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Abstract: The corrosion of bronzes was examined in the context of single-acid versus 

mixed-acid (as in urban acid rain) solutions. Two bi-component bronzes (copper with 

either 3% Sn or 7% Sn) that closely represent those of historic artifacts were immersed for 

five weeks in conditions designed to replicate those experienced by statues and ornaments 

in cities where rainfall and humidity constantly produce an electrolyte layer on the surfaces 

of bronzes. Ions, acids, and particles of pollutants can dissolve in this layer, resulting in a 

variety of harsh corrosion processes. The kinetics of corrosion and the properties of the 

resulting patinas were monitored weekly by electrochemical impedance spectroscopy and 

open-circuit potential measurements. The sizes and appearances of the corrosion products 

were monitored and used to estimate the progress of the corrosion, whose crystalline structures 

were visualized using scanning electron microscopy with energy dispersive spectroscopy, 

identified by X-ray diffraction, and characterized by spectrocolorimetry. The electrochemical 

measurements demonstrated that greater damage (in terms of color change and corrosion 

product formation) did not correspond to deficiencies in protection. The mixed-acid 

solution did not corrode the bronzes, as would be expected from the additive effects of the 

single acids. The postulated mechanisms of metal dissolution appear to be specific to a 

particular bronze alloy, with the tin component playing an important role. 
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1. Introduction 

Corrosion is a complex process involving many factors. Composition, morphology, and surface 

inclination are the main factors affecting the corrosion of an object [1–9]. Environmental parameters, 

such as humidity, temperature, rain, and air quality, also play a role [10–16]. Once formed, the 

corrosion products themselves also directly influence the process. The complexity and specificity of 

corrosion mechanisms arise, therefore, on account of combinations of multiple factors [17–20]. 

A comprehensive understanding of the various different corrosion mechanisms is important to the 

protection of cultural artifacts. Investigations have been conducted during the analysis of degraded 

monuments undergoing restoration [21–27], and various relationships have been identified between the 

compositions of artifacts, their level of corrosion, and the monument environment, e.g., indoor, 

outdoor, urban, marine, or rural [28–33]. 

Given that a great many monuments are exposed to aggressive urban pollution, studies of corrosion with 

respect to conservation are receiving increased research attention [11,13,15–18,34,35]. Although air 

pollution levels can be mitigated by legislative regulation, the problem of corrosion remains large. 

In this study, we examined the corrosion of bronzes with the aim of understanding reaction 

mechanisms. The following factors were considered: alloy composition (two bi-component alloys were 

tested), composition of the aqueous layer adsorbed on the bronzes, effects of acid pollutants  

(i.e., applied singly and in combination), and the duration of wetting. The two alloys were chosen to be 

representative of bronze artifacts exposed across Europe. Ornamental bronzes generally contain less 

than 10% Sn. Acid rain was simulated using solutions of its main acidic components (sulphuric and 

nitric acids).  

2. Results and Discussion 

2.1. OCP Monitoring 

The evolution of OCP during five weeks of immersion in the three aggressive solutions is shown in 

Figure 1. 

2.1.1. OCP Measurements of Bronzes Immersed in Artificial Acid Rain Solution 

The bronze with 3% Sn was initially more greatly corroded than the other alloy. The decrease of 

OCP suggests that its patina was less protective. (Cicileo et al. noted that more stable and protective 

patinas show high and constant potential values [19].)  

The bronze with 7% Sn showed a slow but continuous patina formation, as demonstrated by the 

slight increase of OCP toward anodic values. The potential appeared to be almost stable from the third 

week to the end of the five-week observation, suggesting the emergence of a stable, protective layer. 
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Figure 1. OCP measurements during five weeks of immersion of 3% Sn and 7% Sn bronzes 

in (a) synthetic acid rain solution; (b) 0.1 M sulphuric acid; and (c) 0.1 M nitric acid. 

