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A new approach to the evaluation of the conical collimator response function is shown. The basic collimator formulae are 
reviewed. The collirnator renponse function has been found in a very easy way. An approxirnate solution has been introduced. 
Studying the response of a measuring system, the use of this approximation strongly reduces the ~omplexity of the relations lo be 
used; lherefore it would provide a useful starting point for a Monte Carlo calculation. The errors iniroduced are less than 10%. 
Approximale relations that allow the evaluation of lhe response of conical and cylindrical collimators lo plane and line sources are 
also given. 

In the last decade many applications of X- and 
gamma-ray spectrometnc techniques (ST) have been 
developed for "in f i e ld  measurements [l-31. 

One of the major prohlems in ST is the identification 
of the volume involved in the measurement; this prob- 
lem is of particular importante for X- and gamma-ray 
scattering techniques (PST), in which the scattering 
angle may change from point to point inside the scatter- 
ing volume [4-61. 

Another problem concerning collimation is the 
evaluation of the geometncal limitations of the measur- 
ing system with particular regard to "in vivo" measure- 
ments, in order to maximize the response/dose ratio. 

In many applications a measuring volume of known 
shape and efficiency is requested. This can he attained 
by designing the detector and source collimator in an 
appropriate manner. The computer simulation of the 
geometricai response (Le. a point source response of the 
measuring system) leads to visualization of the measur- 
ing volume. 

The response function of the collimator was studied 
in the 1960s and early 1970s in conjunction with the 
development of nuclear medicine (scanners and 
gamma-cameras [7,8]). Severa1 computer codes for simu- 
lation of the single and multihole collimator systems 
were aiso developed in order to take acwunt of inter- 
septal penetration. 

The exact collimator response function was found by 
Steyn et al. [9]. The equations given by these authors are 
complex in the formalism and cannot be easily visual- 
ized. Studying this prohlem in wnnection with the 
simulation of a PST system for bone mineral determina- 
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tion, we found that equivaient results can be obtained 
with simple geometrica1 considerations and an ap- 
propriate formalism. In this way the calculation of the 
solid angle subtended by a collimated detector is easily 
evaluated with a substantial reduction in the computa- 
tion time. 

2. Definitions 

A wllimalor is usually attached to a source and/or 
detector in order to reduce the field of view; for simplic- 
ity we will speak ahout detector collimation only. As 
shown in fig. la ,  the single point response of a detector 
of area D is given by the solid angle subtended by the 
point (P) 

where d and ai are defined according to fig. 1. Eq. (1) is 
valid only if D d 2 .  

If we now attach a wllimator to the detector, as 
shown in figs. l h  and C, we have: 

where A is the portion of the detector area seen by a 
point of coordinate (x, 2); it can be written as a 
function of the point coordinates, A(x, r). 

It is worth noting that these definitions are valid for 
a conical collimator, in which the entrance hole has a 
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Fig. 1. Solid nngle subtended by a detector of area D without 
(ripht) and wiih a cylindrical (middle) and a conica1 ileft) col- 

limaior. 

radius r' difirrcnt from the detector radius r (in a 
cylindrical collimator r' = r). 

We can now introduce the angle (6 j in connection 
with the field of vie%, of the detector (fig. 2): 

? + T '  
lan(8) = - 

L ' 
(3) 

where L  is the height o1 the collimator. 
It is evident that at any height along the collimator 

axis, the limit of the field of view is given by 

z ( r + r f )  
x , ( : )  = T '  + -- 

L (4) 

or 

x , ( i )  = ( r r / L ) ( Z z + L ) .  (4') 

for a cylindrical collimator. 
For a collimator wilh a conica1 bore, i.e., divergent 

from the entrance hole to the detector, we can introduce 
a focus. In this case the zone of the collimator field of 
view in which one can see only a portion of the detector 
area, i.e. the penumbra region, is deliinited by an inter- 
nal cone (see fig. 2). The limi1 of t h s  cane at any height 
along the axis r is given by 

Fig. 2. Definition of divergente angle 1 8 )  and af the upper 
limi1 x., of the field of view for a cylindrical and conica1 
collirnator. For a canical (focusing) wllirnator xo is the low 

limii of the prnurnbra region. 

If we put r,, = O \rc find the focus of the collimaior 

Lr' 
,e= -- , . 

