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1. Introduction

In the last decade many applications of X- and
gamma-ray spectrometric techniques (ST) have been
developed for “in field” measurements [1-3].

One of the major problems in 8T is the identification
of the volume involved in the measurement; this prob-
lem is of particular importance for X- and gamma-ray
scattering techniques (PST), in which the scattering
angle may change from point to peint inside the scatter-
ing volume [4-6].

Another problem concerning collimation is the
evaluation of the geometrical limitations of the measur-
ing system with particular regard to “in vivo” measure-
ments, in order to maximize the response /dose ratio.

In many applications a measuring volume of known
shape and efficiency is requested. This can be attained
by designing the detector and source collimator in an
appropriate manner. The computer simulation of the
geometrical response (i.e. a point source response of the
measunng systeni} leads to visualization of the measur-
ing volume.

The response function of the collimator was studied
in the 1960s and early 1970s in conjunction with the
development of nuclear medicine {scanners and
gamma-cameras [7,8]). Several computer codes for simu-
lation of the single and multihole collimator systems
were also developed in order to take account of inter-
septal penetration.

The exact collimator response function was found by
Steyn et al. [9]. The equations given by these authors are
complex in the formalismn and cannot be easily visual-
ized. Studying this problem in connection with the
simulation of a PST system for bone mineral determina-
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tion, we found that equivalent results can be obtained
with simple geometrical considerations and an ap-
propriate formalism. In this way the calculation of the
solid angle subtended by a collimated detector is easily
evaluated with a substantial reduction in the computa-
tion time.

2. Definitions

A collimator is usually attached to a source and/or
detector in order to reduce the field of view; for simplic-
ity we will speak about detector collimation only. As
shown in fig. 1a, the single point response of a detector
of area D is given by the solid angle subtended by the
point (P)

1 Dcos(a) 1 Dz
(4m) az - (4m) (x2+22)3/2’
where d and a are defined according to fig. 1. Eq. (1) is
valid only if D < 42,

If we now attach a collimator to the detector, as
shown in figs. 1b and ¢, we have:

1 A(x, z)cos(a)
(4m) d2
_ 1 A{x, 2)(z+ L) 5
(7 (<24 (z+ 1)) @

di2=

(1)

di=

where A is the portion of the detector area seen by a
point of coordinate (x, z); it can be written as a
function of the point coordinates, A(x, z).

It is worth noung that these definitions are valid for
a comnical collimator, in which the entrance hole has a
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]
Fig. 1. Solid angle subtended by a detector of area D without
{right} and with a cylindrical {middle) and a conjcal (left) col-
limator.

radius »* different from the detector radius r (in a
cylindrical collimator r’ = r).

We can now introduce the angle {(§) in connection
with the field of view of the detector (fig. 2):

r+r

tan(8) = 7 - (3)
where L is the height of the collimator.

It is evident that at any height along the collimator
axis, the limit of the field of view is given by

xp(z)=r"+ z_(%r) (4)
or
. (z)y=(r/LY2z4 L), (4")

for a cylindrical collimator,

For a collimator with a conical bore, i.e., divergent
from the entrance hole to the detector, we can introduce
a focus. In this case the zone of the collimator field of
view in which one can see only a portion of the detector
area, i.e. the penumbra region, 1s deliinited by an inter-
nal cone (see fig. 2). The Hmit of this cone at any height
along the axis z is given by

z(r'—r

xG(Z):?""'T_. (5)

Fig. 2. Definition of divergence angle (&) and of the upper

limit x, of the field of view for a cylindrical and conical

collimater, For a conical (focusing) collimator x,, is the low
limit of the penumbra region.

If we put x, =0 we find the focus of the collimator

Fe Lr’ ' (6)

’
r—r

3. Response function of a collimator

In order to evaluate the response function of a
collimator in the case of point, line and plane sources.
we should find an expression for the above introduced
function A(x, z). To this atm let us consider the projec-
tion (P.) of the collimator entrance hole on the detector
plane; as shown in fig. 3, this projection has always a
circular shape with a radius ( R) that is a function of z.
L and r"

R=[(z+LY/=]r". N

It is worth noting that R becomes larger as we move,
along the collimator axis, towards the collimator face
(near field), while for large z-values the radius R be-
comes about equal to r* (far field).

The area A, which is equal to the detector area for
x < xp, decreases when we move transversely towards
the edge of the field of view, This happens because P,
moves in the oppaosite direction. [n addition, in fig. 3 is
shown how the distance between the centers of D and
P, is linearly related to x:
E=(L/z)x. (8)
In fig. 4 the area A4 is shown in the plane of the
detector. In the following, we will show that the area A4
can be expressed as a function of z and of the angles ¢
and v, as defined according to fig. 4. In addition, we
will find a relation between x and the two above
mentioned angles; in this manner we will arrive at an
implicit solution of our problem.

Fig. 3. The area of the detector seen by a point through a

cylindrical collimator is given by the intersection of detector

area (D) and the area ( F,) that represents the projection of the
callimator entrance hole on the detector plane.
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Fig. 4. A view, on the detector plane, of the area A4(x, z)

corresponding to the piece of detector area seen by a point

through the collimator. The two angles ¢ and v are defined in
the drawing,.