 

2.1.2. OCP Measurements of Bronzes Immersed in Sulphuric Acid Solution 

During its first week in sulphuric acid, the 3% Sn bronze showed a great increase of potential owing 

to patina formation. This patina remained almost stable, and thus protective, until the fourth week, 

when it partially dissolved as the aggressive solution penetrated through cracks in it.  

The 7% Sn sample formed a more stable patina. 

2.1.3. OCP Measurements of Bronzes Immersed in Nitric Acid Solution 

The 3% Sn bronze formed a patina in two anodic steps during the first and the fourth weeks. 

Between these two steps, the patina, and, thus, the potential, remained stable. The 7% Sn bronze 

showed an anodic reaction during the first week, a slight decrease of its potential during the second 

week, and an even stronger decrease in the third week. After this, a stable patina re-formed. The trends 

of the OCP curves of the two samples are comparable, and their potential values also appear to be 

similar to each other. 
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2.2. Electrochemical Impedance Spectroscopy 

2.2.1. EIS of Bronzes Immersed in Artificial Acid Rain Solution 

The equivalent circuits of the 3% Sn bronze reflect the formation and dissolution of its patina. 

During the first week, the equivalent circuit evolved from Re+ctQ (which considers the sum of the 

electrolyte resistance and the charge transfer resistance) to Re+ctQW (Table 1); it then changed to 

Re(Rf+ctQ)W, which indicated a higher resistance of charge transfer (with a partial contribution of the 

film resistance) due to the growth of a monolayer patina. The values of n and W indicate that the layer 

was rough and porous and allowed diffusion phenomena (Warburg, W). 

The re-forming of the patina after its partial dissolution can be implied from the calculated circuit 

elements: R(RfCf)(RctQ)W (Rf and Cf are related to the corrosion layer properties, while Rct is the 

charge transfer resistance). The charge transfer capacity (Q) and the Warburg (W) underline that charge 

transfer and diffusion processes respectively dominated the reaction. The Q index (n = 0.38) also indicates 

the roughness of the layer that allowed diffusion inside the layer, as also reported in other studies [29–36]. 

The mechanism of the charge transfer continued until the end of the fourth week. The resistance 

increased from 9.94 Ω in the third week to 1.17 × 103 Ω in the fourth week, and the capacitance decreased 

from 4.91 × 10−4 F in the third week to 6.9 × 10−6 F in the fourth. These changes can be interpreted as an 

improvement of the patina’s passivity. During the last week, the resistance reached 4 × 107 Ω. 

The 7% Sn bronze developed different equivalent circuits. During the first week, diffusion, 

represented by Warburg (W), and charge transfer (Rf+ctQ) reactions were active on the surface 

(Re(Rf+ctQ)W). In the second week, the surface was identified by a two-circuit mesh: Re(RfQ)(Rf+ctQ)W, 

which accounted for the protective properties despite the porosity (W and n are both present in the 

expression representing the roughness of the surface and the diffusion). During the third week, the 

equivalent circuit was composed only of Re(Rf+ctQ), indicating that the dissolution of the outer layer 

(the second mesh of the equivalent circuit of the second week) occurred due to its porosity—the n 

index of the outer layer was 0.54, and that of the inner layer was 0.76. The less rough and more 

homogeneous inner layer (n = 0.76) was more stable and passive than the outer one (n = 0.54); it 

underwent aggressive kinetic processes attributable both to charge transfer and diffusion (W). 

However, the mechanism of charge transfer inside the layer caused the patina to grow, which reduced 

the quantity or dimensions of the pores. In this way the film showed a higher resistance (R), implying 

better protective properties. 

The patina growth then slowed the corrosion progress, and the circuit went from (Re+fQ)(RctCct) 

during the fourth week, when the process was determined by the patina formation, to Re(Rf+ctQ)W 

during the fifth week. 

The relative thickness of the 3% Sn bronze was calculated using the equivalent circuit of the second 

week (the equivalent circuit in which the film resistance is distinguishable from the other resistances). 

