Prova scritta di Geometria 1 Appello straordinario riservato a fuori-corso, part-time e DSA Docente: Giovanni Cerulli Irelli

25 Ottobre 2019

Esercizio 1. Si consideri la seguente matrice 4×4 :

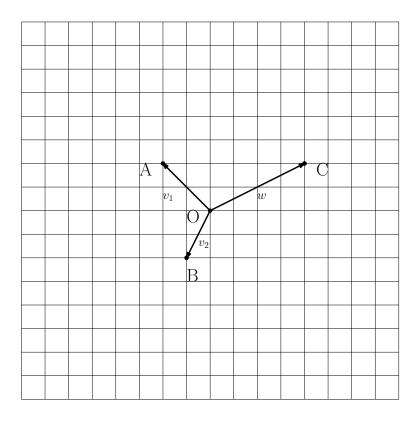
$$A = \left(\begin{array}{rrrr} 1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{array}\right)$$

- 1. (3 punti) Dimostrare che A é invertibile, calcolandone il determinante.
- 2. (2 punti) Calcolare i cofattori C_{11} , C_{12} , C_{13} , C_{14} .
- 3. (1 punto) Usare il punto precedente per determinare l'unica soluzione del sistema $AX = e_1$.
- 4. (1 punto) Sapendo che il polinomio caratteristico di A è

$$p_A(x) = x^4 - 6x^3 - x + 1$$

determinare l'inversa di A in funzione di A.

Esercizio 2. Nello spazio vettoriale \mathcal{V}_O^2 dei vettori geometrici del piano applicati al punto O si considerino i tre vettori $v_1 = \stackrel{\rightarrow}{OA}$, $v_2 = \stackrel{\rightarrow}{OB}$ e $w = \stackrel{\rightarrow}{OC}$ mostrati in figura:



- 1. (1 punto) Disegnare il vettore $u = (w + 3v_1) + v_2$.
- 2. (1 punto) Dimostrare che $\mathcal{B} = \{v_1, v_2\}$ è una base di \mathcal{V}_O^2 .
- 3. (2 punti) Calcolare il vettore $X = F_{\mathcal{B}}(w) \in \mathbb{R}^2$ formato dalle coordinate di w nella base \mathcal{B} .
- 4. (2 punti) Calcolare il vettore $Y = F_{\mathcal{B}}(u) \in \mathbb{R}^2$ formato dalle coordinate di u nella base \mathcal{B} .
- 5. (1 punto) Calcolare l'angolo tra X e Y (in \mathbb{R}^2 dotato del prodotto scalare standard).

Esercizio 3. Sia V uno spazio vettoriale di dimensione 3 e sia $\mathcal{B} = \{v_1, v_2, v_3\}$ una base di V. Sia $f: V \to V$ l'unica applicazione lineare tale che

$$f(v_1) = v_1 + v_2 + v_3$$
, $f(v_2) = v_1 + v_3$, $f(v_3) = v_1 + 2v_2 + v_3$.

- 1. (1 punto) Scrivere la matrice che rappresenta f nella base \mathcal{B} . Denotarla con A.
- 2. (2 punti) Trovare una base per il nucleo di f.
- 3. (2 punti) Trovare una base per l'immagine di f.
- 4. (1 punto) Sia $C = \{w_1, w_2, w_3\}$ dove

$$w_1 = v_1 + 2v_2$$
, $w_2 = -v_1 - v_2$, $w_3 = v_1 + v_2 + v_3$.

Dimostrare che C è una base di V.

5. (1 punto) Scrivere la matrice che rappresenta f nella base C.

Esercizio 4. Si consideri la seguente matrice

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

- ${\it 1. \ (2\ punti)\ Dimostrare\ che\ essa\ \grave{e}\ ortogonalmente\ diagonalizzabile.}$
- 2. (5 punti) Trovare una matrice B ortogonale ed una matrice D diagonale tali che $B^tAB=D$.

Esercizio 5. Studiare il seguente sistema lineare al variare del parametro reale k:

$$\begin{cases} 3x_1 + 6kx_2 + 3x_4 + 9x_6 &= 3\\ 2x_1 + 4kx_2 + 2x_3 + 10x_6 &= 4k + 2\\ 2x_1 + 4kx_2 + 2x_4 + 2kx_5 + (6+2k)x_6 &= 2k \end{cases}$$