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Abstract. Skin cancer is a spreading disease in the western world. Early detection and treatment are crucial for
improving the patient survival rate. In this paper we present two algorithms for computer assisted diagnosis of
melangmas. The first is the support vector machines algorithm, a state-of-the-art large margin classifier, which has
shown remarkable performances on object recognition and categorization problems. The second method relies on the
robustness and generalization performance of a class of kernel Gibbs distributions, spin glass-Markov random fields,
which combines results of statistical physics of spin glasses with Markov random field modeling via Mercer kemel
functions. We compared the two approaches. In the study we present here, we used color histograms as feature
representations. We benchmarked our methods with another algorithm presented in the literature. which uses a
sophisticated segmentation technique and geometrical features especially designed for melanoma recognition. To our
knowledge, this algorithm represents the state of the art on skin lesions classification. In order to obtain a fair
comparison we used the very same binary masks for the skin lesions images as preprocessing. We show with extensive
experiments that the support vector machines approach outperforms the existing method and, on two classes out of
three, it achieves performances comparable to those obtained by expert clinicians.
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1. Introduction

Malignant melanoma is a significant public health problem. Its incidence is rising faster than that of any other
cancer in the US and in Europe [9, 4]. At current rates, 1 in 74 Americans will develop melanoma during his or her
lifetime [9]. Management of melanoma is a complex issue requiring a multidisciplinary approach. The most effective
method of protection against the development of melanoma is minimization of ultraviolet exposure from sunlight.
Early detection and treatment are critical and result in improved patient survival rates. Surgical excision remains the
mainstay of treatment [9]. In northern Europe a deceleration in the incidence and mortality trends occurred recently
in persons aged under 70, whereas in southemn Europe both incidence and mortality rates are still increasing [4]. The
most plausible explanations for the deceleration in these trends in recent years in northern Europe are earlier
detection and more frequent excision of pigmented lesions and a growing pubhc awareness of the dangers of
excessive sunbathing [4].

The most used diagnostic technique is called Epiluminescence Mlcroscopy (ELM). It is a non-invasive
technique that allows for a detailed surface analysis of a suspicious skin lesion by using hand-held device emitting
incident light from a light source penetrating the epidermal skin layer. The ABCD (Asymmetry, Border, Color and
Dimension) method represents a commonly used clinical guide for the diagnosis of early melanoma. This is a
diagnostic technique based on simple observation of images by dermatologists; as such, it depends heavily on the
level of expertise of the physician.

There is a growing awareness in the scientific community that one of the weakest links in the biomedical
interpretation process is the perception of details and the recognition of their meaning by the dermatologists. An
automatic system for melanoma recognition would constitute a valuable support for physicians in every day clinical
practice. Such a system should reproduce the perceptual and cognitive strategy followed by doctors, and should
allow the dermatologist to trace each siep of the process which led to a given diagnosis, so to leave space for
exploring multiple interpretations. The last years have witnessed numerous research on this topic (for a more
comprehensive discussion of the most significant literature we refer the reader to section 2); a key factor for the
development and evaluation of these systems is the availability of a statistically significant database. To our
knowledge the state of the art in melanoma recognition was presented by H. Ganster et al. [5]. In that paper it was
presented a large database, accompanied by: (a) a segmentation aigorithm for isolating the potential melanoma from
the surrounding skin, determined by several basic segmentation algerithms combined together with a fusion strategy
[5]; (b) a set of features containing shape and radiometric features as well as local and global parameters, calculated
to describe the malignancy of a lesion, from which significant features are selected by application of statistical