Its high value of 8.47 × 105 F−1 can be attributed to the roughness and porosity of the layer. The n 

index was 0.38, and Warburg diffusion was also present. This interpretation was confirmed by the 

subsequent partial dissolution of the patina in accordance with the progression of the OCP and the 

relative equivalent circuit. 
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During the fourth week, the relative thickness of the patina on the 7% Sn bronze reached  

7.29 × 103 F−1. The patina was thinner but more stable than that grown on the 3% Sn sample, as also 

demonstrated by the OCP and the EIS results. 

Overall, the 7% Sn bronze produced a double layer of corrosion products, wherein the dissolution 

of the outer film improved the barrier properties of the inner one. The 3% Sn sample appeared to be 

the more damaged, with a thick but unstable patina. 

2.2.2. EIS of Bronzes Immersed in Sulphuric Acid Solution 

Table 2 lists the equivalent circuits and the values of each element for the two alloys immersed in 

sulphuric acid. The 3% Sn bronze changed from an ReQ equivalent circuit on the first day of 

immersion to an Re(RfCf)(RctCct)W equivalent circuit after one week. This underlines the rate of the 

initial corrosion process. However, the patina allowed diffusion (W). During the second week, the 

patina continued to form, but more slowly than in the first week, as shown by the sum of the film and 

charge transfer resistances (R(RfCf)(RctW)). The resistance increased until the fourth week. The 

subsequent partial dissolution again exposed the surface to the aggressive solution. 

Patina formation was more progressive on the 7% Sn sample. However, the equivalent circuits 

outline the different phenomena acting during the test. The fast corrosion of the first week, represented 

by the increase of Q values, indicates a preference for the charge transfer process. The n index (that is 

present only with the Q element) of 0.42 indicates the roughness of the film. Charge transfer in the 

film distinguishes the equivalent circuit of the second week. Diffusion, as Warburg (W), also occurred 

in the following equivalent circuit: Re(RfCf)(RctQ)W. The patina feformation from the third to the fifth 

week can be expressed by a Re+f(RctQ) circuit. A diffusion mechanism occurred only during the fourth 

week; the values indicate a decrease of the resistance and an increase of the capacitance. This 

demonstrates that corrosion increased owing to the porosity of the patina and its partial dissolution. 

The relative thickness of the patina of the 3% tin sample was calculated from the circuits of the first, 

second, and fourth weeks. It was 2 × 103 F−1 in the first week, increasing to 3.4 × 105 F−1 in the second 

week and 4.76 × 105 F−1 in the fourth week. The results are compatible with the interpretation of the 

OCP and EIS results. The relative thickness of the patina of the 7% tin sample in the second week was 

higher: 8.3 × 105 F−1. Overall, these results also demonstrate the good corrosion behavior of the 7% Sn 

sample, which showed progressively decreasing corrosion due to the formation of a stable patina. 

2.2.3. EIS of Bronzes Immersed in Nitric Acid Solution 

The 3% Sn bronze corroded quickly until the second week; its equivalent circuits for the first two 

week can be represented as Re(Rf+ctQ) (Table 3). The resistance increased and the capacity decreased, 

indicating that patina formation improved its passivity, despite the porosity of the layer. During the 

third week, this trend reversed, and a W term appeared (Re(RfQ)(RctQ)W): charge transfer and diffusion 

both occurred on the surface. These reactions involved a more stable and less porous patina than was 

present the previous week; it reached its highest resistance values in the last week. This analysis is 

comparable with the OCP results. 
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Table 1. Equivalent circuits for 3% Sn bronze and 7% Sn bronze immersed in the artificial acid rain solution. The film resistance (Rf); the film 

capacitance (Cf); the resistance (Rct) and capacitance (Cct) of charge transfer; the resistance of the electrolyte (Re); the Warburg (W); the 

constant phase element (Q); and its index n (present only with Q). 

