabile, spontanea o indotta dall’esterno, € un processo irreversi-
bile.

La Meccanica Statistica ha sviluppato un ben definito formalismo che permette di studiare
le proprieta di un sistema all’equilibrio; manca, invece, una formulazione teorica organica che
permetta di studiare gli stati di non-equilibrio [I, LR]. Anche per il problema della metasta-
bilita non esiste un formalismo generale analogo a quello gibbsiano; in altre parole non esiste
una teoria universalmente accettata che permetta di calcolare grandezze relative ad uno stato
metastabile di un sistema (per esempio la sua vita media) a partire dalle interazioni elementari
fra i suoi costituenti microscopici (atomi, molecole, ioni, ...).

E di grande utilita, pertanto, studiare in modo rigoroso il problema della metastabilita nel
caso di alcuni modelli “semplici” quali i modelli stocastici di spin su reticolo [Lig]. Nell’ambito
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di questi modelli & possibile porre problemi matematicamente ben definiti e stabilire dei risultati
certi. La chiarificazione concettuale che ne deriva e certamente di grande utilita in un campo in
cui esistono solo teorie semi-fenomenologiche, ricche di assunzioni “ad hoc” e di approssimazioni
incontrollate.

Un grande impulso in questo senso e stato dato dal lavoro [CGOV] in cui & stato propo-
sto un “nuovo” approccio al problema della metastabilita, oggi noto come pathwise approach.
Questo metodo e stato applicato con successo alla descrizione dell’uscita di un sistema dalla
fase mestabile per numerosi modelli di spin. In [NS1, NS2, Scl] & stato risolto il problema nel
caso del modello di Ising con accoppiamento ferromagnetico tra primi vicini, utilizzando delle
tecniche, pero, estremamente ad “hoc”. In [KO1, KO2]| sono state introdotte delle tecniche piu
generali e sono state applicate, rispettivamente, al modello di Ising asimmetrico ed al modello
di Ising con accoppiamento tra primi e secondi vicini. In [NO] & stato studiato il modello di
Ising con campo magnetico alternato e in [BC] ¢ stato risolto il problema della metastabilita
nel caso del modello di Ising in tre dimensioni.

Tutti i lavori precedenti si riferiscono al caso di volume finito, campo magnetico finito e
temperatura che va a zero. Altri regimi molto interessanti dal punto di vista fisico e matematico,
ma molto pitt complicati (temperatura finita, reticolo infinito e campo magnetico tendente a
zero) sono stati presi in esame in [Sc2, SS|. Ancora aperti restano problemi come la metastabilita
nel caso di dinamiche conservate e di dinamiche parallele [BCLS].

Il caso di temperatura finita e stato studiato in modo esaustivo anche dal punto di vista delle
simulazioni Monte Carlo per esempio in [Bi, BM, BS, LNR, M, TM1]; una descrizione chiara e
completa di questi risultati numerici puo essere trovata in [RTMS, Nol, No2, RG, RSNR]. Il
caso di temperatura finita e stato studiato anche con il metodo della matrice di trasferimento
in [PS1, PS2, GRN].

In questo capitolo dopo alcuni brevi richiami sul pathwise approach applicato al caso del
modello di Ising, verranno discussi alcuni modelli di interesse fisico studiati in collaborazione
con il Prof. E. Olivieri (Dipartimento di Matematica, IT Universita di Roma) e con il Prof. J.L.
Lebowitz (Mathematics Department, Rutgers University, NJ). In particolare nella Sezione 4.3
si discutera l’effetto delle condizioni al bordo sull’uscita dalla fase metastabile, nella Sezione
4.4 si esaminera il caso di stati metastabili in competizione.

4.2 Il pathwise approach

Il problema degli stati metastabili ¢ di natura puramente dinamica, la sua descrizione dal punto
di vista della Meccanica Statistica di equilibrio & inadeguata. In [CGOV] ¢ stato proposto un
modo rigoroso di definire gli stati metastabili, oggi noto come pathwise approach, ma solo in
[NS1, NS2] & stato possibile utilizzare questo approccio per studiare casi di interesse fisico
come il Modello di Ising in due dimensioni. Nel seguito vengono illustrati i risultati in [NS1]
seguendo, pero, lo schema piu generale proposto in [OS1, OS2]. In Appendice C sono elencate
alcune definizioni che verranno utilizzate nel corso di questa sezione ed in seguito.

Si consideri il Modello di Ising in due dimensioni definito su un quadrato finito A =
{1,...,M} C Z? (si veda la Sezione 1.2) con condizioni periodiche al bordo e con campo magne-
tico h. Si considera, quindi, lo spazio delle configurazioni {2, e la misura di Gibbs di equilibrio
ap,n associata all’hamiltoniana che per comodita viene riscritta nel modo seguente:

H(o) = —% Y ole)oly) — LS o) Voe | (41)

<z,y> 2 TEA
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Si denota con o; la configurazione del modello all’istante ¢ = 0,1,... e si suppone che il sistema
evolva secondo la dinamica di Metropolis (si rimanda all’Appendice B per la sua definizione).

Si considera il caso h > 0 e piccolo: il minimo assoluto dell’energia H (o) del modello &
ottenuto in corrispondenza della configurazione +1 in cui tutti gli spin assumono valore +1.
D’altro canto, se h & piccolo, anche la configurazione —1 in cui tutti gli spin sono —1 & un
minimo locale di H (o) pur non essendo il suo minimo assoluto.

Nell’ambito del pathwise approach porre il problema della metastabilita del modello di Ising
vuol dire considerare 1’evoluzione del modello quando questo viene preparato nella configurazio-
ne iniziale —1. In altri termini si considera il processo (0;);en con condizione iniziale oy = —1,
con temperatura molto bassa (limite 3 — 00) e ci si chiede se il sistema esibisce comportamente
metastabile ovvero se in qualche senso viene intrappolato nel minimo locale —1.

L’evoluzione sotto la dinamica di Metropolis favorisce i salti verso configurazioni ad energia
minore, una volta “proposta” una transizione verso uno stato ad energia piu bassa essa viene
effettuata con probabilita uno; mentre transizioni che comportanto variazioni di energia AH > 0
vengono pagate in probabilita con un fattore exp(—fSAH). Cio suggerisce che se il sistema
parte da una configurazione n € 24 esso tendera a raggiungere un minimo locale dell’energia
connesso con 7 tramite una successione di salti tra configurazioni ad energia via via minore. In
altri termini, a partire da 7 il sistema giungera in un tempo dell’ordine dell’unita in un minimo
locale accessibile tramite un cammino in discesa.

