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Abstract. Mammography associated with clinical breast examination
is the only effective method for mass breast screening. Microcalcifications
are one of the primary signs for early detection of breast cancer. In this
paper we propose a new kernel method for classification of difficult-to-
diagnose regions in mammographic images. It consists of a novel class of
Markov Random Fields, using techniques developed within the context
of statistical mechanics. This method is used for the classification of pos-
itive Region of Interest (ROI’s) containing clustered microcalcifications
and negative ROI’s containing normal tissue. We benchmarked the new
proposed method with a nearest neighbor classifier and with an artificial
neural network, widely used in literature for computer-aided diagnosis.
We obtained the best performance using the novel approach.

1 Introduction

The usage of machine learning algorithm for the development of computer-
-assisted diagnosis system is a well developed area of research [9,16]. The di-
agnostic process is a very complicated procedure, the outcome of which depends
on numerous factors. Some of these factors relate to the procedure itself and
others are associated with characteristics of the human visual system. In the
situation in which all technical factors are at a high quality level, the human
factor becomes more important. The perception of details and the recognition
of the meaning of these details are the weakest links in the biomedical image
interpretation process; perceptual and cognitive problems occur that will result
in loss of information and a lower quality of the resulting diagnosis. Thus the
importance of developing computer-assisted diagnosis systems which make use
of knowledge developed within the machine learning community.

A challenging application problem is the detection of microcalcifications in
X-ray mammograms. Screen-films mammography associated with clinical breast
examination and breast self examination is widely recognized as the only effective



imaging modality for early detection of breast cancer in women [14, 6]. However,
the interpretation of X-ray mammograms is very difficult because of the small
differences in the image densities of various breast tissues, particularly for dense
breast. The interpretation of mammograms by radiologists is performed by a
visual examination of films for the presence of abnormalities that indicate can-
cerous changes. Computerized analysis might be of significant value to improve
the true-positive rate of breast cancer detection. Among the early indicators of
breast cancer, microcalcifications are one of the primary signs. They are tiny
granule-like depositum of calcium, and the presence of clustered microcalcifica-
tions in X-ray mammograms is considered a basic marker for the early detection
of breast cancer, especially for individual microcalcification with diameters up
to about 0.7 mm and with an average diameter of 0.3 mm [14,6].

Computerized image analysis methods have been used for the identification
of circumscribed masses, classification of suspicious areas and classification of
microcalcifications using conventional methods [8], [13] and using expert sys-
tems [8]. In the actual interpretation of mammographic microcalcifications, the
gray-level values defining local structures in the microcalcification clusters play
a significant role [6]. It has been demonstrated in clinical studies described in
[6], that the grouping of microcalcification regions, in order to define the shape
of the cluster, is highly dependent on the gray-level-based structure and texture
of the image. Texture information plays an important role in image analysis and
understanding, with potential applications in remote sensing, quality control,
and medical diagnosis. Texture is one of the important characteristics used in
identifying an object or a region of interest (ROI) in an image [5]. A vast litera-
ture has addressed this topic in the last decades [8,9,5,16,13,3]. Most of work
has been devoted to the search of key textural features for the representation
of significant information. The classification step is generally performed using
Artificial Neural Networks (ANN).

In this paper we focus the attention on the choice of the classification algo-
rithm rather than on the choice of the textural features. We propose to use Spin
Glass -Markov Random Fields (SG-MRF, [4]) for microcalcification detection.
SG-MRF is a fully connected MRF which integrates results of statistical physics
of disordered systems [1] with Gibbs probability distributions via non linear
kernel mapping [12]. SG-MRF have shown to be very effective for many visual
applications such as appearance-based object recognition, texture classification
and so forth [4]. Here we apply the very same strategy for microcalcification
detection. We represent each Region Of Interest (ROI) using a shape histogram
representation [11], then we model the SG-MRF on the histogram bins. This
probabilistic model is used to classify ROI into positive ROIs containing micro-
calcifications and negative ROIs containing normal tissue. The classification step
is performed using a Maximum A Posteriori (MAP) probability classifier. We
compare SG-MRF’s performance with that obtained using a Nearest Neighbor
Classifier (NNC) and an ANN given by a three-layer perceptron, with back-
propagation learning algorithm. In all the experiments we performed, SG-MRF
obtained the best performances. To the best of our knowledge, these are the first



experiments on microcalcification detection that show a better performance of
a given method (in this case SG-MRF) with respect to a multi-layer perceptron
classifier.