Time 3% Sn 7% Sn 

0 ReQ  ReQ  

R = 26.22 Q = 3.65 × 10−4; n = 0.73 R = 24.5 Q = 2.28 × 10−4; n = 0.80 

1  
day 

Re+ctQW  ReQ  

R = 22.94 Q = 5.04 × 10−4; n = 0.78 W = 37.88 R = 23.88 Q = 9.3 × 10−4; n = 0.74 

1 
week 

Re(Rf+ctQ)W  Re(Rf+ctQ)W  

R = 21.1 R = 433.8 
Q = 9.4 × 10−5;  

n = 0.56 
W = 1001.2 R = 18.02 R = 27.25 Q = 5.04 × 10−4; n = 0.41 W = 621.5 

2 
weeks 

Re(RfCf)(RctQ)W  Re(RfQ)(Rf+ctQ)W  

R = 70.7 R = 823 
C = 11.8 × 

10−6 

R = 1.57 × 

103 

Q = 5.3 × 10−5; 

n = 0.38 
W =3034 R = 0.01 R = 7.49 × 105 

Q = 1.33 × 10−7;  

n = 0.76 
R = 5.16 × 105 

Q = 8.36 × 10−8; 

n = 0.54 
W = 2.88 × 105 

3 
weeks Re(RtQ)W  Re+f(Rf+ctQ)  

R = 34.38 R = 9.94 Q = 4.91 × 10−4; n = 0.81 W = 3471 R = 88.2 R = 3.27 × 104 Q = 5.66 × 10−6; n = 0.53 

4 
weeks 

Re(RtQ)W  (Re+fQ)(RctCct)  

R = 28.10 R = 1.175 × 103 
Q = 6.59 × 10−6;  

n = 0.66 
W = 1057 R = 3.8 × 103 

Q = 7.24 × 10−6;  

n = 0.56 
R = 2.35 × 103 C = 1.375 × 104 

5 
weeks 

Re(RtQ)  Re(Rf+ctQ)W  

R = 20.62 R = 1.46 × 103 
Q = 0.12 × 10−4;  

n = 0.60 
R = 351 R = 844.8 

Q = 1.93 × 10−5  

n = 0.59 
W = 556.6 
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Table 2. Equivalent circuits for 3% Sn bronze and 7% Sn bronze immersed in 0.1 M sulphuric acid solution. The film resistance (Rf); the film 

capacitance (Cf); the resistance (Rct) and capacitance (Cct) of charge transfer; the resistance of the electrolyte (Re); the Warburg (W); the constant 

phase element (Q) and its index n (present only with Q). 

Time 3% Sn 7% Sn 

0 ReQ  ReQ  

R = 26.22 Q = 3.65 × 10−4; n = 0.73 R = 24.5 Q = 2.28 × 10−4; n = 0.80 

1  
day 

ReQ  ReQ  

R = 19.75 Q = 4.6 × 10−4; n = 0.79 R = 31.7 Q = 5.7 × 10−4; n = 0.73 

1  
week Re(RfCf)(RctCct)W   ReQ  

R = 36.84 R = 2.12 × 103 C = 5.1 × 10−4 R = 119.2 C = 1.77 × 10−7 W = 3.57 × 103 R = 24.44 Q = 1.19 × 10−3; n = 0.42 

2 
weeks 

Re+f(RfCf)(RctW)  Re(RfCf)(RctQ)W  

R = 75 R = 5.8 × 103 C = 29.7 × 10−6 R = 6.71 × 103 W = 7 × 103 R = 102 R = 1.52 × 105 C = 1.23 × 10−4 R = 500 
Q = 6.3 × 10−4; 

n = 0.45 
W = 860 

3 
weeks 

Re+f(Rf+ctQ)  Re+f(RctQ)  

R = 132 R = 1.31 × 107 
Q = 1.75 × 10−6;  

n = 0.63 
R = 102 R = 1.52 × 105 Q= 1.75 × 106; n = 0.62 

4 
weeks 

(Re+fQ)(RctCct)W   Re(Rf+ctQ)W  

R = 1.4 × 103 
Q = 2.22 × 10−5;  

n = 0.46 
R = 5.57 × 102 C = 8.88 × 10−6 W = 1.89 × 103 R = 32.43 R = 2.84 × 103 

Q=1.61 × 10−5;  

n = 0.65 
W = 2.24 × 103 

5 
weeks Re(Rf+ctQ)W  Re+f(RctQ)  

