Esercizi Settimanali di Geometria 1 Settimana 8 Docenti: Giovanni Cerulli Irelli, Marco Trevisiol

Da consegnare Martedi24Novembre $2020\,$

Esercizio 1. Per ciascuno dei seguenti insiemi P di punti del piano cartesiano, calcolare l'area dell'unico poligono convesso avente come vertici P.

Siano
$$p_1 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$
, $p_2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$, $p_3 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $p_4 = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$.

- 1. $P = \{p_1, p_2, p_3\}.$
- 2. $P = \left\{ \frac{p_1 + p_2}{2}, \frac{p_2 + p_3}{2}, \frac{p_3 + p_1}{2} \right\}.$
- 3. $P = \{p_1, p_2, p_3, p_4\}.$

Esercizio 2.

1. Sia $V = \mathbb{K}[x]_{\leq 5}$ e siano $\lambda_1, \ldots, \lambda_6 \in \mathbb{K}$. Mostrare che i polinomi $(x + \lambda_1)^5, \quad (x + \lambda_2)^5, \quad (x + \lambda_3)^5, \quad (x + \lambda_4)^5, \quad (x + \lambda_5)^5, \quad (x + \lambda_6)^5,$

sono linearmente indipendenti se e solo se $\lambda_i \neq \lambda_j$ per ogni $i \neq j$.

2. Sia $V=\mathbb{R}^{(-1,1)}$ lo spazio delle funzioni reali sull'intervallo (-1,1). Sia $n\geq 2$ un intero e sia

$$S = \{\cos(x), \cos(2x), \cos(3x), \dots, \cos(nx)\} \subset V.$$

Mostrare che l'insieme S è linearmente indipendente. [Suggerimento: derivare due volte e valutare in zero ripetutamente.]

Concludere che V non può essere finitamente generato.

Esercizio 3. Si consideri la seguente matrice dipendente dal parametro k:

$$A(k) = \begin{pmatrix} 0 & k & k^2 \\ 1 & (k-1)^2 & k-1 \\ -k-1 & k-1 & 1-k \end{pmatrix}$$

Utilizzare il teorema degli orlati per trovare i valori di $k \in \mathbb{R}$ per i quali

- 1. rg(A(k)) = 1;
- 2. rg(A(k)) = 2;
- 3. rg(A(k)) = 3.

Esercizio 4. Calcolare il polinomio interpolatore dei seguenti punti di \mathbb{R}^2 :

$$\begin{pmatrix} 8 \\ 3 \end{pmatrix}, \begin{pmatrix} 9 \\ -1 \end{pmatrix}, \begin{pmatrix} 10 \\ 1 \end{pmatrix},$$

ovvero l'unico polinomio p in $V=\mathbb{R}[x]_{\leq 2}$ il cui grafico contenga tali punti. Fare un disegno indicativo.

Esercizio 5. Per ciascuno dei seguenti sottospazi vettoriali dell'opportuno \mathbb{K}^n , calcolare una forma cartesiana:

1.
$$U_1 = \langle \begin{pmatrix} 1 \\ i \end{pmatrix} \rangle$$

$$2. \ U_2 = \langle \begin{pmatrix} 1\\2\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\0 \end{pmatrix} \rangle$$

3.
$$U_3 = \langle \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \rangle$$

4.
$$U_4 = \langle \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix} \rangle$$

5.
$$U_3 \cap U_4$$