D’altro canto il sistema puo effettuare dei salti contro la deriva, ma tali eventi avvengono con
probabilita esponenzialmente piccola in 3, quindi richiedono un tempo tipico esponenzialmente
lungo in 3. In sostanza il processo e regolato da due scale di tempi: i tempi dell’ordine
dell’unita, in cui il sistema rilassa verso il fondo del bacino d’attrazione di un certo minimo
locale, e i tempi esponenziali in 3, che il sistema impiega per giungere sulla frontiera di un bacino
d’attrazione e quindi per uscirne. E chiaro, quindi, che i minimi locali dell’hamiltoniana giocano
un ruolo fondamentale nella descrizione della dinamica del modello, perche il sistema spendera
la maggior parte del tempo effettuando delle fluttuazioni aleatorie attorno ad essi, senza uscire
dal loro bacino d’attrazione, fino a quando grazie ad un fluttuazione di piccola probabilita
giungono sulla frontiera del bacino d’attrazione e, in un tempo dell’ordine dell'unita, entrano
nel bacino d’attrazione di un nuovo minimo locale. L’evoluzione del sistema puo essere pensata
come una successione di salti tra diversi minimi locali che avvengono su una scala di tempo
esponenzialmente lunga in f3.

Il primo passo nella comprensione del problema e la caratterizzazione dei minimi locali
dell’hamiltoniana:

Lemma 4.1 Si consideri il modello (4.1) con J > h > 0 e M > 2, 0 € M se e solo se

o(x) = —1 VYo € A eccetto per i siti che si trovano all’interno di alcuni rettangoli Ry,...,R,

11

giacenti sul reticolo duale A+ (5,5), non interagenti e con lati di lunghezza maggiore o uguale

a due.

[ minimi locali, quindi, sono delle gocce rettangolari di spin piu immerse in un mare di spin
meno. Si denota con R(ly,ls), ove 0 < [3,l, < M, U'insieme di tutte le configurazioni con tutti
spin —1 tranne quelli in un rettangolo di lati [y e [,. Inoltre, considerato un minimo locale
o € R(l,l), esso verra denotato con il simbolo R;,, dove

[:=min{l;,lb} e m:=max{lly} . (4.2)

A questo punto ci si pone il problema di capire cosa accade al sistema quando esso parte da
un minimo locale [?;,,,: dopo un tempo abbastanza lungo esso uscira dal suo bacino d’attrazione
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e raggiungera una nuova configurazione stabile, ma si vuole capire quale. In alti termini si vuole
capire se una goccia tende a crescere o a contrarsi.

Il meccanismo di crescita piu efficiente e la comparsa di una protuberanza: uno spin meno
adiacente ad uno dei lati del rettangolo viene trasformato in +1 (si veda la Fig. 4.1). L’in-
cremento in energia ¢ AH = 2J — h, quindi il tempo tipico necessario per osservare ’evento e
Teresc ™ exp(ﬂ(?J - h))

Il meccanismo di contrazione piu efficiente ¢ 'erosione d’angolo: a partire da uno degli
angoli del lato piu corto del rettangolo R;,, vengono in successione trasformati in —1 tutti gli
spin di una striscia tranne uno (si veda la Fig. 4.1). Il tempo tipico che bisogna attendere per
osservare tale fenomeno ¢ dell’ordine 7o, ~ exp(Bh(l — 1)), perche l'erosione di uno spin in
un angolo costa +h dal punto di vista energetico.

Figura 4.1. In alto & raffigurato il meccanismo di comparsa di una protuberanza, in basso
quello di erosione d’angolo per una goccia di spin +1 immersa nel mare di spin —1.

Dal confronto dei tempi 7¢pes € Teontr €merge che posto

2J
I* = |—
5

+1 (4.3)

dove con [a] si denota la parte intera del numero reale a, ovvero il pit grande numero intero
minore di a, si ha che il tempo tipico di crescita ¢ inferiore a quello di contrazione se [ >
[*. Questa osservazione suggerisce che [* gioca il ruolo di lunghezza critica, cioe permette di
discriminare tra gocce sottocritiche e supercritiche, dove si e definito

Definizione 4.1 Considerato un minimo locale o € M

o supercritico <= P(r], <77) — 1 (4.4)
o sottocritico <= P(17; <77)) gy '

Si dimostra, infatti, il seguente Lemma che discrimina tra gocce supercritiche e sottocritiche e
fornisce la stima asintotica del tempo di contrazione e di crescita.

Lemma 4.2 Considerato il rettangolo Ry ,,, preso ¢ > 0 si ha
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o [ <I"= Ry, ¢ sottocritico e

p(eﬁ(z—l)h—ﬂs < Tfi,m < e,@‘(l—l)h-{—ﬂs) ooy

o [ <I"= Ry, e supercritico e

P(eﬁ(2th)fﬁe < Tf{,m < 6,8(2J7h)+,85) Aoy

Se si considera un minimo locale con piu di un rettangolo questo sara sottocritico se tutti i suoi
rettangoli lo sono; e possibile dimostrare una versione piu forte del Lemma 4.2 che fornisce una
descrizione piu dettagliata della contrazione e della crescita delle gocce (si vedano i Lemma 3
e 4 in [KO1] e il Teorema 1 in [NS1]).

La dimostrazione del Lemma 4.2 procede nel modo seguente: si considera il bacino d’attra-
zione B(Ry,,) e lasua frontiera 0B(R;,). Per uscire da B(R, ;) il sistema deve necessariamente
attraversare la sua frontiera: ¢ intuitivo che lo fara in corrispondenza di quella configurazione
che minimizza 'energia del sistema sull’insieme 0B(R;,,). Pertanto il primo passo, nella dimo-
strazione del Lemma, ¢ il calcolo del minimo dell’energia sulla frontiera del bacino d’attrazione.
Nel caso [ < [* si prova che questo minimo ¢ realizzato dalla configurazione P; ottenuta a
partire da R;,, trasformando in meno tutti gli spin piu che si trovano su uno dei suoi due lati
con lunghezza minima tranne uno. Per dimostrare che quando il sistema giunge sulla frontiera
vi giunge in P; si stima dall’alto e dal basso il tempo di primo arrivo sulla frontiera. Per la
stima dal basso si usa il Lemma di reversibilita:

Lemma 4.3 (di reversibilita) Si considerino o,n € 24 e si supponga H(o) < H(n), allora
preso € > 0 si ha
P(re > eﬂ(H(ﬂ)—H(G))—BE) A=oey

La stima dall’alto, invece, procede esibendo esplicitamente un evento che porta il sistema in
Py e che ha un probabilita non molto bassa, cioe detto &g, , ,», questo evento e preso d > 0
deve accadere P(Eg,, p,) > exp[—B(H(P1) — H(R;)) — 46]. Tale evento puo essere costruito
considerando un cammino in salita che congiunge R;,, con P;. Per i dettagli si rimanda a
[NS1, KO1, CO1].