R = 33.56 R = 2.71 × 103 Q = 2.16 × 10−6; n = 0.66 W = 3.12 × 103 R = 1.68 × 105 R = 2.28 × 107 Q = 4.02 × 10−12; n = 0.50 
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Table 3. Equivalent circuits for 3% Sn bronze and 7% Sn bronze immersed in 0.1 M nitric acid solution. The film resistance (Rf); the film 

capacitance (Cf); the resistance (Rct) and capacitance (Cct) of charge transfer; the resistance of the electrolyte (Re); the Warburg (W); the constant 

phase element (Q) and its index n (present only with Q). 

Time 3% Sn 7% Sn 

0 
ReQ  ReQ  

R = 26.22 Q = 3.65 × 10−4; n = 0.73 R = 24.5 Q = 2.28 × 10−4; n = 0.80 

1  

day 

Re(Rf+ctQ)  Re(Rf+ctQ)  

R = 27.81 R = 4.32 × 103 
Q = 1.83 × 10−4;  

n = 0.68 
R = 24.81 R = 960.8 

Q = 1.32 × 10−5;  

n = 0.78 
W = 2.04 × 103 

1  

week 
Re(Rf+ctQ)  R(RfCf)(RctCct)W  

R = 20.32 R = 3.13 × 103 Q = 1.83 × 10−4 R = 26.29 R = 1.32 × 103 C = 1.01 × 10−4 R = 144.1 C = 1.2 × 10−4 W = 1.8 × 103 

2 

weeks 

Re(Rf+ctQ)  R(RTotQ)  

R = 34.84 R = 1.05 × 104 
Q = 1.90 × 10−5;  

n = 0.59 
R = 25.91 R = 7.51 × 103 Q = 2.71 × 10−5; n = 0.71 

3 

weeks 

Re(RfQ)(RctQ)W  R(RTotQ)  

R = 24.96 R = 7.7 × 103 
Q =3.6 × 105; 

n = 0.60 
R = 121 

Q = 6.61 × 10−6; 

n = 0.45 

W = 24 × 

104 
R = 5.50 R = 2.28 × 103 Q = 8.9 × 10−5; n = 0.62 

4 

weeks (Re+fQ)(RctQ)  
RQ  

 R = 4.8 × 104 Q = 2.89 × 10−7; n = 0.72 R = 3.63 × 104 Q = 2 × 10−5; n = 0.35 R = 9.29 × 105 Q = 5.47 × 10−7; n = 0.65 

5 

weeks 
(RtCt)W  

RQ  

R = 4.39 × 104 C = 6.7 × 10−8 W = 1.37 × 105 R = 27.19 Q = 4.88 × 10−5; n = 0.73 
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The relative thickness of the patina during the fifth week for the 3% Sn sample was 1.16 × 106 F−1; that 

of the 7% Sn sample was 1 × 104 F−1. The film growth could not be calculated for the following week 

because the circuit elements were formed by the sum of the resistances (RTot = Re + Rf + Rct). 

A more stable and protective patina appeared to form on the 3% Sn sample in this test; it was 

comparable to the less passive layer of the 7% Sn sample. 

2.3. Spectrocolorimetry 

Figure 2 shows the reflectance curves for each alloy after five weeks of immersion. Both alloys 

emerged from the acid rain solution looking green, hence the peaks in the 500–600 nm region. 

Immersion in sulphuric acid created a purple patina on each alloy, which each showed a peak on its 

reflectance curve at around 450 nm.  

Nitric acid caused both alloys to show greatly reduced reflectance, particularly the 3% Sn sample. 

The 3% Sn sample showed its greatest loss of reflectance in nitric acid, while acid rain caused the 

greatest loss for the 7% Sn alloy. This demonstrates the different behaviors of the alloys in different 

environments. 

