
Capitolo 10

Funzioni

10.1 Introduzione

Abbiamo raggruppato in questo capitolo alcune nozioni sulle funzioni che
sono stati introdotti nel corso delle lezioni in vari momenti. La maggior parte
di queste sono nozioni erano state già introdotte nel corso del primo anno.

10.2 Richiami sulle funzioni

Definizione 10.1 Dati due insiemi A e B, una funzione (o applicazione) tra
A e B è una legge f che associa ad ogni elemento a ∈ A uno ed un solo elemento
di B che viene indicato con f(a). L’elemento f(a) viene detto immagine di a
attraverso f . Una funzione f tra A e B viene indicata con il simbolo f : A −→ B.
L’insieme delle immagini degli elementi di a viene detto immagine di f . Esso
viene indicato con il simbolo f(A) o con il simbolo Imf . Quindi f(A) ⊂ B. In
altre parole:

f(A) = {b ∈ B | ∃a ∈ A tale che f(a) = b}
Dato b ∈ B, chiamiamo controimmagine (o fibra) di b il sottoinsieme di A
dato dagli elementi di A le cui immagini coincidono con b. Tale sottoinsieme di
A viene indicato con il simbolo f−1(b). In altre parole:

f−1(b) = {a ∈ A | f(a) = b}

Definizione 10.2 Data una funzione f : A −→ B e dato A′ ⊂ A chiamiamo
immagine di A′ l’insieme delle immagini degli elementi di A′. Indichiamo
questo insieme con il simbolo f(A′). Quindi:

f(A′) = {b ∈ B | ∃a′ ∈ A′ tale che f(a′) = b}

Possiamo anche definire la restrizione della funzione f a A′, che viene indicata
con il simbolo f |A′ (si dice f ristretta ad A′). Essa è la funzione ottenuta
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considerando la funzione f solo sugli elementi di A′. La funzione f |A′ : A′ −→ B
è quindi definita da f |A′(a′) = f(a′) ∀a′ ∈ A′.
Si definisce anche la funzione inclusione i : A′ −→ A nel modo seguente
i(a′) = a′ ∀a′ ∈ A′ M

Definizione 10.3 Una funzione f : A −→ B si dice iniettiva (o monomorfi-
smo) se elementi diversi hanno immagini diverse. Cioè:
f iniettiva ⇐⇒ ( a 6= a′ ⇒ f(a) 6= f(a′) ).
O, equivalentemente:
f iniettiva ⇐⇒ ( f(a) = f(a′) ⇒ a = a′ ). M

Definizione 10.4 Dato un insieme finito A, indichiamo con |A| il numero di
elementi di A. M

Esercizio E.10.1 Dimostrare che, data una funzione f : A −→ B, si ha:

f iniettiva ⇐⇒ ∀b ∈ B |f−1(b)| ≤ 1

Definizione 10.5 Una funzione f : A −→ B si dice suriettiva o surgettiva
o sopra (o epimorfismo), se si ha B = f(A). M

Esercizio E.10.2 Dimostrare che, data una funzione f : A −→ B, si ha:

f surgettiva ⇐⇒ ∀b ∈ B |f−1(b)| ≥ 1

Definizione 10.6 Una funzione si dice biiettiva o biunivoca se essa è iniet-
tiva e suriettiva. M

Esercizio E.10.3 Dimostrare che, data una funzione f : A −→ B, si ha:

f biiettiva ⇐⇒ ∀b ∈ B |f−1(b)| = 1

Esercizio E.10.4 Sia A l’insieme degli studenti. Consideriamo la funzione
f : A −→ N ∪ {0} che associa ad ogni studente il numero degli esami del
primo anno da lui superati. La funzione f è iniettiva, è surgettiva? Spiegare
cosa è f−1(3).

Esercizio E.10.5 Dare un esempio di funzione non iniettiva e non surgettiva.
Dare un esempio di funzione iniettiva e non surgettiva.
Dare un esempio di funzione non iniettiva e surgettiva.
Dare un esempio di funzione iniettiva e surgettiva (cioè biunivoca).