Si consideri, ora, il sistema con condizione iniziale —1: il sistema presentera fluttuazioni
aleatorie attorno a tale minimo dell’hamiltoniana e su tempi abbastanza lunghi si formeranno
delle piccole gocce di piu all’interno del mare di meno. Queste gocce, destinate a scomparire,
persisteranno per un tempo dell’ordine di 7.on € poi il sistema tornera in —1. Si pone il
problema di capire se il sistema esce dalla fase metastabile, in quanto tempo e in che modo.

E intuitivo che I'uscita non puo avvenire per coalescenza di numerose piccole gocce, perche
queste tendono a scomparire in tempi rapidissimi, molto minori del tempo necessario a formarne
altre. B quindi necessario aspettare una fluttuazione di bassa probabilita che generi una goccia
sufficientemente grande per invadere tutto il sistema, cioe una goccia supercritica, ma tale che
sia la piu piccola possibile. Tale goccia e detta protocritica ed € un rettangolo di lati [* e [* — 1
con una protuberanza adiacente ad uno dei due lati piu lunghi. Questa configurazione viene
denotata con P: si osserva che la goccia puo essere traslata in un punto qualsiasi del sistema,
pertanto P indica in realta un insieme di configurazioni.

In modo piu preciso si pone

I:=H(P)—H(=1) =2JI* — h(I* —1* +1) (4.5)
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e si introduce il tempo in cui il sistema visita —1 per 1'ultima volta prima di giungere in +1:
71 =sup{t < T;ll Do =1} . (4.6)
Poi si definisce il primo istante che il sistema giunge nella goccia protocritica dopo 7_;, ovvero
Fpo=inf{t >7 ,: 0,* =P} (4.7)
e si dimostra

Teorema 4.1 Dato € > 0 si ha

e P(7p < T;f) 2y

o P(eflFe < T;ll < ePTHhe) 2y

Il Lemma 4.2 e il Teorema 4.1 forniscono una descrizione abbastanza accurata del comporta-
mente del sistema nella fase metastabile e della sua uscita: partendo da —1 il sistema passa
un tempo molto lungo “vicino” alla configurazione —1; di tanto in tanto appaiono delle piccole
gocce di pill che scompaiono in un tempo dell’ordine di 7¢ou,. Solo dopo un tempo molto lungo,
in confronto alla durata tipica delle fluttuazioni, il sistema “nucleera” la goccia protocritica P
e raggiungera la fase stabile. E possibile dare una descrizione molto piu dettagliata del mec-
canismo di uscita: e possibile scrivere il tubo di traiettorie che il sistema segue durante la sua
prima escursione da —1 a +1. Si rimanda a [Scl, KO1].

Per dimostrare il Teorema 4.1 ¢ cruciale 'introduzione di una sorta di bacino d’attrazione
allargato della configurazione —1: in sostanza si definisce un insieme A4 C (2,4 che contiene tutte
le configurazioni sottocritiche. Una volta che uno ha definito questo oggetto la dimostrazione
procede mostrando che il minimo dell’energia sulla frontiera di A & dato dalla configurazione
protocritica: allora il sistema per giungere in +1 deve uscire da 4, ma per uscire da A deve
attraversarne la frontiera e cio avvera nel punto ad energia piu bassa, cioe attraverso la goccia
protocritica.

Le configurazione 0 € A devono essere tali che se il sistema ha una di esse come stato
iniziale, allora con grande probabilita giungera in —1 prima che in +1; cioe se 0 € A e deve
accadere P(77; < 77;) — 1 nel limite 3 — co. Caratterizzare le configurazioni che godono di
questa proprietd non & impresa banale, infatti una generica o € 24 pud essere estremamente
complicata. Si costruisce allora una applicazione che ad ogni o € {2, associa un minimo locale &
e la condizione di appartenenza al bacino A viene data su &; ¢io non alcuna comporta difficolta
perche la criticita dei minimi locali ¢ nota dal Lemma 4.2. L’applicazione S : o — &,
viene definita costruendo il pitt grande minimo locale, partendo da o ed effettuando una serie
di singoli spin flip favoriti energeticamente; la locuzione “piut grande” va intesa nel senso della
relazione d’ordine parziale definita su {24 nel modo seguente

o<n <= o(x)<nx) Veed . (4.8)

Si illustra ora in dettaglio la definizione dell'insieme A: sia 0 € (24, si definisce ¢(o) I"unione
di tutti i quadrati unitari chiusi centrati sui siti x € A tali che o(z) = +1. Evidentemente
¢(o) & un sottoinsieme del piano su cui giace il reticolo. Assegnare la configurazione o & del
tutto equivalente ad assegnare 'insieme ¢(o). Si definiscono, quindi, i contorni di ¢(o) come
le componenti connesse massimali della frontiera di ¢(¢); in sostanza un contorno 7 & una
poligonale chiusa sul reticolo duale.
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Si introducono le componenti connesse massimali ¢;,co,...,c; dell'insieme ¢(0), tali oggetti
sono degli x—cluster, nel senso che i siti appartenenti ad essi possono essere connessi per siti
primi o secondi vicini. Una configurazione o € (2, puo essere identificata con la collezione
{c1,-..,c6}. Ad ognuno degli x—cluster ¢; viene associato il rettangolo circoscritto R(c;) il piu
piccolo rettangolo chiuso contenente c¢; tracciato sul reticolo duale. Si dice che una configura-
zione o ¢ ammissibile se e solo se tutti i rettangoli R(c),...,R(cx) hanno i lati minori o uguali
ad M — 1; cioe nelle configurazioni ammissibili gli x—cluster di spin +1 non devono estendersi
su tutto il reticolo.

Il sottospazio di {2, costituito da tutte le configurazioni ammissibili viene indicato con 2%.
Se o € {2* allora si possono definire i contorni esterni degli x—cluster ¢;; infatti se o € (2, esiste
un’unica componente di spin —1 che invade tutto il reticolo, allora si dira contorno esterno v;
di ¢; il sottoinsieme della frontiera di ¢; costituito da tutti i segmenti unitari del reticolo duale,
che separano uno spin +1 di ¢; da uno spin —1 della componente che invade tutto il reticolo.
Si osserva che ogni lato di R(c;) contiene almeno un segmento appartenente a ;.

Si considerino, ora, i rettangoli Ry,...,R,,, si dice che costituiscono una catena = := {R,...,R,, }
se e solo se comunque si scelgano due di essi R, ed R, con n,p € {1,...,m}, si possa determinare
una sequenza di rettangoli R; ,...,[t;, € = tale che R;, = R,, R;, = R, e R;, R sono
interagenti VI = 1,....k — 1.