The paper is organized as follows: Section 2 describes the algorithm used for
the feature extraction step. Section 3 reviews basic concepts of ANN, and Section
4 summarizes the SG-MRF model and how it can be employed for classification
purposes in a MAP classifier. Section 5 presents experimental results; the paper
concludes with a summary discussion.

2 Feature Extraction: Multidimensional Receptive Field
Histograms

Multidimensional receptive Field Histograms (MFH) were proposed by Schiele
[11] in order to extend the color histogram approach of Swain and Ballard [15].
The main idea is to calculate multidimensional histograms of the response of a
vector of receptive fields. A MFH is determined once we chose the local property
measurements (i.e., the receptive field functions), which determine the dimen-
sions of the histogram, and the resolution of each axis. On the basis of the results
reported in [4], we chose to use in this research work two local characteristics
based on Gaussian derivatives:
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is the Gaussian distribution. The parameter o explicitly determines the scale of
the filter, and it will be specified later.
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3 Artificial Neural Networks

Also referred to as connectionist architectures, parallel distibuted processing,
and neuromorphic systems, an artificial neural network (ANN) is an information-
-processing paradigm inspired by the way the densely interconnected, parallel
structure of the mammalian brain processes information. Artificial neural net-
works are collections of mathematical models that emulate some of the observed
properties of biological nervous systems and draw on the analogies of adaptive
biological learning. The key element of the ANN paradigm is the novel structure
of the information processing system. It is composed of a large number of highly
interconnected processing elements that are analogous to neurons and are tied
together with weighted connections that are analogous to synapses [7], [10], [2].
A weight w;; (coupling strength) characterizes the interconnections between any
two neurons ¢ and j. The input to each neuron is a weighted sum of the out-
puts incoming from the connected neurons. Each neuron operates on the input



Fig. 1. Four examples of ROIs containing microcalcifications.

signal using his activation function f and produces the output response. The
typical activation functions are linear, threshold and sigmoid [10], [2]. Normally
the neurons are organized in an architecture with input nodes, interfacing the
neural network and the external world, output nodes, producing the network’s
responses, and hidden nodes, having the task of correlating and building up an
“internal representation” of the analyzed problem. Network’s capacity and per-
formance depends on the number of neurons, on the activation functions used,
and on the neurons’ interconnections. Another important attribute of artificial
neural networks is that they can efficiently learn nonlinear mappings through
examples contained in a training set, and use the learned mapping for complex
decision making [10], [2].

Although ANNs have been around since the late 1950’s, it wasn’t until the
mid-1980’s that algorithms became sophisticated enough for general applica-
tions. Today ANNs are being applied to an increasing number of real-world
problems of considerable complexity. They are good pattern recognition engines
and robust classifiers, with the ability to generalize in making decisions about
imprecise input data. The advantage of ANN lies in their resilience against dis-
tortions in the input data and their capability of learning. They are often good
at solving problems that are too complex for conventional technologies (e.g.,
problems that do not have an algorithmic solution or for which an algorithmic
solution is too complex to be found) and are often well suited to problems that
people are good at solving, but for which traditional methods are not.



4 Spin Glass-Markov Random Fields

Consider a visual category (2; and a set of k observations {x!...x*},x € R™,
that we consider random samples from the underlying, unknown, probability
distribution P(x) defined on R™. Consider also K different visual categories
2;,5 ={1,...K}. Given an observation X, our goal is to classify X as a sample
from 2+, one of the £2; object classes. Using a Maximum A Posteriori (MAP)
criterion we have

J* = argmax P(2,|x) = argmax{P(x|12;)P(12;)};
J J

using Bayes rule, where P(x|(2;) are the Likelihood Functions (LFs) and P({2;)
are the prior probabilities of the classes. Assuming that P({2;) are constant, the
Bayes classifier simplifies to

J* = argmax P(x|(2;).
j
A possible strategy for modeling the parametric form of the probability distri-
bution is to use Gibbs distributions within a MRF framework.