It is easy to show that the following relation holds
between the angles ¢ y:

K sin(¢) _R _r' (z+1L)
sin(y ) r r z ’
or, for a cylindrical collimator:

x%%=(ZjL)., (9%

It is worth noting that the above defined parameter
(K) is a function of the collimator height and radius
and of the coordinate z. It assumes values > 1; for a
focusing collimator, if z > F, this parameter should be
substituted by K" =r/R.

In addition, let us express the distance £ as a
function of these two angles, according to fig. 4:

E=rcos($)+ R cos(y}=r{cos{e¢) + K cos(v)}],
(10)

x=(z/L)[r(cos(d) + K cos(¥))]. (107)

It should be noted that when the variable ¢ scans
the interval from O to 180 °, the variable ¥ scans twice
the interval from 0 to arcsin{1 /K ). In the same time E
varies between ( R — r) and (R + #); this means that its
range depends slightly on z.

Further, we can see that the area 4 can be expressed
as a function of ¢ and v, because the intersection area
is the sum of two circular segments depending on these
angles:

(o0, =r]p- G| o, man)]

A’(¢.,2y, z) _ [¢_ Lﬂ(;”i)] +K2[7_@]_

(9)

2
(11)
If K=1, i.e. in the focus of the collimator, we find
the following simple relation:
A (¢, vy, F)/ri=2¢—sin(2¢) for0<¢ < (m/2).
(11)

For z > F, eq. (11) is still valid but R < r, therefore
the maximum detector area that can be seen is 7R
Therefore, the angle y scans the interval 0-180°,
whereas ¢ scans twice the interval O—arcsin{l1/K"). In
this case the area A4 is given by

(12)

In fig. 5, a plot of A'(¢. v. z),/r" as a function of ¢
for different values of the parameter X is shown.

Let us now introduce a normalized coordinate x’
that varies in the interval 0—1 when x scans the interval
Xg—Xn. We have:

r_ (.?C B xO)

=cos*(9/2) — K sin®(v/2), (13)

B (xm_xu)
or, for K=1,
x' =cos(9).

In fig. 6, a plot of A/{wrd®) vs x' is shown for
different values of K; the numerical values are reported
in table 1. It is evident that a linear approximation
would give quite good results in the range 0 <x < 0.5
We can express this linear approximation as follows:

{(x —xo)

M~f(x')=—x'+l=————+l.

2~
(14)

mk (xm - xO)

It is worth noting that the function f{x’, =) over-
estimates the area A for large values of z, i.e. for K = 1.
As shown in table 2, the error introduced by this
approximation is lower for x” < 0.5, while for larger x’
(i.e. in the tail of the collimator response function) it is
always less than 12% of the full area. Where the errors

HORMALTZER COLLIMATOR

+ .52 () 1.7 2.08 2.62 Nl
ANG.[

Fig. 5. A(¢.v)/r® as a function of the angle ¢ for some
values of the parameter X.
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Fig. 6. [d(x". 2)/{mr?)] vs x’ for some values of the parame-
ter K,

Table 1

Detector are fractions as a function of point normalized coor-
dinate x” (see eq. (13)), at different values of the parameter K
(see eq. (9))

X’ K
3 2 1.7 1.3 11 1

0.1 0.93 0.93 092 0.90 0.88 0.87
2 0.83 0.82 0.81 0.79 076 0.74
0.3 0.72 07 0.6% 0.66 0.64 0.62
0.4 0.59 0.58 056 - 053 0.51 0.5
0.5 0.46 0.4 0.43 0.41 0.4 0.39
0.6 0.34 032 031 0.3 029 0.28
0.7 0.23 0.22 021 0.2 .19 0.18
0.8 0.13 0.12 0.11 0.11 0.11 Q.1
0.9 0.05 0.04 0.04 0.04 0.04 0.03

Table 2

Percentage differences of the detector area fractions, calculated
with the linear approximation of eq. (14) and with eq. (11), as a
function of normalized coordinate x’ (eq. (13)) and of the
parameter K (see eq. (9))

x’ K
3 2 1.7 1.3 1.1 1

0.1 3 3 2 - -2 -3
0.2 3 2 1 -1 -4 -6
0.3 2 - -1 -4 —6 -8
0.4 -1 -2 —4 -7 —9 — 14
0.5 —4 -6 =7 -9 —-10 —11
0.6 -6 -8 -9 - 10 -11 -12
0.7 -7 —8 -9 -10 —11 =12
0.8 -7 —-R -9 -9 -9 =10
0.9 -5 -6 —6 -6 -6 —7

Asee o, 13
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Fig. 7. The linear approximations introduced in egs. (14) and
{147y are reported. For comparison the plot of A(x") calcu-
fated wsing egs. (11°) and (13) is shown,

are larger, ie. if K =1, a better linear approximation
can be introduced that underestimates the area A at
larger x* values:

Al 2) _xy= 125k 41
Tr
(‘*xo) .
= —-125—" 14
(¥m _Io) ( )

In fig. 7 plots of the two functions f(x’), curve A,
and g{x”). curve B, are shown; for comparison a plot
of A/(mwrd} vs x’ for K =1, curve C, is shown.