Si definisce, ora, ’applicazione S : 0 — &

U1

Definizione 4.2 La definizione dell’applicazione viene data in sei passi: data una configura-
zione o € (2

1. si considerano c(o), le sue componenti massimali c1,...,cx, ed i rettangoli R(cy),...,R(ck);

2. vengono trasformati in +1 tutti gli spin —1 che si trovano all’interno dei rettangol
R(c1),...,R(ck), in modo che questi ultimi contengano solo spin +1;

3. a partire dai rettangoli R(cy),...,R(ck) vengono costruite tutte le possibili catene massimali

(1) =)
1 oy =y )

n

. . . —(1) .
dette catene di prima generazione; la generica catena =;° € massimale nel senso che

aggiungendo ad essa uno qualsiasi dei rettangoli R(cy),...,R(c) che non le appartiene,
["insieme di rettangoli cosi ottenuto non costituisce una catena.

4. Si definisce una legge che permette di passare dalle catene di r—esima generazione, a quelle
di (r + 1)—esima generazione: si considera [’oggetto

U=z,

':(7')
RGHJ-

che non e necessariamente uno x-cluster, ed il suo inviluppo rettangolare Rg-r) Vi=1,..k.;

a partire da questi k, rettangoli si ottengono le catene di (r + 1)-esima generazione
(r+1) (1)
1 7'”7‘_1197‘-{—1

—
—_
—

costruendo tutte le possibili catene massimali.

5. La procedura illustrata al punto precedente viene iterata fino a quella generazione f-esima,
in cui ogni catena consta di un singolo rettangolo

S = (R}, S = (R}

tali rettangoli sono non interagenti per costruzione.
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6. L’applicazione S associa ad ogni configurazione o € (2} la configurazione ¢ in cui gli spin
+1 sono precisamente quelli racchiusi nei rettangoli R; con j € {1,....ks}.

L’applicazione S appena definita gode delle seguenti notevoli proprieta

o=<0 VYo
H(o) > H(6) Yo € 2}
o<n=0=<1n Yon e

(4.9)

I'ultima delle tre proprieta si puo esprimere dicendo che I’applicazione S e crescente nel senso
della relazione d’ordine parziale (4.8). La prima e la terza delle (4.9) sono di dimostrazione
immediata se si tiene presente che durante la costruzione della configurazione 6 non vengono
mai invertiti spin +1; mentre per la seconda bisogna tener presente che tutte le operazioni che
si fanno sono favorite energeticamente.

Infine si definisce il bacino di attrazione allargato della configurazione —1:

Definizione 4.3 Con le notazioni introdotte in precedenza:
A:={0 €2} : Ry,..R;, sono sottocritici} (4.10)

cioe A e linsieme di tutte le configurazioni ammissibili, che per effetto di S vengono trasformate
in configuraziont in cui tutti gli spin +1 si trovano in rettangoli non interagenti e sottocritici.

Si osserva, inoltre, che A costituisce solo una stima del bacino d’attrazione generalizzato di
—1, infatti si possono determinare configurazioni che non appartengono ad A, ma tali che a
partire da esse il sistema giunge con grande probabilita in —1 prima che in +1.

Dopo aver definito I'insieme A & possibile procedere nella dimostrazione del Teorema 4.1: lo
spirito della dimostrazione e simile a quello descritto a proposito del Lemma 4.2, ma i dettagli
tecnici sono estremamente pitt complicati. Sirimandano i dettagli a [NS1, KO1], qui ci si limita
ad osservare che, ai fini della dimostrazione, le proprieta chiave del bacino d’attrazione allargato
A sono le seguenti:

e A ¢ connesso; —1e€ Ae +1 ¢ A.
e Esiste un cammino w che connette —1 con P contenuto in A e tale che
H(oc) <H(P) Yocw, 0 #P
Esiste un cammino w’ che connette P con +1 contenuto in A€ e tale che

H(o)<H(P) VoeuW, o #P

e [l minimo dell’energia sulla frontiera di A e ottenuto sulla sella protocritica, ovvero

min[H (o) = H(=1)] = H(P) - H(-1) =TI

aeé?Ai\I%P}[H(U) —H(P)] >0

e Con probabilita piu grande di zero, uniformemente in [, il sistema partendo da P raggi-
unge +1 prima di visitare —1; ovvero dato £ > 0

P(T_fl < Tfl) > e P

P(Tfl < efB(QJ*hHﬂghfl < 7’11) i
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4.3 1l problema delle condizioni al bordo

La scelta delle condizioni al bordo nel caso di volume finito influenza notevolmente le proprieta
dinamiche della fase metastabile. Questo problema ¢ stato messo in evidenza in [RKLRN, SG]
e in [CL] e stato studiato approfonditamente, sia nel senso dei risultati esatti sia in quello delle
simulazioni Monte Carlo, nel caso del modello di Ising con le condizioni al bordo libere [TM2].

Tra le possibili scelte delle condizioni al bordo, quelle libere hanno un certo interesse tecno-
logico: durante il processo di registrazione di un nastro magnetico le diverse parti del materiale
sono esposte a diversi campi magnetici, cio risulta in domini con diversa orientazione della
magnetizzazione. Questi materiali devono essere in grado di mantenere il loro stato di ma-
gnetizzazione per tempi lunghissimi anche in presenza di deboli campi magnetici esterni. Lo
studio dell’uscita dalla fase metastabile in presenza di condizioni al bordo periodiche trascura
I’effetto dei domini che circondano quello preso in esame, questo effetto puo essere modellizzato
scegliendo delle condizioni al bordo libere.

Critical lengths

::_“.; ’:‘.l-;‘""',l,ll1-4
0 1
0.2 0.4 0.6 0.8

Figura 4.2. Lunghezze critiche A\; e Ay in funzione del campo magnetico esterno h. La linea
continua e quella tratteggiata rappresentano le previsioni teoriche (4.11). I cerchi e i quadrati
neri rappresentano, rispettivamente, le stime numeriche di A; e Ag.

Si considera, quindi, il modello (4.1), con la dinamica di Metropolis e con le condizioni
al bordo libere; inoltre si scelgono i parametri J >> h > 0 e ci si pone la domanda della
metastabilita come descritto nella sezione precedente. Dal punto di vista dei risultati rigorosi la
tecnica utilizzata e simile a quella descritta nel caso di condizioni al bordo periodiche, pertanto
si rimanda a [CL] (Allegato 11), qui si discutono gli aspetti principali.