Definizione 10.7 Dato un insieme A la funzione identica di A è la funzione
f : A −→ A definita da f(a) = a ∀a ∈ A. Di solito la funzione identica di
A viene indicata con il simbolo idA (o con il simbolo id se non vi sono dubbi
sull’insieme su cui opera l’identità) o anche con il simbolo 1A. M

Teorema 10.8 La funzione identica di un insieme A è biunivoca.
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Dimostrazione Lasciata per esercizio. �

Teorema 10.9 Dati A′ ⊂ A, la funzione inclusione i : A′ −→ A è iniettiva.

Dimostrazione Lasciata per esercizio. �

Esercizio E.10.6 Dimostrare che la funzione inclusione i : A′ −→ A è surget-
tiva se e solo se A′ = A.

Definizione 10.10 Date due funzioni f : A −→ B e g : A −→ B, esse si dicono
uguali se si ha:

∀a ∈ A f(a) = g(a)

Nota 10.11 Dalla definizione precedente segue che date due funzioni
f : A −→ B e g : A −→ B sono diverse se esiste a ∈ A tale che f(a) 6= g(a). M

Esercizio E.10.7 Siano date due funzioni f : A −→ B e g : A −→ B, e sia
C ⊂ A e C 6= A.
Verificare la verità o falsità della seguente affermazione:

f |C = g|C =⇒ f = g

10.3 Composizione di funzioni

Definizione 10.12 Date due funzioni f : A −→ B e g : B −→ C, la funzione
composta è la funzione g ◦ f : A −→ C definita da

(g ◦ f)(a) = g[f(a)] ∀a ∈ A

Definizione 10.13 Data una funzione biunivoca f : A −→ B, la funzione
inversa di f è la funzione:

f−1 : B −→ A

definita da:
f−1(b) = a dove a ∈ A è tale che f(a) = b.

Nota 10.14 Il fatto che la funzione f sia biunivoca assicura che l’elemento a
verificante la condizione richiesta esista e sia unico. M

Nota 10.15 Attenzione. Con il simbolo f−1(b) si indica sia la controimmagine
di b attraverso una qualsiasi funzione f sia l’immagine di b attraverso la funzione
f−1 inversa di una funzione f che sia biunivoca. M

Teorema 10.16 La funzione inversa f−1 di una funzione biunivoca f è essa
stessa biunivoca.

Dimostrazione . Lasciata per esercizio. �

Esercizio E.10.8 Sia f : A −→ B una funzione biunivoca e sia f−1 : B −→ A
la sua inversa. Dimostrare che si ha: f ◦ f−1 = idB e f−1 ◦ f = idA.
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Capitolo 11

Omomorfismi e matrici

11.1 Introduzione

Nel corso di Geometria è stato visto come associare una matrice ad un omo-
morfismo tra spazi vettoriali.
Rimandiamo al testo del corso per esempi e esercizi su ciò.
Il simbolismo compatto introdotto nel capitolo 8 ci permette di scrivere in altro
modo formule già introdotte nel corso di geometria.
L’analisi della matrice associata ad un omomorfismo ci permette di avere infor-
mazioni sulle dimensioni del nucleo e dell’immagine di un omomorfismo.
Vediamo poi come varia la matrice associata ad un omomorfismo tra due spazi
vettoriali al variare delle basi scelte nei due spazi vettoriali.
Vediamo infine la matrici associata alla composizione di omomorfismi.

11.2 Omomorfismi e matrici

Teorema 11.1 Sia η : E −→ F un omomorfismo tra spazi vettoriali. Sia
{e1, . . . , eq} una base di E. Per ogni vettore

v = b1e1 + · · ·+ bqeq di E

si ha:
η(v) = b1η(e1) + · · ·+ bqη(eq)

Dimostrazione Lasciata per esercizio. �

Nota 11.2 La formula precedente con simbolismo compatto introdotto diventa:

η(v) = η

(e1 . . . eq)

 b1

...
bq


 = (η(e1) . . . η(eq))

 b1

...
bq


83
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Osserviamo la formula precedente. Essa ci dice che, per determinare l’im-
magine attraverso η di un qualsiasi vettore v basta conoscere le sue coordinate
(b1, . . . , bq) relative alla base {e1, . . . , eq} e le immagini dei vettori di tale base.
Abbiamo pertanto il seguente :

Teorema 11.3 Siano E e F due spazi vettoriali su un campo K. Sia {e1, . . . , eq}
una base di E. Siano {w1, . . . ,wq} vettori qualsiasi di F . Allora esiste ed è
unico un omomorfismo η : E −→ F tale che si abbia:

η(ei) = wi i = 1, . . . , q

Esempio 11.4 Consideriamo lo spazio vettoriale R2 e sia {e1, e2} la base ca-
nonica di R2. Sia W uno spazio vettoriale su R. Siano f1 e f2 due vettori di W .
L’unico omomorfismo η : R2 −→ W tale che:

η(e1) = f1 , η(e2) = f2

è dato da:
η[(a, b)] = af1 + bf2

Infatti, poiché η deve essere un omomorfismo, si deve avere:

η[(a, b)] = η(ae1 + be2) = aη(e1) + bη(e2) = af1 + bf2

Definizione 11.5 Sia η : E −→ F un omomorfismo tra spazi vettoriali su
un campo K. Siano {e1, . . . , eq} e {f1, . . . , fp} basi di E e di F rispettivamente.
Definiamo matrice associata ad η relativamente alle basi scelte la matrice
A = (aij) ∈ M(K, p, q) avente come j-esima colonna le coordinate del vettore
η(ej) relative alla base {f1, . . . , fp}. Cioè:

η(ej) = a1jf1 + · · ·+ apjfp j = 1, . . . , q

Usando il simbolismo compatto, si ha quindi:

(η(e1) . . . η(eq)) = (f1 . . . fp)A

Esempio 11.6 Si consideri l’omomorfismo η : R3 −→ R2 definito da
η[(x, y, z)] = (z, y).
Cerchiamo la matrice associata all’omomorfismo relativamente alle basi canoni-
che {e1, e2, e3} e {f1, f2} di R3 e R2 rispettivamente. Si ha:

η(e1) = η[(1, 0, 0)] = (0, 0) = 0f1 + 0f2

η(e2) = η[(0, 1, 0)] = (0, 1) = 0f1 + 1f2

η(e3) = η[(0, 0, 1)] = (1, 0) = 1f1 + 0f2

La matrice associata a η relativamente alle basi canoniche è quindi:(
0 0 1
0 1 0

)
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Esercizio E.11.1 Sia η : M(R, 2, 2) −→ R2 definito da:

η

[(
a b
c d

)]
= (a + d, b + c)

i) Dimostrare che η è un omomorfismo tra spazi vettoriali su R.
ii) Determinare la matrice A associata ad η relativamente alle basi canoniche.

Esercizio E.11.2 Sia β : R2 −→ C definito da:

β[(x, y)] = x + (x + y)i

i) Dimostrare che β è un omomorfismo tra spazi vettoriali su R.
ii) Determinare la matrice B associata a β relativamente alle basi canoniche.

Teorema 11.7 Sia η : E −→ F un omomorfismo tra spazi vettoriali su un
campo K. Siano {e1, . . . , eq} e {f1, . . . , fp} basi di E e di F rispettivamente e
sia A la matrice associata ad η relativamente alle basi scelte. Allora, si ha:

η(v) = η(b1e1 + · · ·+ bqeq) = (f1 . . . fp)A

 b1

...
bq


Dimostrazione Lasciata per esercizio. Basta applicare le formule viste in
precedenza. �

Nota 11.8 Usando il simbolismo compatto la formula precedente diventa:

η

(e1 . . . eq)

 b1

...
bq


 = (f1 . . . fp)A

 b1

...
bq


Definizione 11.9 Siano E e F spazi vettoriali su un campo K. Sia {e1, . . . , eq}
una base di E e {f1, . . . , fp} una base di F .
Sia A ∈ M(K, p, q). Si definisce omomorfismo associato ad A relativa-
mente alle basi {e1, . . . , eq} , {f1, . . . , fp} l’omomorfismo definito da:

η(ej) = a1jf1 + · · ·+ apjfp j = 1, . . . , q

Esempio 11.10 Sia data la matrice:

A =
(

0 0 1
0 1 0

)
L’omomorfismo η′ : R3 −→ R2 associato ad A relativamente alle basi canoniche
dei due spazi è tale che:

η′(e1) = 0f1 + 0f2 = 0 , η′(e2) = 0f1 + 1f2 = f2 , η′(e3) = 1f1 + 0f2 = f1
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Quindi:

η′[(x, y, z)] = xη′(e1) + yη′(e2) + zη′(e3) = x0 + yf2 + zf1 = (z, y)

Notiamo che l’omomorfismo η′ coincide con l’omomorfismo η visto nell’esempio
11.6. M

Teorema 11.11 Sia η : E −→ F un omomorfismo tra spazi vettoriali su K
aventi come basi rispettivamente {e1, . . . , eq} e {f1, . . . , fp}. Sia A la matrice
associata ad η relativamente alle basi scelte. Allora:
1) dim η(E) = rk(A)
2) dim Ker η = dim E − rk(A)
da cui:
3) dim E = dim Ker η + dim η(E)

Dimostrazione 1) Sappiamo che {η(e1), . . . , η(eq)} è un insieme di generatori
di η(E). Per estrarre da questi una base, consideriamo la matrice avente come
colonne le coordinate di tali vettori relative alla base scelta in F . Tale matrice
è proprio la matrice A. Dal teorema 4.5 del capitolo 5 segue la tesi.
2) Cerchiamo i vettori v ∈ E tali che η(v) = 0. Sia:

v = (e1 . . . eq)

 x1

...
xq


Si ha:

η(v) = (f1 . . . fp)A

 x1

...
xq

 = 0

Da cui:

A

 x1

...
xq

 = 0

Abbiamo un sistema omogeneo di p equazioni in q incognite. Lo spazio vettoriale
delle soluzioni ha dimensione uguale a q − rango A. Da cui la tesi. �

Nota 11.12 La dimostrazione appena data dà un modo concreto per determi-
nare una base per il nucleo di η e una base per l’immagine di η. M

Esercizio E.11.3 Considerare l’omomorfismo dato in E.11.1. Determinare una
base per il nucleo e una base per l’immagine.

Esercizio E.11.4 Considerare l’omomorfismo dato in E.11.2. Determinare una
base per il nucleo e una base per l’immagine.
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Corollario 11.13 Sia η : E −→ F un omomorfismo tra spazi vettoriali su
K aventi basi finite.
Allora dim η(E) ≤ dim E.

Dimostrazione Applicare la parte 3) del teorema 11.11 �

Corollario 11.14 Sia η : E −→ F un omomorfismo tra spazi vettoriali su
K aventi basi finite.
Sia E′ un sottospazio vettoriale di E. Allora dim η(E′) ≤ dim E′.

Dimostrazione Applicare il corollario precedente alla funzione f |E′ . �

11.3 Cambio di base

Teorema 11.15 . Siano {e1, . . . , eq} e {f1, . . . , fp} basi di E e di F rispettiva-
mente e sia A la matrice associata ad η relativamente alle basi scelte. Quindi:

η

(e1 . . . eq)

 b1

...
bq


 = (f1 . . . fp)A

 b1

...
bq


Siano {e′1, . . . , e′q} e {f ′1, . . . , f ′p} altre basi di E e di F rispettivamente e sia
A′ la matrice associata ad η relativamente ad esse. Quindi:

η

(e′1 . . . e′q)

 b′1
...
b′q


 = (f ′1 . . . f ′p)A′

 b′1
...
b′q


Sia:

(e′1 . . . e′q) = (e1 . . . eq)M

Sia:
(f ′1 . . . f ′p) = (f1 . . . fp)N

Si ha allora:
A′ = N−1AM

Dimostrazione Si ha:

η

(e′1 . . . e′q)

 b′1
...
b′q


 = η

(e1 . . . eq)M

 b′1
...
b′q


 =

= (f1 . . . fp)AM

 b′1
...
b′q

 = (f ′1 . . . f ′p)N−1AM

 b′1
...
b′q


Da cui la tesi. �
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Esercizio E.11.5 Sia L : S(R, 2) −→ R2[x] definito da:

L(B) = tr B + (tr′ B)x

dove:
tr B=somma degli elementi della diagonale principale di B,
tr’B=somma degli elementi della diagonale secondaria di B.
(Ricordiamo che S(R, 2) è lo spazio vettoriale delle matrici simmetriche di ordine
2 a coefficienti reali).
1) Dimostrare che L è un omomorfismo.
2) Dimostrare che:{

A1 =
(

1 0
0 0

)
A2 =

(
0 1
1 0

)
A3 =

(
0 0
0 1

)}
è una base di S(R, 2).
Questa base viene detta base canonica di S(R, 2).
3) Determinare la matrice A associata a L relativamente alla base canonica di
S(R, 2) e alla base canonica di R2[x].
4) Dimostrare che:{

B1 =
(

1 1
1 1

)
B2 =

(
0 1
1 1

)
B3 =

(
0 0
0 1

)}
è una base di S(R, 2).
5) Dimostrare che {f1 = 1 + x, f2 = 1− x} è una base di R2[x].
6) Determinare la matrice A′ associata a L relativamente alle basi date in 4) e
5).
Si suggerisce di rispondere alla domanda 6) in due modi:
a) determinando direttamente la matrice A′;
b) determinando la matrice A′ utilizzando la matrice A e il teorema 11.15.

11.4 Composizione di omomorfismi

Teorema 11.16 Siano E,F,G spazi vettoriali su un campo K aventi come basi
rispettivamente {e1, . . . , eq} , {f1, . . . , fp} , {g1, . . . ,gr}.
Sia α : E −→ F un omomorfismo avente come matrice associata relativamente
alle basi {e1, . . . , eq} e {f1, . . . , fp} la matrice A.
Sia β : F −→ G un omomorfismo avente come matrice associata relativamente
alle basi {f1, . . . , fp} e {g1, . . . ,gr} la matrice B. Allora l’omomorfismo β ◦ α
ha come matrice associata relativamente alle basi {e1, . . . , eq} e {g1, . . . ,gr} la
matrice BA.

Dimostrazione Poiché A è la matrice associata ad α si ha:

α

(e1 . . . eq)

 b1

...
bq


 = (f1 . . . fp)A

 b1

...
bq


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Poichè B è la matrice associata a β, si ha:

β

(f1 . . . fp)

 c1

...
cp


 = (g1 . . .gr)B

 c1

...
cp


Ma allora:

(β ◦ α)

(e1 . . . eq)

 b1

...
bq


 = β

α

(e1 . . . eq)

 b1

...
bq




 =

= β

(f1 . . . fp)A

 b1

...
bq


 = (g1 . . .gr)BA

 b1

...
bq


Da cui la tesi. �

Esercizio E.11.6 Sia L′ : M(R, 2, 2) −→ S(R, 2) definito da:

L′(B) = B +tB

1) Dimostrare che L′ è un omomorfismo.
2) Determinare la matrice associata a L′ relativamente alle basi canoniche.
3) Dato l’omomorfismo L definito nell’esercizio E.11.5, determinare la matrice
associata a L ◦ L′ relativamente alle basi canoniche.
Si suggerisce di rispondere alla domanda 3) in due modi:
a) determinando direttamente la matrice associata;
b) determinando la matrice associata utilizzando il teorema 11.16 e le matrici
associate a L e a L′ relativamente alle basi canoniche che sono state calcolate
in precedenza.

Esercizio E.11.7 Determinare basi per il nucleo e l’immagine degli omomor-
fismi L,L′, L ◦ L′ definiti negli esercizi E.11.5 e E.11.6.

Esercizio E.11.8 Sia γ = β ◦ η dove η e β sono gli omomorfismi definiti negli
esercizi E.11.1 e E.11.2.
i) Determinare la matrice C associata ad γ relativamente alle basi canoniche.
ii) Determinare nucleo e immagine di γ.