Figure 2. Reflectance curves of (a) 3% Sn bronze and (b) 7% Sn bronze after five weeks 

of immersion in artificial acid rain, 0.1 M sulphuric, and 0.1 M nitric acid. 
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The ΔE values (Figure 3a, and Table 4) show in detail the changes: the greatest color difference for 

the 3% Sn alloy (mainly a decrease of lightness L*) was due to nitric acid. A high and comparable ΔE 

for the 3% Sn bronze was obtained in sulphuric acid for the relevant changes of all the color 

parameters (L*, a* and b*) (Table 4). Important parameter variations were also detected in the acid 

rain test, but the color difference (ΔE) was smaller. 

The 7% Sn bronze showed a large color difference upon its immersion in sulphuric acid  

(its yellow–blue component b* index varied greatly), while the acid rain solution greatly affected the 

a* index (red–green component) (Table 4). 

The ΔE values show that the 3% Sn sample underwent greater color changes than did the 7% Sn bronze 

in each acidic environment, except for the acid rain solution, in which the 7% Sn sample was  

more damaged. 

Figure 3. Color difference (ΔE) between the clean surfaces of 3% Sn bronze and 7% Sn 

bronze and after their immersion for five weeks test in synthetic acid rain, sulphuric acid, 

and nitric acid. 

 

Table 4. Color parameters L* (lightness), a* (red–green component), and b* (yellow–blue 

component) of the bronzes before and after the immersion testing listed along with ΔE. 

Tests L* a* b* ΔE 

3% Sn Time = 0; Clean 83.63 10.35 14.17 – 
3% Sn Acid rain 52.08 −1.55 12.08 33.78 

3% Sn 0.1 M H2SO4 49 6.06 −3.35 39.04 
3% Sn 0.1 M HNO3 42.34 8.13 14.07 41.33 

7% Sn Time = 0; Clean 84.07 8.26 14.63 – 
7% Sn Acid rain 49.89 1.13 9.43 35.28 

7% Sn 0.1 M H2SO4 50.26 4.13 −3.94 38.79 
7% Sn 0.1 M HNO3 56.59 9.3 19.48 28.47 

2.4. SEM–EDS and X-ray Diffraction Spectroscopy 

Figure 4A shows secondary electron images of the 3% Sn bronze immersed in acid rain.  

The white crystals are sulphur compounds grown on a layer of oxides products. The smaller dark 

crystals are chloride compounds. The 7% Sn showed a similar patina. 
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The patina formed in sulphuric acid solution appeared to be very different. Large crystals grew 

homogeneously on the surface of the alloys (Figure 4B). Elemental composition assessment revealed 

the presence of copper and oxygen, which were likely present as cuprite (Cu2O) and/or tenorite (CuO). 

The patina formed in nitric acid was less developed; it appeared inhomogeneous with isolated nuclei of 

corrosion products (Figure 4C). 

Figure 4. SEM secondary electron images at ×500 for the 3% Sn sample immersed for  

five weeks in (a) synthetic acid rain solution; (b) 0.1 M sulphuric acid; and (c) 0.1 M  

nitric acid. 

 

The XRD, performed on the bronze pieces, support the chemical analysis and the interpretation of 

the EDS results (Figure 5). The patina was formed of oxides such as cuprite (Cu2O) and cassiterite 

(SnO2) and from a sulphur corrosion product known as brochantite (Cu4SO4(OH)6). 

The patina formed on both alloys in sulphuric acid was simpler than the layer formed in the  

mixed-acid solution: cuprite (Cu2O) and cassiterite (SnO2) were detected. 

After five weeks in nitric acid, a cassiterite (SnO2) patina formed on the 3% Sn alloy, while the 7% 

Sn sample showed additional cuprite (Cu2O). 

Figure 5. XRD patterns of (a,c,e) 3% Sn bronze and (b,d,f) 7% Sn bronze in  

(a,b) synthetic acid rain; (c,d) 0.1 M sulphuric acid; and (e,f) 0.1 M nitric acid. 
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Figure 5. Cont. 