Le caratteristiche qualitative dello stato metastabile non cambiano rispetto al caso delle
condizioni al bordo periodiche studiato in [NS1, RTMS, Scl, TM1] e descritte nella Sezione 4.2,
ma dal punto di vista quantitativo le stime sono diverse: si osserva sia una diversa dimensione
critica, sia una diversa vita media 75 ~ exp(3J?/h) dello stato metastabile, contro la stima

79



Metastabilita nei modelli di spin

Tgeri‘)d ~ exp(4(3.J%/h) valida nel caso di condizioni al bordo periodiche. La vita media dello

stato metastabile risulta piu piccola perche le condizioni al bordo libere favoriscono l'inversione
di spin meno che si trovano vicini al bordo.
Questo effetto giustifica anche la necessita di introdurre due dimensioni critiche

A = [i} +1 e M= P +1 (4.11)

h h

la prima caratteristica delle gocce con un lato sul bordo o a distanza uno da esso, la seconda
caratteristica delle gocce lontane dal bordo. Ovviamente la dimensione critica delle gocce vicine
al bordo e piu piccola, perche le condizioni al bordo libere ne favoriscono la crescita.

Ma la novita piu interessante e la seguente: mentre nel caso del modello di Ising con
condizioni al bordo periodiche la goccia critica e un quadrato di lato [%] +1 posto in un qualsiasi
punto del toro, nel caso delle condizioni al bordo libere si tratta ancora di un quadrato, con
lato [%] + 1, ma posto in uno dei quattro angoli del reticolo quadrato. In altri termini, non solo
la geometria, ma anche la posizione nel reticolo della grande fluttuazione che permette ’uscita
dalla fase metastabile puo essere prevista.

[ risultati descritti in precedenza sono stati discussi in [CL] sia con metodi esatti nel limite
di bassa temperatura, sia con simulazioni Monte Carlo a (3 fissato. Nel seguito descrivo come
e stato possibile misurare la lunghezza critica e come si € messa in evidenza la nucleazione nel
vertice del reticolo.

c
S \
T
N 84300 84400
jo}
S
© —
g 1

05—

O -
05—
S et e \

37200 37300 37400 37500 37600 37700

time (in unit MCS)

Figura 4.3. La linea solida rappresenta myg, quelle tratteggiate rappresentano mjp, ms, ms e
my in funziuone del numero di iterazioni. La figura in alto e relativa al caso = 3, h = 0.24
(A =5) e M = 16; quella in basso a § =2, h =0.14 (\; =8) e M = 32.

Abbiamo considerato un reticolo M x M e tipicamente abbiamo usato 8 > 2, h < 0.5 e
J = 1. Questo range di parametri ¢ diverso da quello usato in lavori numerici precedenti, per
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esempio [RTMS, TM1]|, dove sono stati usati campi magnetici e temperature piu elevate. La
scelta dei parametri € dovuta alla necessita di confrontare il dato numerico con la previsione
teorica che e valida solo nel limite 7' — 0, pertante € necessario porre il sistema nella cosiddetta
single droplet region, ovvero nella regione in cui 'uscita dalla fase metastabile avviene mediante
la nucleazione di una singola goccia [RTMS].

Per stimare \; abbiamo fissato 3 e h, abbiamo posto il sistema nella configurazione in cui
tutti gli spin sono —1 eccetto quelli in un quadrato di lato [ posto in un angolo del reticolo,
abbiamo lasciato evolvere il sistema ed abbiamo ripetuto I’esperimento per valori decrescenti di
[. 11 valore piu piccolo di [ per cui la goccia cresceva ¢ stato scelto come stima di A;. In modo
analogo si e proceduto per la stima di Ag.

In Fig. 4.2 (si veda anche la Fig. 1 dell’Allegato 11) & riportata la media su 60 misure
indipententi di A; e Ag, ottenute con temperature inverse rispettivamente uguali a § = 10
e f = 6. La linea solida e quella tratteggiata rappresentano il risultato esatto (4.11) valido
nel limite # — oo, mentre i cerchi e i quadrati neri rappresentano, rispettivamente, le stime
numeriche di A\; e A\y. L’accordo e eccellente, ma la struttura a scala non viene riprodotta dai
dati numerici perche 3, sebbene sia stato scelto grande, non ¢ infinito.

In Fig. 4.3 (si veda anche la Fig. 2 dell’Allegato 11), invece, viene messa in evidenza
la localizzazione della goccia critica: in figura sono state riportate la magnetizzazione per
spin misurata sull’intero reticolo mg e le quattro magnetizzazione my, msy, ms e my ottenute
mediando su quadrati di lato A; posti nei vertici del reticolo. Le curve sono tracciate in funzione
del numero di iterazioni (MCS = Monte Carlo Sweeps) relativamente ad una singola storia del
sistema, che viene lasciato evolvere dopo essere stato preparato nella configurazione —1. In
entrambe le figure la linea solida rappresenta myg, mentre le linee tratteggiate sono relative alle
altre quattro magnetizzazione definite in precedenza.

In entrambi i casi ¢ evidente che il sistema passa un tempo molto lungo (circa 10* MCS)
nella configurazione —1; le fluttuazioni sono visibili nel caso # = 2, del tutto trascurabili nel
caso # = 3. Dopo questo tempo lungo la magnetizzazione in uno dei quattro angoli diventa
rapidamente uno (nucleazione della goccia protocritica); una volta avvenuto questo evento raro
tutte le altre magnetizzazioni saturano ad uno, cioe il sistema raggiunge rapidamente la fase
stabile.

4.4 Modello di Blume-Capel

In [CO1], in collaborazione con il Prof. E. Olivieri, ho affrontato il problema della metasta-
bilita nel caso del modello di Blume-Capel bidimensionale; questo problema ha un notevole
interesse fisico per via della presenza di piu stati metastabili in competizione; una versione di
questo modello con debole accoppiamento a lunga portata e stata analizzata numericamente in
[FGRN]. In [CO1] ¢ stato mostrato, utilizzando risultati di [OS1, OS2], come il meccanismo
di uscita dalla fase metastabile e la sua vita media dipendano dai parametri del modello. Dal
punto di vista tecnico il calcolo ¢ molto simnile a quello illustrato in Sezione 4.2 nel caso del
modello di Ising bidimensionale; ovviamente i problemi dipendenti dal modello che sono stati
risolti sono di gran lungo piu complicati per via della struttura molto varia dei minimi locali.
Per i dettagli si rimanda all’Allegato 12, qui si descrivono i risultati fisicamente piu interesanti.