feature subset selection methods [5]; (c) a nearest neighbor classification algorithm [5]. In that work the authors
concentrated particularly on the segmentation techinque and the features selection process. Here we focus instead on
the classification algorithm, and we propose the use of kemnel methods for classification of skin lesion images.
Specifically, we focus our attention on two algorithms: Support Vector Machines (SVM) [11] and Spin Glass-
Markov Random Fields (SG-MRF) [2]. SVM is a state-of-the-art large margin classifier, where the optimal
separating surface is defined by a linear combination of scalar products between the view to be classified and some
support vectors [10, 111. By introducing a Mercer kernel, a nonlinear SVM can be constructed replacing the scalar
products in the linear SVM via the kernel function. SVMs have demonstrated: remarkable performance in object
recognition and categorization [12] and recently in biomedical imaging [13). SG-MRF is a fully connected MRF
which integrates results of statistical mechanics with Gibbs probability distributions via non linear kernel mapping
[2]. Numerous experiments have shown the robustness and categorization capabilities of this algorithm for object
recognition [2], its applicability for biomedical application [3], and its effectiveness in using as input different
feature types [2]. The database on which we will run our experiments is the same introduced by Ganster et al. [5];
our classification algorithms use binary masks determined by the segmentation algorithm developed in [5], and color
histograms features. The choice of color histograms as feature types reproduces one of the criteria followed by
dermatologists for diagnosis, and it is in contrast to the geometric features used in [5]. We perforrned several series
of experiments for selecting an optimal feature descriptor and we replicated the éxperimental setup used in [5] for a
benchmark evaluation. Our results show that SVM obtains remarkably better performances than SG-MRF and
Ganster’s classification method. Mare important, on two classes out of three, SVM achieves recognition results
comparable to those obtained by skilled clinicians. In summary the contributions of this paper are:

1. The introduction of kernel methods for melanoma recognition, via two approaches: a probabilistic method,
promising in biomedical images classifications, and a well known state-of-the-art classifier. For this second
algorithm particularly, we studied in depth the classification performances with different kemnel types.

2. The benchmark with a method presented in the literature [5], on the same database and using the same
segmentation masks, with a clear improvement of the experimental results. We actually obtained an improvement of
more than 20% with respect to the results reported in [5], which to the best of our knowledge represents the state of
the art in this field. Furthermore our results are very stable and reliable because are obtained as mean value on S
different partitions { for more details on the experimental setup, we refer the reader to section 5).

The rest of the paper is organized as follows: section 2 reviews the state of the art in computer-assisted
melanoma recognition. Section 3 describes some basic knowledge on SG-MRF theory and section 4 briefly explains
the SVM algorithm. Section 5 reports on the experiments performed. The paper concludes with a summary
discussion and some possible directions for future research.

2. Related Work

Last years have seen an increasing interest in developing algorithms for metanoma classification. Grana et al. [6]
provided mathematical descriptors for the border of pigmented skin lesion images and assessed their efficacy for
distinction among different lesion groups. They introduced new descriptors such as lesion slope and lesion slope
regularity and define them mathematically, then they employed a new algorithm based on the Catmull Rom spline
method and the computation of the gray-level gradient of points extracted by iﬂterpolation of normal direction on
spline points [6]. The efficacy of these descriptors was tested on a data set of 510 pigmented skin lesions, composed
by 85 melanomas and 425 nevi, by employing statistical methods for discrimination betweern the two populations [6].
Grzymala-Busse et al.[7] used discretization based on cluster analysis, LEM2, algorithm for rule induction, and
standard LERS classification scheme to check whether the ABCD formula is optimal [7]. The data consisted in total
of 276 ceses of benign nevus, blue nevus, suspicious nevus, and malignant melanoma [7]. Lefevre et al. [8] proposed
a theory used in different fields such as data fusion, regression or classification: the Dempster-Shafer's theory, or
evidence theory {8]. They applied the classification process on a training set of 81 lesions : 61 benign lesions (nevi)
and 20 malignant lesions (melanoma) and a test set of 209 lesions : 191 nevi and 18 melanoma [8].

Ganster et al. [5] presented a system where as initial step the binary mask of the skin lesion was determined by
several basic segmentation algorithms combined together with a fusion strategy [5]. The algorithms nsed to segment
the lesion are: global thresholding, dynamic thresholding, and a 3-D color clustering concept [5]. A set of features
was then calculated to describe the malignancy of a lesion: global features (size and shape descriptors), color features
and local features [5]. Significant features were then selecied from this set by application of statistical feature subset
selection methods {5]. The classification experiments were performed with a 24-NN classifier based on the derived
features [5]. A notable feature of this work is the large dimension of the database. They had at their disposal overall
5363 skin lesion images, categorized into three classes. The three classes are; clearly benign lesions, dysplastic



lesions and malignant lesions [5]. The training set for the classifier was a set of 270 lesions (90 images for each
class). The test set was the entire database of 5363 lesions in three categories [S5]. They obtained an overall
recognition rate of 61% [5]. To the best of our knowledge, this is the biggest existing database on skin lesions, and
these results constitutes the state of the art in the field. This is the database on wluch we will run our experiments,
and the results with which we will compare our performance.

