so the (square) on the first (is) to the (square) on the second [Def. 5.9, Prop. 6.20 corr.]. Thus, as DB is to BA, so the (square) on DB (is) to the (square) on BF. Thus, inversely, as AB (is) to BD, so the (square) on FB (is) to the (square) on BD. And AB (is) triple BD. Thus, the (square) on FB (is) three times the (square) on *BD*. And the (square) on *AD* is also four times the (square) on DB. For AD (is) double DB. Thus, the (square) on AD (is) greater than the (square) on FB. Thus, AD (is) greater than FB. Thus, AL is much greater than FB. And KL is the greater piece of AL, which is cut in extreme and mean ratio—inasmuch as LK is (the side) of the hexagon, and KA (the side) of the decagon [Prop. 13.9]. And NB is the greater piece of FB, which is cut in extreme and mean ratio. Thus, KL (is) greater than NB. And KL (is) equal to LM. Thus, LM (is) greater than NB [and MB is greater than LM]. Thus, MB, which is (the side) of the icosahedron, is much greater than NB, which is (the side) of the dodecahedron. (Which is) the very thing it was required to show.

† If the radius of the given sphere is unity then the sides of the pyramid (*i.e.*, tetrahedron), octahedron, cube, icosahedron, and dodecahedron, respectively, satisfy the following inequality: $\sqrt{8/3} > \sqrt{2} > \sqrt{4/3} > (1/\sqrt{5}) \sqrt{10 - 2\sqrt{5}} > (1/3) (\sqrt{15} - \sqrt{3})$.

Λέγω δή, ὅτι παρὰ τὰ εἰρημένα πέντε σχήματα οὐ συσταθήσεται ἔτερον σχῆμα περιεχόμενον ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων ἴσων ἀλλήλοις.

Ύπὸ μὲν γὰρ δύο τριγώνων ἢ ὅλως ἐπιπέδων στερεὰ γωνία ού συνίσταται. ὑπὸ δὲ τριῶν τριγώνων ἡ τῆς πυραμίδος, ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀχταέδρου, ὑπὸ δὲ πέντε ή τοῦ εἰχοσαέδρου. ὑπὸ δὲ ἕξ τριγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων πρὸς ἑνὶ σημείω συνισταμένων οὐκ ἔσται στερεὰ γωνία· οὕσης γὰρ τῆς τοῦ ἰσοπλεύρου τριγώνου γωνίας διμοίρου ὀρθῆς ἔσονται αἱ ἕξ τέσσαρσιν ὀρθαῖς ἴσαι· ὅπερ ἀδύνατον. ἄπασα γὰρ στερεὰ γωνία ὑπὸ ἐλασσόνων ἢ τεσσάρων ὀρθῶν περέχεται. διὰ τὰ αὐτὰ δὴ οὐδὲ ὑπὸ πλειόνων η εξ γωνιῶν ἐπιπέδων στερεὰ γωνία συνίσταται. ύπὸ δὲ τετραγώνων τριῶν ἡ τοῦ χύβου γωνία περιέχεται· ύπὸ δὲ τεσσάρων ἀδύνατον. ἔσονται γὰρ πάλιν τέσσαρες όρθαί. ὑπὸ δὲ πενταγώνων ἰσοπλεύρων καὶ ἰσογωνίων, ὑπὸ μέν τριῶν ή τοῦ δωδεχαέδρου. ὑπὸ δὲ τεσσάρων ἀδύνατον. ούσης γὰρ τῆς τοῦ πενταγώνου ἰσοπλεύρου γωνίας ὀρθῆς καὶ πέμπτου, ἔσονται αἱ τέσσαρες γωνίαι τεσσάρων ὀρθῶν μείζους. ὅπερ ἀδύνατον. οὐδὲ μὴν ὑπὸ πολυγώνων ἑτέρων σχημάτων περισχεθήσεται στερεά γωνία διά τὸ αὐτὸ ἄτοπον.

Οὐκ ἄρα παρὰ τὰ εἰρημένα πέντε σχήματα ἕτερον σχῆμα στερεὸν συσταθήσεται ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον. ὅπερ ἔδει δεῖξαι. So, I say that, beside the five aforementioned figures, no other (solid) figure can be constructed (which is) contained by equilateral and equiangular (planes), equal to one another.