I1 modello bidimensionale di Blume-Capel ¢ definito su un reticolo finito A C Z2, ad ogni
sito reticolare 2z € A & associata una variabile di spin o(z) € {—1,0, 4+ 1}. L’hamiltoniana del
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modello, cioé I’energia associata ad ogni configurazione o € {—1,0, + 1}*, & data da

H(o):=J > (o) —o(y)>—hD> o(@)—A> o*(z) , (4.12)
<z, y> zEA zEA
dove J & una costante reale e positiva (accoppiamento ferromagnetico), h e A sono due numeri
reali qualsiasi. I parametri h e A hanno rispettivamente il significato fisico di campo magne-
tico esterno e di potenziale chimico. Si considera il caso di condizioni al bordo periodiche e
I'evoluzione del sistema & descritta dal processo (0;)en con dinamica di Metropolis (si veda
I’Appendice B).

Si denotano con —1, 0 e +1 le configurazioni di {2, in cui tutti gli spin sono rispettivamente
uguali a —1, 0 e +1. La struttura degli stati fondamentali e descritta in modo dettagliato
nella Sezione 2 dell’Allegato 12 [CO1], qui ci si limita ad osservare che per A = h = 0 le tre
configurazioni —1, 0 e +1 sono i soli stati fondamentali del sistema; inoltre si ricorda che per
mezzo della teoria di Pirogov-Sinai e possibile dimostrare che questa transizione di fase persiste
anche a bassa temperatura ([Bl, C, BrS, DM]).

Dal punto di vista della metastabilita la regione dello spazio dei parametri piu interessante
e quella in cui h e X sono piccoli, il volume ¢ grande, ma finito, e la temperatura 71" tende a
zero; in altri termini siamo interessati alla regione attorno al punto triplo h = A =T = 0.
In particolare si considera la regione h > A dove il minimo assoluto dell’hamiltoniana e dato
dalla configurazione +1. Il problema che ci si pone ¢ il solito problema della metastabilita: il
sistema viene preparato nella configurazione metastabile —1 e si vuole descrivere la sua prima
escursione verso la configurazione +1. L’aspetto piu interessante di questo modello e che oltre
alla fase metastabile —1 c¢’e¢ anche quella 0, quale sara il suo ruolo non e assolutamente chiaro a
priori. In Fig. 4.4 ¢ data una rappresentazione schematica del panorama delle energie in questa
regione.

Come nel caso del modello di Ising un ruolo fondamentale nella descrizione dell’uscita dalla
fase metastabile e giocato dalla struttura dei minimi relativi dell’hamiltoniana. Nella regione
dello spazio dei parametri che abbiamo considerato e limitandoci alle configurazioni in cui e
ben definito il “mare” di spin —1 si ottiene una struttura complicata dei minimi locali. Si
dimostra (Sezione 3 dell’Appendice 12) che le interfacce dirette tra uno spin meno ed un piu
sono instabili, quindi sono proibite nei minimi locali. Inoltre si dimostra che il piu generale
minimo locale e costituito da rettangoli di spin 0 non interagenti immersi nel mare di —1, con
eventuali famiglie di rettangoli non interagenti di spin +1 al loro interno; tali configurazioni
sono state chiamate plurirettangoli. In Fig. 3.8 dell’Allegato 12 e rappresentato un possibile
esempio di tali configurazioni. Si osserva che come casi particolari dei plurirettangoli ci sono
i semplici rettangoli di zero immersi nel mare di meno e le cosiddette cornici, costituite da un
rettangolo di piu separato dal mare di meno da un bordo di zero di larghezza unitaria.

Come la struttura dei minimi locali suggerisce e lecito chiedersi se la fase stabile viene
raggiunta direttamente attraverso la nucleazione e la crescita di una cornice, oppure se, tramite
la crescita di un rettangolo di zero, si tocca il minimo metastabile 0 prime di giungere nel
minimo stabile +1.

In modo abbastanza sorprendente si trova che entrambi i meccanismi sono possibili ed e
possibile discriminare tra loro controllando il rapporto h/A. Piu precisamente: si suddivide lo
spazio dei parametri in quattro zone

mr ={(\h): 0<h <A}

mrr ={(AR): 0 <A <h<2)\}
mrr = {(\h) 2 0 <2\ < h} (4.13)
mrv o ={(Ah): 0 < =A< h}

82



Metastabilita nei modelli di spin
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Figura 4.4. Panorama dell’energia nel modello di Blume-Capel.

e in ognuna di queste zone si trova un particolare meccanismo di uscita e si trova una certa
stima della vita media T} dello stato metastabile. In Fig. 4.5 viene riportata la nostra stima
asintotica dei tempi T) 5, in funzione di A ad h fissato.

~h h/2 +h

Figura 4.5. Grafico della funzione %log T) 5, in funzione di h a A fissato.
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Nella regione 7y si ha
H(0) > H(-1) > H(+1)

e quindi ragionevole aspettarsi e facile provare che nel decadimento —1 — +1 lo stato 0 non
giochi alcun ruolo; ¢ sufficiente esibire un meccanismo di transizione che coinvolga una barriera
energetica minore di H(0) — H(—1). Nelle restanti tre regioni si ha, invece,

H(-1) > H(0) > H(+1)

quindi non si puo dire nulla di ovvio sul ruolo giocato da 0 durante la transizione —1 — +1.
Nella regione 7y si prova che la sella minima locale (configurazione protocritica) P; tra
—1 e +1 e una cornice quadrata di lato interno [* := [W] + 1 in cui su uno dei lati del
quadrato di pill sono stati trasformati in zero [* — 1 spin (si veda la Fig. 5.1 dell’Allegato 12).
Allora la transizione —1 — +1 avviene in modo diretto € la vita media dello stato metastabile

e data da Ty ~ exp(31),,) dove

8.J2

Iy, = H(P,)—H(-1) ~ o (4.14)
Nella regione 777, invece, la sella protocritica Py ¢ un quadrato di zero di lato M* :=
[%} + 1 in cui sono stati trasformati in meno M* —1 spin su uno dei suoi quattro lati. Quindi
il sistema visitera il minimo 0 prima di giungere in +1 e la nucleazione della fase stabile, a
partire da 0 avverra tramite la formazione di una goccia quadrata Pz di +1 nel mare di zero di
lato L* := [25] + 1. Poiché risulta H(Py) — H(—1) > H(Ps) — H(0) si ha che nella regione

w7 la vita media € controllata da

4.J?
h—A

I'ny=H(Py) — H(-1) (4.15)
Si osserva che attraversando la linea h = 2\ nello spazio dei parametri, ovvero passando dalla
regione 777 alla regione 7777, il meccanismo di uscita e la stima sulla vita media della fase meta-
stabile cambiano in modo brusco. Ebbene la linea in questione non ha “nessun significato” dal
punto di vista del comportamente del sistema all’equilibrio, cioé ¢ una linea che ha rilevanza
soltanto dinamica, ma non statica. Cio non ¢ sorprendente perche nello studio della metasta-
bilita la regione dello spazio delle fasi che regola il fenomeno ¢ una regione molto improbabile
quando il sistema e all’equilibrio.