Spin Glass-Markov Random Fields (SG-MRFs) [4] are a new class of MRF's
which connect SG-like energy functions (mainly the Hopfield one [1]) with Gibbs
distributions via a non linear kernel mapping. The resulting model overcomes
many difficulties related to the design of fully connected MRFs, and enables to
use the power of kernels in a probabilistic framework. The SG-MRF probability
distribution is given by
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where the function K (x,%") is a Generalized Gaussian kernel [12]:
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{x# }ﬁjzl, J €[1,K] are a set of vectors selected (according to a chosen ansatz,
[4]) from the training data that we call prototypes. The number of prototypes

per class must be finite, and they must satisfy the condition:
K, %" =0, ()

for all 4,k = 1,...pj,i # k and j = 0,...K. The interested reader can find a
detailed discussion regarding the derivation and properties of SG-MRF in [4].



5 Experimental Results

We tested the performance of SG-MRFs for microcalcifications detection on a
database of 81 images produced by the “Centro per la Cura e la prevenzione dei
Tumori” of the University of Rome “La Sapienza”; each image was digitized from
film using a CCD camera operating at a spatial resolution of 604 x 575 pixels for
image; the pixel rate was of 11,5M H z, and the pixel size of 10um x 15um. From
the 81 images, 152 Region of Interest (ROI) were selected by expert radiologists,
each of 128 x 128 pixels. Among the selected 152 ROIs, 112 were positive and
40 were negative; four different ROIs are shown in Figure 1. We used as training
set 59 images representing positive ROIs, and 33 images representing negative
ROIs. The rest of the database was used as a test set. In a preprocessing step,
each extracted ROI was stretched to the normalized gray-level range of 0-255
[5]. Features were extracted using a Multidimensional receptive Field Histogram
(MFH) representation [11]}, that has been already used successfully combined
with SG-MRF [4]. We used 2D MFH, with filters given by Gaussian derivatives
along z and y directions as described in Section 2 and with ¢ = 1.0; resolution
for histogram axis of 16 bins. For the classification step, we used SG-MRF in
the MAP-MRF framework described in Section 3. For the choice of prototypes,
we made a naive ansatz [4], which means that all training views are taken as
prototypes, and the p in the Gaussian kernel is learned so to satisfy condition (5).
The performance of SG-MRF was compared with a Nearest Neighbor Classifier
(NNC) and an ANN. More precisely, we used a three-layer perceptron, with
backpropagation learning algorithm. the textural features extracted by means of
MFH histograms are used as the input signals of the input layer. there is a single
output node for classification into positive or negative ROIL. The performance of
SG-MRF was evaluated as the kernel parameters a,b varied. The performance
of the ANN was evaluated as the number of neurons in the hidden layer varied.

INNC]| SG-MRF | ANN |
a=1,b=15[88.33]a = 0.5,b = 1.5[93.33][S1 = 1[83.33]S1 = 4[83.33
88.33| a =1,b=1 [90.00] a = 0.5,b =1 [93.33][S: = 2[83.33[S1 = 5[83.33
a=1,b=10593.33]a = 0.5,b = 0.5]93.33][S1 = 3[85.00]5: = 6[81.67

Table 1. Classification results for NNC, ANN and SG-MRF. S; represents the number
of neurons in the hidden layer for ANN.

Classification results are reported in Table 1. The best recognition rate, cor-
responding to 93.33%, was obtained using SG-MRF. This result is obtained with
more than one combination of kernel parameters (see Table 1). NNC gives a best
performance of 88.33%, corresponding to a +5% less with respect to the recog-
nition rate obtained using SG-MRF. ANN gives a best performance of 85.00%,

! We gratefully thank B. Schiele who allowed us to use his software for the computation
of MFH.



corresponding to the worst recognition rate obtained on this database. It corre-
sponds to a 3.33% loss with respect to the recognition rate obtained using NNC,
and to an impressive 8.33% loss with respect to the recognition rate obtained
using SG-MRF.