 

 

3. Experimental Methods 

3.1. Material and Ageing Test Configuration 

Cultural artifacts were represented using bronze alloys comprising copper with either 3% Sn or 7% 

Sn and 0.1%–0.5% by mass of other trace materials [36]. Sample discs (12 mm in diameter and 2 mm 

in thickness) were polished with abrasive papers of 400 to 1200 grade, and then cleaned with  

10 vol% sulphuric acid, rinsed with distilled water, and degreased with acetone. 

The tested aqueous layers included two solutions of individual acids (H2SO4 and HNO3, each 0.1 M) 

and a mixed solution containing both acids designed to represent the composition and acidity of acid 

rain (Table 5). Sample discs were immersed in the solutions for one week, then dried in air for several 

hours and measured, before being re-submerged for another week and then re-measured; this cycle was 

repeated a total of five times.  
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Table 5. Synthetic acid rain (pH = 3.4) composition. 

Component 
Density 

(mg/dm3) 

H2SO4 (96%) 31.85 
(NH4)2SO4 46.20 

Na2 SO4 31.95 
HNO3 (70%) 15.75 

NaNO3 21.25 
NaCl 84.85 

3.2. Methods 

Electrochemical methods, open circuit potential (OCP) measurements, and electrochemical 

impedance spectroscopy (EIS) were used to quantify ion transfer inside the surface layers and in the 

electrolyte. The results allowed the determination of the mechanisms of patina growth, the stages of 

corrosion and their rates, and also the properties and stability of the patina. 

The OCP and EIS measurements were repeated weekly using an Autolab PGStat 20 instrument 

(Metrohm autolab, Utrecth, The Netherlands). The EIS was conducted using a three-electrode cell 

comprising an Ag/Ag/Cl reference electrode, a Pt counter electrode, and a bronze working electrode in 

a solution of 0.1 M sodium sulphate. The OCP values were taken before the EIS measurements. In 

each case, the stable value reached after some minutes of immersion in the electrolyte was noted. The 

weekly OCP measurements represent an index of the surface changes as well as the trend in the values.  

The impedance frequency was scanned from 75 kHz to 1 Hz at 10 mV. This frequency range 

allowed the determination of the different electrochemical processes occurring inside the cell (on the 

surface of the samples and in the double layer), as well as the properties of the patina and the 

mechanism of its formation. The formation and the characteristics of the patina can be described by 

equivalent circuits and their elements extrapolated from the data elaboration of EIS. The equivalent 

circuits were obtained using an Autolab FRA Analyzer (Eco Chemie, Utrecth, The Netherlands) and 

with an EIS Spectrum Analyzer (Alexander S. Bondarenko and Genady A. Ragoisha, Physico-Chemical 

Research Institute Belarusian State University). The film resistance (Rf) describes the patina passivity 

as well as the film capacitance (Cf). The resistance (Rct) and capacitance (Cct) of charge transfer relate 

to the reaction kinetics [31,37]. The resistance of the electrolyte is represented by Re. The Warburg (W) 

represents diffusion phenomena as well as the patina porosity [5,31,37]; the constant phase element 

(CPE) related to the capacitance (Q) shows the inhomogeneous character of the system, frequently 

considered as electrode roughness. The n index is present only with Q and the values are between 1 

and 0. This index decrease in its values with the increase of the surface roughness. It can also represent 

the inhomogeneity porosity related to the Warburg element (n close to 0.5), indicating a possible 

presence of a diffusion mechanism inside the layer [37]. The single circuit element cannot be 

distinguished, allowing the sums of the resistances (Rt = Re + Rf + Rct) and of the capacitances  

(Ct = Cf + Cct + Q) to be found. 

The relative thickness T of the patina (single or multilayer) can be evaluated using the following 

equation [37]: 
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T = 1/Cf (1)

when the film capacity Cf is distinguishable from the other capacitance components (Ct) [37]. 

After five weeks, the patina was characterized by spectrocolorimetry, scanning electron microscopy 

(HITACHI S 2500 SEM, Hitachi High-Tech, Tokyo, Japan) with energy-dispersive X-ray spectroscopy 

(EDS, Hitachi High-Tech, Tokyo, Japan), and X-ray diffractometry (XRD Thermo Scientific* ARL 

XʹTRA, Thermo scientific, Waltham, MA, USA). The color morphologies and corrosion layers were 

associated with the crystalline structure of the patina. 