For a solid angle cannot be constructed from two triangles, or indeed (two) planes (of any sort) [Def. 11.11]. And (the solid angle) of the pyramid (is constructed) from three (equiangular) triangles, and (that) of the octahedron from four (triangles), and (that) of the icosahedron from (five) triangles. And a solid angle cannot be (made) from six equilateral and equiangular triangles set up together at one point. For, since the angles of a equilateral triangle are (each) two-thirds of a right-angle, the (sum of the) six (plane) angles (containing the solid angle) will be four right-angles. The very thing (is) impossible. For every solid angle is contained by (plane angles whose sum is) less than four right-angles [Prop. 11.21]. So, for the same (reasons), a solid angle cannot be constructed from more than six plane angles (equal to twothirds of a right-angle) either. And the (solid) angle of a cube is contained by three squares. And (a solid angle contained) by four (squares is) impossible. For, again, the (sum of the plane angles containing the solid angle) will be four right-angles. And (the solid angle) of a dodecahedron (is contained) by three equilateral and equiangular pentagons. And (a solid angle contained) by four

(equiangular pentagons is) impossible. For, the angle of an equilateral pentagon being one and one-fifth of rightangle, four (such) angles will be greater (in sum) than four right-angles. The very thing (is) impossible. And, on account of the same absurdity, a solid angle cannot be constructed from any other (equiangular) polygonal figures either.

Thus, beside the five aforementioned figures, no other solid figure can be constructed (which is) contained by equilateral and equiangular (planes). (Which is) the very thing it was required to show.

Lemma

It can be shown that the angle of an equilateral and equiangular pentagon is one and one-fifth of a rightangle, as follows.

For let ABCDE be an equilateral and equiangular pentagon, and let the circle ABCDE have been circumscribed about it [Prop. 4.14]. And let its center, F, have been found [Prop. 3.1]. And let FA, FB, FC, FD, and FE have been joined. Thus, they cut the angles of the pentagon in half at (points) A, B, C, D, and E[Prop. 1.4]. And since the five angles at F are equal (in sum) to four right-angles, and are also equal (to one another), (any) one of them, like AFB, is thus one less a fifth of a right-angle. Thus, the (sum of the) remaining (angles in triangle ABF), FAB and ABF, is one plus a fifth of a right-angle [Prop. 1.32]. And FAB (is) equal to FBC. Thus, the whole angle, ABC, of the pentagon is also one and one-fifth of a right-angle. (Which is) the very thing it was required to show.

Λῆμμα.

Ότι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου, οὕτω δεικτέον.

Έστω γὰρ πεντάγωνον ἰσόπλευρον καὶ ἰσογώνιον τὸ ABΓΔΕ, καὶ περιγεγράφθω περὶ αὐτὸ κύκλος ὁ ABΓΔΕ, καὶ εἰλήφθω αὐτοῦ τὸ κέντρον τὸ Ζ, καὶ ἐπεζεύχθωσαν αἰ ZA, ZB, ZΓ, ZΔ, ZE. δίχα ἄρα τέμνουσι τὰς πρὸς τοῖς Α, B, Γ, Δ, Ε τοῦ πενταγώνου γωνίας. καὶ ἐπεὶ αἱ πρὸς τῷ Ζ πέντε γωνίαι τέσσαρσιν ὀρθαῖς ἴσαι εἰσὶ καί εἰσιν ἴσαι, μία ἄρα αὐτῶν, ὡς ἡ ὑπὸ AZB, μιᾶς ὀρθῆς ἐστι παρὰ πέμπτου. λοιπαὶ ἄρα αἱ ὑπὸ ZAB, ABZ μιᾶς εἰσιν ὀρθῆς καὶ πέμπτου. ἴση δὲ ἡ ὑπὸ ZAB τῆ ὑπὸ ZBΓ· καὶ ὅλη ἄρα ἡ ὑπὸ ABΓ τοῦ πενταγώνου γωνία μιᾶς ἐστιν ὀρθῆς καὶ πέμπτου· ὅπερ ἔδει δεῖξαι.