These results show the effectiveness of SG-MRF for microcalcification de-
tection. At the same time, they show that, in the building of algorithms for
computer-assisted diagnosis, ANN cannot be considered a priori the optimal
choice for the classification step. To the best of our knowledge, these are the
first experiments that reports of a comparative study on microcalcification de-
tection with respect to the kind of classifier employed.

6 Summary

In this paper we presented a new probabilistic approach for microcalcification
detection. It applies a new kernel method, Spin Glass-Markov Random Fields,
that already proved to be very effective for many visual applications such as
object recognition and scene classification [4]. The method is benchmarked with
a NNC and an ANN on the same feature representation, obtaining respectively
an impressive +5 % and +8.33% recognition rate. This experimental result shows
the effectiveness of the proposed approach.

This work can be extended in many ways. First, the performance of SG-MRF
can be improved choosing a different set of kernel parameters, and a different
representation. Second, we plan to benchmark this approach with other classifiers
such as support vector machines. Finally, we intend to compare the performance
of SG-MRF and the aforementioned classifiers using different set of features.
Future work will concentrate in these directions.

Acknowledgments We would like to thank Prof. V. Virno and the staff of the
Radiology department of the “Centro per la cura e la Prevenzione dei Tumori”
of the University of Rome “La Sapienza”. B. C. has been supported by the
Foundation BLANCEFLOR Boncompagni-Ludovisi.

References
1. D. J. Amit, “Modeling Brain Function”, Cambridge University Press, 1989.
2. C. M. Bishop, Neural Networks for Pattern Recognition, Claredon Press - Oxford,

1995

3. B. Caputo, G. E. Gigante, “Digital Mammography: a Weak Continuity Texture
Representation for Detection of Microcalcifications”, Proc. of SPIE Medical Imaging
2001, February 17-22, VOL 4322, PP1705-1716, San Diego, (CA), USA, 2001.

4. B. Caputo, H. Niemann, “From Markov Random Fields to Associative Memories
and Back: Spin Glass Markov Random Fields”, SCTV2001.

5. A. K. Jain, “Fundamental of digital image processing”, Prentice Hall, Englewood
Cliffs, 1989.



6. M. Lanyi, “Diagnosis and Differential Diagnosis of Breast Calcifications”, New
York: Springer-Verlag, 1986.

7. R. P. Lippmann, “An introduction to computing with neural nets”, IEEE ASSP
Magazine, pp. 4-22, April 1987.

8. S. Morio and S. Kawahara et al., “Expert system for early detection of cancer of
the breast”, Comp. Biol. Med., vol. 19, no. 5, pp. 295-305, 1989.

9. Nishikawa RM, Wolverton DE, Schmidt RA, Papaioannou J, “Radiologists’ abil-
ity to discriminate computer-detected true and false positives, from an automated
scheme for the detection of clustered microcalcifications on digital mammograms”,
Proc SPIE 3036: 198-204, 1997.

10. D. E. Rumelhart and C.R. Rosemberg, Parallel Distributed Processing, the MIT
Press, Cambridge MA, 1986.

11. B. Schiele, J. L. Crowley, “Recognition without correspondence using multidimen-
sional receptive field histograms” ,IJCV, 36 (1), pp. 31- 52, 2000.

12. B. Scholkopf, A. J. Smola, Learning with kernels, 2001, the MIT Press.

13. L.Shen, R. M. Rangayyan and J. E. L. Desautels, “Application of shape analysis to
mammographic calcifications”, IEEE Trans. Med Imag., vol. 13, no. 2, pp. 263-274,
1994.

14. E. A. Sickles and D. B. Kopans, “Mammographic screening for women aged 40 to
49 years: the primary practitioner’s dilemma”, Anna. Intern. Med., vol. 122, no. 7,
pp. 534-538, 1995.

15. M. Swain, D. Ballard, “color Indexing”, IJCV, 7, pp 11-32, 1991.

16. Zhang W, Doi K, Giger ML, Nishikawa RM, Schmidt RA, “An improved shift-
invariant artificial neural network for computerized detection of clustered microcal-
cifications in digital mammograms”. Med Phys, 23: 595-601, 1996.