Colorimetric measurements were carried out using a portable spectrophotometer (X-Rite SP64,  

X-rite, Althardstrasse, Switzerland). The percentage of reflected light (R) was measured as a function 

of the wavelength (nm). The color difference (ΔE) between the clean and the corroded alloys was 

calculated based on the difference between the colorimetric parameters L* (lightness), a* (red–green 

component), and b* (yellow–blue component) using the following equation [38]: 

     2 2 2
* * *E L a b        (2)

where ΔE is an index of color damage (i.e., the change from the color of the natural alloy) used to 

describe the corrosion. Here, ΔE, calculated from the parameters of the clean alloy (time = 0) and after 

the five weeks of tests, indicates the patina formation. Its progression represents the formation process: 

fast and deep corrosion processes produce greater color changes as well as a more developed patina. 

A Hitachi S 2500 machine (HITACHI S 2500 SEM, Hitachi High-Tech, Tokyo, Japan) equipped with 

a LaB6 electron source and a scintillation electron photo detector was used to record SEM images of 

the morphology of the corrosion products. The typical working pressure was 10−7 mbar. An XRD 

procedure was used to characterize the corrosion products, using a Thermo Scientific* ARL X’TRA 

powder diffractometer (XRD Thermo Scientific* ARL XʹTRA, Thermo scientific, Waltham, MA,  

USA) with the following setup: 40 kV, 40 mA, 2θ scanning from 10° to 80° grade, 0.02 step width, 

and counting time of 5 s per step. 

4. Conclusions 

Open circuit potential measurements of bronzes with 3% Sn and 7% Sn were recorded at weekly 

intervals during extended immersion tests in various acid solutions (artificial acid rain (pH = 3.4),  

0.1 M sulphuric acid, and 0.1 M nitric acid). In a solution of synthetic acid rain (mixed nitric and 

sulphuric acids) a more stable patina formed on the 7% Sn bronze than on the 3% Sn sample. Exposure 

to sulphuric acid alone caused a more protective layer to form on the 7% Sn alloy than on the 3% Sn 

sample. Both samples showed similar evolutions of open circuit potential when in nitric acid alone; a 

slightly more stable patina formed on the 3% Sn alloy. 

Electrochemical impedance spectroscopy corroborated the OCP measurements by detecting the 

emergence of a protective patina on the 7% Sn sample immersed in the acid rain solution, while the 

3% Sn alloy showed a thick layer that frequently partially dissolved. 

Immersion in sulphuric acid led to similar results: the 3% Sn alloy was more damaged than the 7% 

Sn sample, which showed different, better corrosion resistance. In nitric acid, the 7% Sn bronze 

formed a less stable patina that frequently partially dissolved. Although a more stable patina formed on 
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the 3% Sn sample, this sample generally showed greater damage than the 7% Sn alloy. This result is in 

accordance with the OCP measurements. Analysis of the equivalent circuit elements elucidated the 

various specific corrosion mechanisms occurring on the two alloys. 

Colorimetric measurements showed that both alloys changed their natural color owing to the acid 

rain solution, the 7% Sn bronze more than the 3% Sn sample. The two alloys each produced a layer 

that altered their original color. 

The patina of the 3% Sn sample was also more greatly modified (i.e., it showed a greater ΔE value) 

by nitric acid than was that of the 7% Sn sample, corroborating the OCP and EIS results. 

Considering the extents of the color changes (ΔE), the 3% Sn alloy appeared to be most greatly 

affected by nitric acid, followed by sulphuric acid and the acid rain solution. The 7% Sn alloy was 

most aggressively affected by sulphuric acid, followed by the acid rain solution and nitric acid. Finally, 

the mixture of acids did not correspond to harsher corrosion than that due to the single acids, and the tin 

content of the bronzes affected how they were attacked by the different acid solutions. 
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