Infine si considera la regione 7y il meccanismo di uscita e simile a quello desccritto a pro-
posito della regione 7777, ma in questo caso la stima sulla vita media e controllata dall’asintotica
sulla transizione 0 — +1. Quindi si ha

4.J?

ow=H(Py) = H(O) ~ 3=~

(4.16)
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Allegato 11
Metastability in the two-dimensional Ising model with free boundary conditions.

E.N.M. Cirillo, J.L. Lebowitz, Journ. Stat. Phys. 90, 211-226, 1998

Riassunto

In questo lavoro viene studiato il comportamento metastabile del modello
di Ising bidimensionale con condizioni al bordo libere nel limite di bassa
temperatura. Il sistema viene posto nella configurazione in cui tutti gli spin
sono negativi e si trova in presenza di un piccolo campo magnetico positivo:
si dimostra che I'uscita da questo stato metastabile avviene attraverso la
formazione di una goccia critica in uno dei quattro angoli del sistema. La
vita media dello stato metastabile viene calcolata analiticamente nel limite
T — 0 e h — 0 e via simulazioni Monte Carlo a temperatura e campo ma-
gnetico esterno fissati. Questo sistema modella l'effetto di domini adiacenti
in un sistema magnetico, per esempio un nastro magnetico, quando questo
esce dal suo stato metastabile per effetto di un campo esterno.
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Allegato 12
Metastability and nucleation for the Blume-Capel model. Different mechanisms
of transition.

E.N.M. Cirillo, E. Olivieri, Journ. Stat. Phys. 83 , 473-554, 1996

Riassunto

In questo lavoro vengono studiate la metastabilita e la nucleazione nel mo-
dello di Blume-capel: un sistema su reticolo bidimensionale con accoppia-
mento ferromagnetico tra spin primi vicini tra variabili di spin che assumo-
no valori {—1,0, + 1}. Si considera il caso di un volume grande, ma finito,
piccolo campo esterno e potenziale chimico nel limite di temperatura nul-
la. Si studia la prima escursione dalla fase metastabile —1 a quella stabile
+1. Si calcola il comportamento asintotico del tempo di transizione e si
studia il tubo delle traiettorie durante la transizione. Si mostra, infine, che
il meccanismo di transizione cambia improvvisamente quando si attraversa
la linea h = 2 nello spazio dei parametri del modello.
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Appendice A

Il Cluster Variation Method

Si consideri un modello statistico definito su un reticolo finito A C Z9, ad ogni sito i € A
sia associata una variabile di spin o; che assume valori in un insieme finito §. Si denota con
2 := 8% lo spazio delle configurazioni, con o € {2 una configurazione del sistema e con H (o) la
sua hamiltoniana. Si ipotizza che I’hamiltoniana contenga soltanto interazioni di portata finita
(ipotesi di corto range).

Il comportamento del sistema all’equilibrio ¢ descritto dalla matrice densita (misura di
Gibbs)

—BH (o)
G e
o) = , Al
o) = (A1)
con 3 := % la tempertaura inversa e
ZA = T’I“A[eiﬁH(g)] (AQ)

la funzione di partizione; e stato introdotto il simbolo

0; €S ieX

Tutte le funzioni termodinamiche possono essere ricavate a partire dall’energia libera

1
FA = ——IOgZA ) (A4)
154
¢ facile verificare che
Fy =Tr[p§(0)H(0)] = T Tra[—pG (o) log p§(0)] , (A.5)

dalla (A.5) si ottiene ovviamente che 'entropia ¢ data da
S = —Tralpfi(o) log pf(0)] - (A.6)

La misura di Gibbs puo essere definita mediante un principio variazionale: si considera lo spazio
= costituito da tutte le funzioni p, : 0 € 2 — p,(0) € R tali che Tr[pa(c)] =1 e si definisce
il funzionale

Falpa) :=TralpaH) =T Tra[—palogpa] VYpsr€Z , (A.7)

la misura di Gibbs puo essere definita come quella particolare p§ € = che minimizza il funzionale
(A.7). Vale banalmente la relazione

Flpf) = Fa . (A8)
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II Cluster Variation Method

Dato un cluster v C A (un cluster ¢ un qualsiasi sottoinsieme del reticolo A), data p, € =
si definisce la funzione

Pa =TT papa (A.9)

e Ientropia di cluster
Se = =Try[pslog pa] - (A.10)

Si dimostra (si veda, per esempio, [A]) che, posto

Sgi= > (-1)Fhls vpcC A, (A.11)

vCB

e dato un cluster o C A si ha
Sa=> 55 . (A.12)
BCa
L’espressione (A.12) ¢ detta sviluppo in cumulanti dell’entropia di cluster. Sviluppare I’entro-
pia in cluster vuol dire scrivere in modo ordinato i contributi all’entropia dei cluster di varie
dimensioni.

Poiché l'interazione ha portata finita, deve esistere un cluster g che “contiene” tutte le
interazioni (la definizione potrebbe essere data in modo piu preciso considerando lo sviluppo in
potenziali dell’hamiltoniana); allora si considera la famiglia M costituita da tutti i cluster di
tipo i e da tutti i loro sotto-cluster. Il funzionale (A.7) puo essere scritto nella forma

f/l(p/l) = Z Tra[paHa] =T Z ga ) (A.13)

aeM aCA

dove H, & l'interazione a |a| corpi associata al cluster «.

L’ipotesi alla base del CVM e che per cluster il cui diametro ¢ maggiore della lunghezza
di correlazione il cumulante S, & piccolo; allora nella (A.13) l'ultima somma viene estesa alla
classe M, cioe si scrive

F™M(pa) = > TralpaHol =T Y Sa (A.14)
aeM acM
e si dimostra [A]
f/?VM(IOA) = Z Tra[paHa] =T Z a'aSa > (A15)
aeM acM

dove 1 coefficienti a, sono numeri reali tali che

> ag=1 VYaeM . (A.16)

Boa, feM

Costruire una certa approssimazione CVM vuol dire considerare un certo cluster massimo
j1; ovviamente piu e grande questo cluster tanto migliore ¢ ’approssimazione. Per minimizzare
il funzionale (A.16) si pongono uguali a zero le sue derivate rispetto ai vari termini della matrice

pj e si ottiene un sistema di equazione che viene risolto con il metodo delle iterazioni naturali
[Kil, Ki2].
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Appendice B

Dinamica di Metropolis

Per descrivere la metastabilita del modello di Ising e necessario capire come il punto rappre-
sentativo del sistema si muova nello spazio delle configurazioni (24, in altri termini fissata la
configurazione iniziale oy bisogna capire qual ¢ la traiettoria che il sistema descrive nello spazio
24.