Finally, the single point response can be calculated
combining egs. (11) or (12} and (2). For a measuring
system of more than one collimator the point source
response is given by the product of the solid angles
subtended by the point in the direction of each collima-
tor. For example, in a system in which both the detector
and the source are collimated, the point source response
is given by the product of the two solid angles sub-
tended respectively.

4. Response function to a plane and a line source

The plane source response (&) is the integral over
the plane of the function Q{x, y, z). If we consider a
plane source of radius x normal to the collimator axis,
and we use the linear approximation introduced in the
previous section, we can find an approximate formula
as shown in appendix 1. The result given in eq. (13)
slightly overestimates the plane response:

=-rrrlf (z+L)
2 \ (x —Xp)

(x=xa) (x+R(x))
R(x) 2‘3'°g[(xo+ﬂ<xo)) ]} (13)
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Fig. 8. Response of a plane source as a function of height for

some values of »2/L. We note that the response to a plane
source is almost constant with height.

where R(x, z)=[x*+(z+L)* "% and (x,—xp)=
[(2zr)/L).

Using a well known relation that gives the collimator
response to a plane source in the focus [10], it can be
casily shown that eq. (15) gives good results if we
substitute the second term by 2.3.

For a plane source of infinite size, i.e. when x = x_,,
one term in eq. {15) becomes equal to zero and we
obtain a simpler relation:

_ i _ 2.3(2 + L)_ o (xm+R(xm)) }
G==3 {1 e %0} | g[ (x0+ R(x0)) |/

(15)
Fig. 8 shows a plot of G vs z for different values of
r*/L, for a plane source of infinite size. In agreement
with the results of other authors fig. 8 indicates little
dependence of G on z when the plane source com-
pletely fills the field of view of the collimator [11].

The line source response T can be obtained in-
tegrating the function §2(x. z) over a line. In appendix
2 we show that it is possible to find an approximate
formula for a line source of length x using the proposed
linear approximation. Using the symbols introduced in
eq. (15), it is possible to derive the follow equation:

rL (xmx+(z+L)2)
T= - R . (17
Bz(z+L)2 R{x) (xo) a7
When x > x, eq. (17) becomes
rL
T=— R{x_ ) —R(xy)]. 17
Sz(z+L)2[ (xm) = R(xo)] (17°)

5. Discussion

In this paper a simplified representation of a conical
collimator response function for point, hne and plane

sources is reported. It is shown that a very intuitive
solutioni of the problem can be derived using a simple
geometrica} approach. In addition. a linear approxima-
tion can be used that shightly overestimates the solid
angle subtended by the collimator. This approximation
can be used to evaluate the scattering volume. This
approach has been successfully used by the authors to
visualize the scattering volume at different scattering
angles.

A simplified formula for the evalvation of single
point response in collimated systems is of interest in
view of the development of new spectrometers for in
situ applications including X-ray fluorescence. When we
must take mto account attenuation and multiple inter-
action effects, in conjunction with geometrical prob-
lems, the only possibility to evaluate the device perfor-
mance is to use a Monte Carlo approach. In this case
the use of a convenient approximate formula reduces
the computation time. Further, when a large sample is
used, contributions of geometrical effects become large
especially in the presence of low-Z matrices, as in the
case of medical applications.
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Appendix 1

Let us introduce the function

R(x, (z+ L)) =[x+ (z+ L)}, (18)

which gives the distance of any point (P) from the
detector center.

In addition, let us introduce the parameter § given
by:

1
8= (xm_xﬂ). (19)

In the case the response to a plane source is given by:

[wr (z+L)] * xdx * xdx
I (%) xDfooR3(x)

~fo——. (20)
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The three integrals are easily evaluated:

x x dx -1 -1
I‘=-’;E3(x)=[(z+“ ~r(x)""],

I :fx xdx
PR (x)

s xldx
I3:LOR3(x)
| oxe A 3 x+ R(x)
‘[R(xm) R(xo)] “"g{wfe(xo)]'

Regrouping the terms, it is possible to derive eq.
(15).

—[r(x) " - R ()7, (21)

Appendix 2

Let us use the symbols introduced in appendix 1.
The line source response is given by:

[wrz(z-#- L)] f
0

* dx
R} (x) +XB~LOR3(,\:)

[R( . (22)

The three integrals are easily evaluated:

] :fx dx _ adl ,
DA RN (%) (24 L)Y'R(x)

x dx _ 1 XLAixo
12=L0R3(x)_(Z+L)[R( ) R(—‘o)}’ (23)

13=£:;3?;‘) —[R(xo) = R(0) 7.

Again, by regrouping the terms and using the defim-
tion of the function R(x. (z+ L)) given in appendix 1,
we can derive eq. (17).
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