3. Spin Glass - Markev Random Fields

In this section we desctibe the probabilistic method which constitutes one of the kermnel methods proposed here for
classification. This technique was introduced first for 3D object recognition [2], and was then applied to
microcalcification detection with promising results [3].

Consider n visual classes , j = {1, ... i}, and a set of k observations {x, ... x: }, x & R™, random samples from
the underlying, unknown, probability distribution P¢x) defined on R™. Given an observation X , our goal is to classify
X as a sample from Qs one of the €, visual classes. Using a Maximum A Posteriori (MAP) criterion we have:

1
j=argmax P(Q /&)= argmax {P(.fc'/Qj JP(Q, )}
7 5

using Bayes rule, where P{'x/2,) are the Likelihood Functions (LFs) and P(€},) are the prior probabilities of the
classes. Assuming that P¢),) are constant, the Bayes classifier simplifies to: '
J* =argmax P/Q,) .

4 .
Spin Glass-Markov Random Fields (SG-MRFs) [2] are a new class of MRFs which connect SG-like energy
functions (mainly the Hopfield one [1}]} with Gibbs distributions via a non linear kernel mapping. The resulting
model overcomes many difficulties related to the design of fully connected MRFs, and enables to use the power of
kemnels in a probabilistic framework. The SG-MRF probability distribution is glvén by:

Py MRF(x'/Q )=‘_CXP['" scw(xfg )] Z=§exp— mfw(x/ﬂj)]a

Fr
with ESG-W = "Z [K(x:fw) )]zﬂ

where the function K(x,¥*")is a generalized Gaussian kemel [10]

K@,y)= exp{-pd,, (x.y)}, d,,(x ») =Z =l

{35“ }#_1 JE [1 n] are a set of vectors selected (according to a chosen ansatz, [2]) from the training data that we call

pratog)pes The number of prototypes per class must be finjte, and they must sat1§fy the condition: K (x X ): 0, for

all Lk =1,.. p,i#jandj =0,...n (the interested reader can find a detailed dlschssmn regarding the derivation and
propertles of‘ SG-MRF in [2]). Thus using SG-MRF modelling, the Bayes cla.smﬁer (1) will become:

J*=argmin Eg;_ e (X/8)). i
; ,

4. Suppori Vecior Machines

In this section we briefly describe SVM in the two class case. For further de’talls and the extension to multiclass
settings we refer the reader to [11].

Consider the feature vector x € R" and its class label y € {-1, +1}. Let (x;, y,) (25 ¥2) o oo o ( Xy V) dEnciea
given set of m training examples. If we assume that the two classes are linearly separable, there exists a linear
function f{x) = wx + b such that for each training example x;, it yields fix;) >0 for y, =+1 and fix) <0 for
»i=—1. In other words training examples from the two different classes are separated by the hyperplane wax + 5= 0.
Having no prior knowledge about the data distribution, the optimal hyperplane is the one which has maximum
distance to the closest points in the training set. Mathematically this hyperplane can be found by solving a
constrained minimization problem using Lagrange muitipliers o, (i = 1, ..., m ). It results in a classification function:



fix)=sgn (3T oyiwx+b),

where ¢, and b are found by using an SVC learning algorithm [11]. It turns ouq that a small number of the o are
different from zero; their corresponding data x; are called support vectors. ‘

SVM can be extended to nonlinear problems by using a nonlinear operator @(-) to map the input feature vectors
x; from the original %" into a higher dimensional feature space # by x — ®(x) € #. Here the mapped data points
of the two classes become linearly separable. Assuming there exists a kernel fungtion K associated with the inner
product of the desired nonlinear mapping such that X {x,y) = d(x) - (y), then a tion linear SVM can be obtained by
replacing x -y by the kernel K (x,p) in the decision function, obtaining then:

S =sgn (T oy K(x;,x)+b) .