In primo luogo si puo osservare che e sensato richiedere che la dinamica sia stocastica: fissata
la configurazione all’istante t, o, = n € {24, non e possibile prevedere in modo deterministico
quale sara la configurazione all’istante generico t' > ¢, tutto cio che si puo dire & con quale
probabilita accadra oy = £ € (24. Sirichiede, inoltre, che la dinamica sia markoviana, cioé nota
oy = 1, il comportamento del sistema ad istanti ¢’ > ¢ puo essere previsto indipendentemente da
cio che e accaduto ad istanti ¢’ < ¢. In altri termini se un sistema evolve secondo una dinamica
markoviana, allora il sistema stesso non ha memoria del “passato”, e sufficiente conoscere il
“presente” per prevedere il “futuro”. Si richiede, quindi, che la dinamica soddisfi alla proprieta
di Markov

P(o111 = Mv1loo = noyeees00 = 1) = P(0441 = g1 oy = 1) (B.1)

ove No,...,Nr+1 sono delle generiche configurazioni di £24. Il processo (0)ien soddisfacente (B.1)
e detto catena di Markov. Si richiede, infine, che la catena di Markov sia stazionaria, cioe che
a probabilita condizionale P(o,,1 = n|o, = &) Vn,& € §2, sia indipendente dall’istante di tempo
t.

Per definire in modo completo la dinamica del sistema bisogna introdurre la funzione di
transizione

P(n.&) = P(or=Elog =n) Vn,§ € 24 (B.2)
che deve godere delle proprieta
{ P(n,€) >0 n,§ € 24 (B.3)
Yeea P(n,6) =1 Vi € 2,

e che fornisce la probabilita che il sistema ad un generico istante di tempo salti dallo stato 7
allo stato &, infatti in virtu della stazionarieta della probabilita di transizione si puo scrivere
P(oy1 = &loy = n) = P(n,&) Vn,& € 24, YVt > 1. Una possibile scelta della funzione di
transizione e quella di Metropolis: prese due configurazioni o,n € (2, si pone

L o—BH(n)—H(o)]* sedxeA: 0 =1

P(om) = { 4] (B.4)

0 altrimenti

dove a™ denota la parte positiva del numero reale a e o* ¢ la configurazione che si ottiene a
partire da o cambiando il segno dello spin in z € A.
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E facile verificare che la dinamica di Metropolis e reversibile rispetto alla misura di Gibbs
di equilibrio, cioe soddisfa al principio del bilancio dettagliato

P(om)papn(o) = P(n,o)pagn(n) Yon € 24 . (B.5)

Da tale reversibilita si deduce, anche, che la misura di Gibbs e stazionaria per 1’evoluzione del
sistema.

Nel caso del modello di Blume-Capel discusso nella Sezione 4.4, si utilizza ancora una volta
la dinamica di Metropolis, ma la sua definizione viene leggermente modificata, rispetto alla
(B.4), per tenere in conto il fatto che una variabile di spin puo assumere tre diversi valori. In
questo caso la funzione di transizione viene scelta nel modo seguente: prese due configurazioni
o,n € {24 si pone

—B[H(n)—H(o)]* sedx e A: 0¥ =1

Ploy) = { e (B.6)

0 altrimenti

dove, ora, con o% si denota una configurazione ottenuta a partire da o modificando in uno
dei due modi possibili lo spin in x € A, si sottolinea che data o, la configurazione ¢® non e
univocamente determinata.
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Appendice C

Alcune definizioni

Si consideri un reticolo finito A C Z2, uno spazio finito e discreto S := {1,2,....n} C N e lo
spazio delle configurazioni 2, := S4. Si denota con o una configurazione di 24, con o(z) il
valore dello spin nel sito z € A e, considerata la variabile naturale t = 0,1,2,...., si denota con o}
la catena di Markov che descrive I’evoluzione del sistema con condizione iniziale of = n ove 1 &
una configurazione di £24. Si suppone, infine, che al sistema sia associata un’hamiltoniana H (o)
e che la dinamica sia reversibile rispetto alla misura di Gibbs relativa a questa hamiltoniana.
Si danno le seguenti definizioni:

1. data o € 2, si denota con o” una configurazione tale che o%(z) # o(z) e o%(y) =
o(y) Yy € A. Si sottolinea che data o, la configurazione 0% non ¢ determinata in modo
univoco.

2. Due configurazioni o,n € 2, si dicono prime vicine se e solo se dx € A tale che n = o*.

3. Un cammino in {2, e una sequenza di configurazioni oy,01,...,0, tale che o;_1 e o; sono
0,Y15---5Yn 2 i
prime vicine Vi = 1,...,n. Un cammino si dice in discesa se e solo se H(0;41) < H(o;) per
ogni ¢ =0,1,...n — 1.

4. Dato A C 24 e n € 24 si definisce tempo di primo arrivo del processo o su A il tempo
T :=inf{t >0: o/ € A} . (C.1)

5. Un minimo locale dell’hamiltoniana H (o) ¢ una configurazione o tale che H(o%) >
H(o) Yz € A. Un minimo locale verra anche detto una configurazione stabile, perche

un processo che parte da un minimo locale impiega un tempo esponenzialmente lungo in
[ per muoversi dal minimo.

6. Siindica con M l’insieme di tutti 1 minimi locali dell’hamiltoniana.
7. Dato o € M si definisce il suo bacino di attrazione
B(o) :={n € 2, : tuttiicammini in discesa che partono da n terminano in o} (C.2)

Si osserva che, essendo h la pil piccola variazione di energia tra due qualsiasi configura-
zioni di {24, dopo un numero di passi pari a

max,en, H(n) — min,co, H(n)
h

un cammino in discesa termina necessariamente in un minimo locale.

T =
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Alcune definizioni

10.

Dato G C 24, G € connesso se e solo se Vo,n € 24 4 un cammino w C G che parte da o
e termina in 7; si dira che w connette o con 7.

Dato un insieme connesso G C {24 si definisce frontiera di G 'insieme

0G:={ney: n¢g G,z e A o°e€gG} (C.3)

Dati due rettangoli R; e R, sul reticolo duale A + (%,%), si dice che R; ed Ry sono
interagenti se e solo se si intersecano oppure sono separati da una distanza reticolare. Due

rettangoli che hanno soltanto gli angoli a distanza uno sono considerati non interagenti.
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