Esercizi Di Geometria 1

SETTIMANA 7 (7–13 Novembre 2016)

Gli esercizi sono parialmente presi dal libro di testo del corso "Geometria Analitica con elementi di Algebra Lineare" di M. Abate e C. De Fabritiis.

Esercizio 1. Considera i due sottospazi di \mathbb{R}^4 dati da

$$U = \{x \in \mathbb{R}^4 | 2x_2 - x_3 = 0\}$$
 e $W = \{2x_1 + x_2 - x_4 = 0, 3x_3 - \frac{5}{2}x_4 = 0\}.$

Trova dimensione, base ed equazioni cartesiane e parametriche per U+W e $U\cap W$.

Esercizio 2. Considera i due sottospazi di \mathbb{R}^4 dati da

$$U = \text{Span}(u_1, u_2, u_3)$$
 e $W = \text{Span}(w_1, w_2, w_3)$

dove

$$u_1 := \begin{pmatrix} 1 \\ 2 \\ -2 \\ 3 \end{pmatrix} \quad u_2 := \begin{pmatrix} 2 \\ 1 \\ 1 \\ -2 \end{pmatrix} \quad u_3 := \begin{pmatrix} 4 \\ 5 \\ 1 \\ 1 \end{pmatrix}$$

е

$$w_1 := \begin{pmatrix} 0 \\ 3 \\ 1 \\ 1 \end{pmatrix} \quad w_2 := \begin{pmatrix} 1 \\ 1 \\ 1 \\ -2 \end{pmatrix} \quad w_3 := \begin{pmatrix} 2 \\ 2 \\ 1 \\ 7 \end{pmatrix}.$$

Trova dimensione, base ed equazioni cartesiane e parametriche per U+W e $U\cap W$

Esercizio 3. Scrivere equazioni cartesiane per il sottospazio di \mathbb{R}^4 di equazioni parametriche

$$x = t_1 - 2t_2 + t_3$$
, $y = t_1 + t_3$, $z = t_1 + 4t_2 - 5t_3$, $w = t_2 - t_3$.

Da tali equazioni passa poi nuovamente a equazioni parametriche: in questo modo ottieni le equazioni di partenza oppure no? Perchè?

Esercizio 4. Siano $T: \mathbb{R}^3 \to \mathbb{R}_2[t]$ ed $S: \mathbb{R}_2[t] \to \mathbb{R}^2$ le applicazioni lineari date da

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x + (2y - x)t + zt^2 \text{ e } S(p) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix}.$$

Calcola $S \circ T : \mathbb{R}^3 \to \mathbb{R}^2$ e trova $\operatorname{Ker}(S \circ T)$ e $\operatorname{Im}(S \circ T)$.

Esercizio 5. Sia $T_a: \mathbb{R}_2[t] \to \mathbb{R}^3$ l'applicazione lineare data da

$$T_a(p) = \begin{pmatrix} p(0) \\ p(a) \\ p(1) \end{pmatrix}$$

per ogni polinomio $p \in \mathbb{R}_2[t]$. Trova per quali valori di a l'applicazione T_a è un isomorfismo.

Esercizio 6. Dato $\lambda \in \mathbb{R}$ si consideri l'applicazione lineare $T_{\lambda} \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ data da $T_{\lambda}(X) = \lambda X$ (per ogni $X \in \mathbb{R}^n$). Determinare la matrice $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ tale che $T_{\lambda} = L_A$.

Esercizio 7. Calcolare tutti i prodotti possibili fra le seguenti matrici

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right) \quad \left(\begin{array}{ccc} -2 & 3 \\ 1 & 7 \end{array}\right) \quad \left(\begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}\right) \quad \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{array}\right)$$

Esercizio 8. Data la matrice

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in Mat_{2 \times 2}(\mathbb{R})$$

trova tutte le matrici $B \in Mat_{2\times 2}(\mathbb{R})$ tali che AB = BA.

Esercizio 9. Sia

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Mat_{2 \times 2}(\mathbb{R}).$$

Dimostrare che A è invertibile se e solo se $ad-bc \neq 0$ e che l'inversa è data da

$$A = \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

(suggerimento: si usi il seguente fatto osservato nel foglio di esecizi della settimana 3: due vettori $\begin{pmatrix} a \\ c \end{pmatrix}$ e $\begin{pmatrix} b \\ d \end{pmatrix}$ di \mathbb{R}^2 sono linearmente indipendenti e quindi una base se e solo se $ad-bc \neq 0$.)

Esercizio 10. Calcola l'inversa (se esiste) delle seguenti matrici:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 0 & 2 & 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 0 & 1 \\ 2 & 3 & 2 & 0 \\ 1 & 0 & -1 & 1 \end{pmatrix} \quad \begin{pmatrix} 4 & 1 & -1 & 1 \\ 1 & -3 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$