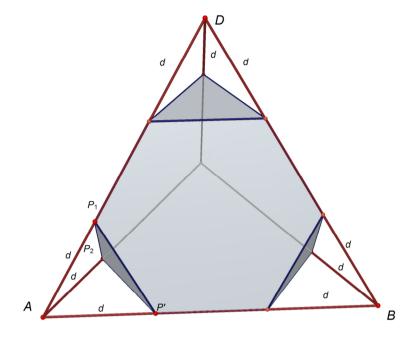


DOMANDA 16

Tronchiamo tutti i vertici di un tetraedro regolare per mezzo di piani passanti per punti degli spigoli concorrenti in un vertice aventi tutti la stessa distanza d dal vertice stesso (vedere figura). Otteniamo un poliedro P avente come facce triangoli equilateri e esagoni. Per una particolare distanza d gli esagoni sono regolari. In questo caso il poliedro P è un poliedro archimedeo, chiamato tetraedro tronco.


Quale è il rapporto tra la lunghezza *s* dei lati del tetraedro e la distanza *d* per la quale si ottiene un tetraedro tronco?

RISPOSTA ALLA DOMANDA 16

$$\frac{s}{d} = 3$$
.

DIMOSTRAZIONE

L'angolo P_1AP' , ha ampiezza uguale a 60°, poiché è un angolo interno del triangolo equilatero ABD, faccia del tetraedro. Inoltre il triangolo P_1AP' è isoscele di base uguale a P_1P' . I suoi angoli alla base sono quindi uguali e misurano $\frac{1}{2}(180^\circ-60^\circ)=60^\circ$. Il triangolo P_1AP' è quindi equilatero. Indicata con s la lunghezza degli spigoli de tetraedro si ha 3 d=s. Pertanto $\frac{s}{d}=3$.