T - T  
( 6 )  

3. Response function of a collimatoi 

I n  order to evaluate the response functiim of a 
collimator in the case of point, Iine and plane sources. 
we should find an expression for the ahove introduced 
function A(x, ; j. To this aim let us consider the projec- 
tion (P,) of the collimator entrance hole on the detector 
plane; as shown in fig. 3. Ihis projection has always a 
circular shape with a radius ( R )  that is a function of z .  

L  and r': 

R =  [ ( z +  L ) / z ] r ' .  ( 7 )  

It is worth noting that R becomes larger as we move, 
along the collimaror axis, towards the colli<nator face 
(near field), while for large z-values the radius R be- 
comes about equal lo r'  (far field). 

The area A, which is equal to the detector area for 
.r < x, .  drcreases when we move transversely towards 
the edge of the field of view. This happens because P, 
rnoves in the opposite direction. In addition, in fig. 3 is 
shown how the distance hetween the centers of D and 
P, is linearly related to x :  

E =  ( L / r ) x .  (8) 

In fig. 4 the area A is shown in the plane of the 
detector. In the following, we will show that the area A 
can be expressed as a function of r and of the angles 4 
and y .  as defined according to fig. 4. In addition, we 
will find a relation between x  and the two above 
mentioned angles; in this manner we will arrive n1 an 
implicit solution of our problem. 

P 

a 

Fig. 3. The area of the detector seen by a point through a 
cylindtical collirnator is givcn by the intrrirction of detector 
arca (D)  and ihe area (P,) that  represents thc projection of the 

u'llimator entrance hole on the deierrto~ plane. 
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Fig. 4. A view, on the deteiror plane. uf the area A(x. i )  

corresponding 10 the piece of detector area seen by a point 
through ihe collimator. The two angles + and y are defined in 

the drawing. 

It is easy to show that the following relation holds 
between the angles + y: 

or, for a cylindncal collimator: 

It is worth noting that the above defined parameter 
( K )  is a function of the wllimator height and radius 
and of the coordinate r. Il assumes values > 1; for a 
focusing collimator. if r > F. this parameter should be 
suhstituted hy K ' =  r/R. 

In addition, let us express the distance E as a 
function of these two angles, according to fig. 4: 

It should be noted that when the variahle + scans 
the interval from O lo 180 ", the variable y scans twice 
the interval from O to arcsin(l/K). In the same time E 
varies between ( R  - r) and (R + r ) ;  this means that its 
range depends slightly on 2 .  

Further, we can see that the area A can be expressed 
as a tunction of + and y, hecause the intersection area 
is the sum of two circular segmenis depending on these 
angles: 

If K =  l ,  i.e. in the focus of the collimator. we find 
the following simple relation: 

For i > F. eq. (11) is still valid hut R < r .  therefore 
the maiimum detector area that can h? seen is n ~ ~ .  
Therefore, the angle y scans the interval O-lROo, 
whereas qb scans twice the intemal O-arcsin(l/K'). In 
this case the area A is given hy 

In fig. 5, a plot of A'(+. y. z ) / r 2  as a function of + 
for different values of the parameter K is shown. 

Let us now introduce a normalized coordinate x' 
that varies in the interval0-1 when x scans the intemal 
x,-x,. We have: 

or. for K =  l, 

x ' =  ws(+) .  

In fig. 6, a plot of ~ / ( ~ r d ~ )  vs X '  is shown for 
different values of K, the numerica1 values are reported 
in table 1. It is evident that a linear approximation 
would give quite good results in the range O < x c 0.5. 
We can express this linear approximation as follows: 

It is worth noting that the function /(x'.  r) over- 
estimates the area A €or large values of 2, i.e. for K = 1. 
As shown in table 2, the error introduced hy this 
approximation is lower for x' < 0.5, while for larger n' 
(i,,. in the tail of the collimator response function) it is 
always less than 12% of the fu11 area. Where the errors 

.5Z : "5  . 57 2.09 2 62 ; . l<  
6iii.I 

5 .  A(+.  y ) / r Z  as a funclion of the angle <p for some 
values of the parameter K. 
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Fig. 6. [ A ( x ' .  r ) / ( n r 2 ) ]  vs x'  far some values of the pararne- 
ler K .  