This corresponds to constructing an optimal separating hyperplane in the feature space.
The kernel function plays a central role in non linear SVM. In this paper we consider four kernel types :

1. Polynomial kernel (*poly™) Kx,p)=(y*x y)

2.. Generalized Gaussian kernel (“gengauss™) Kxy=exp{-y*| x°- »°|"}
3. Gaussian kernel (“gauss™) Kx,)=exp{-vy*| x - y| 2y
4. Chi-squared kernel (“chi”) K, y)=exp { -v* x(x,»)}

f
k

5. Experiments }

In this section we present experiments that show the effectiveness of kernel methods for melanoma recognition. To

this purpose, in a preliminary step, we ran a first series of experiments for feature selection. Then we used the

selected features for an extensive set of classification experiments. In the rest of the section we describe the database
used, the experimental setup and our experimental findings.

Database: We performed our experiments on the database created by the Department of Dermatology of the
Vienna General Hospital [5]. The whole database consists of 5380 skin lesion images, divided into three classes:
4277 of these lesions are classified as clearly benign lesions (class 1), 1002 are classified as dysplastic lesions (class
2) and 101 lesions are classified as malignant melanomas (class 3) '. The lesigns of the classes 2 and 3 were all
surgically excised and the ground truth was generated by means of histological diagnosis [5]. In order to have
statistically significant results, we ran experiments with 5 different partitions, then we calculated the mean and the
standard deviation of the obtained recognition rates. This procedure has been adopted for all the experiments which
are reported in this paper. Figure 1 shows an example of skin lesion images for each class.

Experimental Setup: The three key components for an automated melanoma recognition algorithm are:
segmentation, features extraction and classification. We describe below the general approach followed in this paper
for each of these steps:

» Segmentation: We used the segmentation method developed by Ganster et al. [5] on this database. [t consists of
a binary mask determined by several segmentation algorithms combined together with a fusion strategy. This
choice allows for a fair comparison between Ganster’s technique and ours.

¢ Feature Extraction: In the ABCD-rule of dermoscopy, the color distribution in the skin lesion is one of the
discriminant features for clinical melanoma recognition, thus we used color histograms as features. The color
histogram was computed by discretizing the colors within the image and counting the number of pixels for each
color. We performed several experiments for selecting the best features, narriely using hue, rg, RG, RB and GB
color histograms. The resolution of the bin axes was varied for each representation, consisting of 8, 16, 32, 64
(for bidimensional histograms we chose the resolution of each axis with the same bin value). We found that the
GB representation obtained the best results for all the bin values, thus we used it in all the following
experiments.

¢  C(lassification: We used SG-MRF and SVM algorithms (see section 3 and 4 respectively). For SG-MRF we
learned the kernel parameters during the training stage using a leave-one-out strategy [2]. For SVM we used the
four kernel types described in section 4. The kernel parameters were chosen via cross validation.

! These numbers are not perfectly coincident with those reported in [7], where the database is said to be of 5363 images, but this difference
should not affect the comparison between the two algorithms.



Fig. 1. Examples of images from database: (a) image of a benign lesion, (b) image of a dysplastic lesion and (c)
image of a malignant lesion.

(b) (©)

Classification Experiments: All the experiments were performed respecting the procedure reported by Ganster
et al. [5], thus the database was partitioned into 3 classes, for two of which it is recommended surgical removal. The
training set consisted of 270 images (90 for each class); the test set consisted of the whole database [5]. Note that
training and test set are not disjoint; once again we underline that this follows the procedure proposed in [5] which
allows for benchmarking. We used the GB features and we ran experiments for 8, 16, 32 and 64 resolution of bins
per axes, with 5 different partitions for training and test set, using SG-MRF and SVM with four different kernel
types. Table 1 reports, for SG-MRF and SVM, the recognition rates for each class averaged on 5 partitions. We also
report the average of the recognition rate obtained class by class (“Mean Class”), and the overall recognition rate
(“Overall™). For sake of clarity we also report the results obtained in [5]; note that these results were obtained on a
single run.

Table 1. Recognition results for the classification experiments on three classes of lesions obtained from Ganster et
al. [5] and with SG-MRF and SVM methods with different kernels. We reporte the recognition rates for the three
classes, the overall and the mean recognition rates. Results obtained with SG-MRF and SVM are mean values from 5
different runs with their standard deviations.

Ganster et | SG-MRF SVM (%)

al. [5] (%) (%) poly gauss gengauss chi
Class1 59 48.6 +4.2 80.1 =13.0 719+ 11.1 96.2 4.0 68.6+17.7
Class2 33 38.8+34 15.7+13.7 248+ 12.7 11.0£1.8 224+75
Class3 73 94.1 £+34 29.5+204 45.0+28.5 895+09 62.6 +19.7
Mean Class 61 60.5+17.0 41.8+19.6 47.2+13.6 65.6+274 51.2+14.5
Overall 58 47.7+29 67.1+7.8 626+62 | 80228 59.9+12.9

A first comment is that SVM, with the Generalized Gaussian kernel, obtains the best result with respect to
Ganster’s method and SG-MRF. The overall recognition rate is of 80.2% to be compared with a 58% obtained by
Ganster and 47.7% obtained by SG-MRF. SVM with this kernel type also performs better than the other two
methods with respect to the mean recognition rate. This proves the effectiveness of this technique for melanoma
recognition. A second comment is that SVM performance varies considerably as the overall recognition rate goes
from a minimum of 59.9% for the chi-squared kernel to a maximum of 80.2% for generalized Gaussian kernel. It is
also interesting to note that, for the overall recognition rate, the kernels which obtains the worst performances tend to
have the highest standard deviations, while the kernel with the best performance has the smallest one. This illustrates
the importance of doing kernel selection in the training phase; the low standard deviation of the SVM’s best result
also shows the stability of our findings. A final remark should be made on the poor performance of SG-MRF. This
might be due to the dimension of the training set for each class; it might be possible that the probabilistic method
needs a higher statistic in order to estimate properly the energy function.

Table 2 reports the confusion matrix for SVM with generalized Gaussian kernel and the confusion matrices
obtained by Ganster and the one obtained by dermatologists, both reported in [5]. We see that for class 1 and class 2
SVM outperforms Ganster’s method and is comparable with the dermatologists® performances. It is very interesting
to note that, in contrast, SVM performs poorly on class 2, which corresponds to dysplastic lesions. This might be
explained considering that here we are using only color information, while Ganster used a selection of different
features and dermatologists used the ABCD rule. It is thus possible that color information only is not discriminant
enough in order to recognize correctly dysplastic lesions, while it seems to be effective for separating benign and
malignant lesions. In the future we will explore this issue by testing different types of informations.



Table 2. Confusion matrices for different classification methods: (a) Confusion matrix for the SVM results with the

“gengauss™ kernel. The number of images reported are mean value of the number obtained from 5 different
partitions; (b) Confusion matrix obtained with the Ganster’s method [5]; (c) Confusnon matrix obtained from clinical
diagnosis, performed from expert dermatologists of the Department of Dermatology at the Vienna General Hospital
[51.

Assigned Assigned ’ Assigned |
True 1 2 3 True 1 2 3 True 1 2
4112.6 | 1126 | 50.8 1 2500 | 1347 | 410 1 4161 94
8748 | 1100 | 17.2 2 324 531 155 2 42 960
10.4 0.2 90.4 3 14 12 70 3 6 19 78
(@ ’ ®) - ©

6. Conclusions

In this paper we proposed the use of kernel methods for melanoma recognition, with two approaches: SG-MRF and
SVM. For this second algorithm particularly, we studied in depth the classification performances with different
kernel types. The experiments showed that SVM, with the generalized Gaussian kemel, obtains an improvement of
more than 20% with respect to the results presented in [5], which to the best of oyr knowledge represents the state of
the art of the field. Moreover, on two classes out of three, SVM achieves recognition results comparable to those
obtained by skilled clinicians. In the future we will conduct similar experiments with different descriptors, such as
gray-level textural features and shape descriptors, in order to test the effectiveness of different types of information
and to eventually reproduce the ABCD method followed by the dermatologists in ‘every day clinical practice.
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