Table l 
Detector are fracrians as a function of point normalhd coor- 
dinate x'  (see q. (13)). at different values of the paramcler K 
(see eq. (911 

Table 2 
Percnitage differencsr of ihs detector area fractionn, calculated 
with the linear approxirnation of eq. (14) and with eq. (11). as a 
function o1 normalkcd coordinale x '  (eq. (13)) and of the 
parameier K (ree eq. (9)) 

I(IWI*LI?EO C0OXDI"bll x 

Fig. 7. Thi lineir appronimations introduced in eqs. (14) and 
(14') are reponcd. For comparison the plot of A(x') calcu- 

laied using eqs. (I l ' )  and ( 1 3 )  is shown. 

are larger, i.e. if K = l. a better linear approximation 
can he introduced that undcrestimatcs the area A at 
larger x '  values: 

In fig. 7 plots of the two functions f(x'), curve A,  
and g(s ' ) .  cums 6. are shown; for comparison a plot 
of A/(nrd) vs x '  for K =  l ,  curve C, is shown. 

Finally. the single point response can be calculated 
combining eqs. (11) or (12) and (2). For a measunng 
system of more than one collimator the point source 
response is given by the product of the solid angles 
subtended by the point in the direction of each collima- 
tor. For example, in a system in which both the detector 
and the source are collimated, the point source response 
is given by the product of the two solid angles sub- 
tendsd respectively. 

4. Response function to a plane and a line source 

The plane source response (G)  is the integra1 over 
the plane of the function n ( x ,  y, 2). If we consider a 
plane source of radius x nomal  to the collimator axis. 
and we use the linear approximation introduced in the 
previous section, we can find an approximate formula 
as shown in appendix 1. The result given in eq. (15) 
slightly overestimates the plane response: 



~ : ,  1 ,  

Fig. 8. Response of a plane source as a funcuon of heighi for 
some values of ,*/L.  We note that the rrrponre io a plme 

source is alrnost constani wiih heighi. 

where R(x ,  z )  = [.T' + ( r  + L ) ~ ] " ~  and (x, - x o ) =  

[(2zr)/LI. 
Usine a well known relation that eives the wllimator - 

response to a plane source in the focus [lo], it can he 
easily shown that eq. (15) gives good results if we 
suhstitute the sewnd term~by 2.3. 

For a plane source of infinite size, i.e. when x x,, 
one term in eq. (15) becomes equa1 to zero and we 
ohtain a simpler relation: 

Fig. 8 shows a plot of G vs r far different values of 
rZ/L, far a plane source of infinite size. In agreement 
with the results of other authors fig. 8 indicates little 
dependence of G on z when the plane source com- 
pletely fills the field of view of the collimator [ I l ] .  

The line source response T can be obtained in- 
tegrating the function Q(x. 2) over a line. In appendix 
2 we show that it is possible to find an approximate 
formula for a line source of length x using the proposed 
linear approximation. Using the symbols introduced in 
eq. (15), it is possible to derive the follow equation: 

When x 2 x, eq. (17) becomes 

5. Discussion 

In this paper a simplified representation of a conica1 
collimator response function far point, line and plane 

sources is reported. It is shown that a very intuitive 
solution of the prohlem can be derived using a simple 
geometrica1 approach. In addition. a linear approxima- 
tion can be used that slightly overestimates the solid 
angle subtended bv the collimator. This approximation 
can be used to evaluate the scattering volume. This 
approach has heen successfully used by the authors io 
visualize the scattering volunie at different scattenng 
angles. 

A simplified formula for the evaluation of single 
point response in collimated systems is of interest in 
view of the development of new spectrometers for in 
situ applications including X-ray fluorescente. When we 
must take into account attenuation and multiple inter- 
action effects, in conjunction with geometncal proh- 
lems, the only possihility to evaluate Ihe device perfor- 
mance is to use a Monte Carlo approach. In this case 
the use of a convenient approximate formula reduces 
the computation time. Further, when a large sample is 
used. contrihutions of geometncal effects hecome large 
especially in the presence of low-Z matrices, as in the 
case of medica1 applications. 

The author u~shes  to thank Prof. S. Sciuti far his 
continuous suppor1 and far his critica1 reading of the 
text. 

Appendix 1 

Lei us introduce the function 

which gives the distance of any point (P) from the 
detector center. 

In addition. let us introduce the parameter M given 
by: 

In the case the response to a plane source is given by: 

G =  - = x d x  
2 

+x,B - /,, R 3 ( x )  
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The three integrals are easily evaluated: 

x d x  
1, =I - = [ ( z + L ) ' - R ( x ) - ' ] ,  

n R 3 ( x )  

Again, by rzgrouping the terms and  using the defini- 
tion of the function R ( x .  ( r  + L))  given in appendix 1, 
we can derive eq. (17). 

x d x  
12=J -= [ R ( x , ) - '  - R ( x ) - ' 1 ,  
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