Teorema 11.17 Siano A ∈ M(K, p, q) e B ∈ M(K, r, p). Allora:

rk(BA) ≤ rk(A) , rk(BA) ≤ rk(B)

Dimostrazione Diamo solo alcuni suggerimenti lasciando la dimostrazione
completa come esercizio.
Si considerino gli omomorfismi α : Kq −→ Kp e β : Kp −→ Kr associati ri-
spettivamente alle matrici A e B relativamente alle base canoniche dei tre spazi
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vettoriali.
Si ha

rkA = dim α(Kq) , rkB = dim β(Kp) , rkBA = dim(β ◦ α)(Kq)

Notiamo poi che (β ◦ α)(Kq) ⊂ β(Kq) e quindi rkBA ≤ rkB.
Inoltre (β ◦α)(Kq)0β(α(Kq))) e quindi dal teorema 11.14 segue rkBA ≤ rkA.�

Esercizio E.11.9 Determinare due matrici A e B tali che:

rk(BA) < rk(A) , rk(BA) < rk(B)

Esercizio E.11.10 Sia A ∈ M(K, m, n) e B ∈ M(K, r,m) e sia rk(A) = m.
Dimostrare che allora si ha rk(BA) = rk(B).
Suggerimento. Pensare le matrici come omomorfismi. Uno di essi è surgettivo.



Capitolo 12

Isomorfismi

12.1 Introduzione

Richiamiamo la definizione di isomorfismo tra spazi vettoriali e alcune sue
proprietà. Anche questo è un argomento già introdotto nel corso di geometria.
Rimandiamo quindi a quest’ultimo per ulteriori esempi e esercizi.

12.2 Isomorfimi tra spazi vettoriali

Definizione 12.1 Un isomorfismo tra spazi vettoriali è un omomorfismo tra
spazi vettoriali che sia una corrispondenza biunivoca. Due spazi vettoriali per i
quali esista un isomorfismo tra essi si dicono isomorfi. M

Esercizio E.12.1 Si consideri l’applicazione η : R2[x] −→ R2 definita da

η(a + bx) = (a, b)

Dimostrare che è un isomorfismo.

Esercizio E.12.2 Dimostrare che lo spazio vettoriale V 2(π,O) dei vettori di
un piano π applicati in un suo punto O è isomorfo allo spazio vettoriale R2.
Suggerimento. Si consideri una base di V 2(π,O).

Esercizio E.12.3 Dimostrare che lo spazio vettoriale V 3(O) dei vettori dello
spazio applicati in un punto O è isomorfo allo spazio vettoriale R3.
Suggerimento. Si consideri una base di V 3(O).

Teorema 12.2 Se due spazi vettoriali hanno la stessa dimensione allora essi
sono isomorfi.

Dimostrazione . Siano V e W spazi vettoriali su un campo K. Supponiamo
che essi abbiano dimensione uguale a n .
Sia {v1, . . . ,vn} una base di V .
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Sia {w1, . . . ,wn} una base di W .
Sia:

f : V −→ W

definita da:
f(a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn

Si verifica facilmente che f è un isomorfismo tra spazi vettoriali.

Nota 12.3 Da ciò segue che, se V è uno spazio vettoriale di dimensione uguale
a n su un campo K, allora V è isomorfo a Kn. M

Il seguente teorema è l’inverso del teorema 12.2.

Teorema 12.4 Se V è uno spazio vettoriale di dimensione finita e se W è uno
spazio vettoriale isomorfo a V , allora le dimensioni di V e W sono uguali.

Dimostrazione Esercizio. �

Esercizio E.12.4 Si segua la dimostrazione del teorema 12.2 per definire un
isomorfismo tra R2[x] e R2 utilizzando le basi canoniche di ambedue gli spazi.
Notare che l’isomorfismo che si ottiene non è altro che l’isomorfismo assegnato
nell’esercizio E.12.1.

Esercizio E.12.5 Si segua la dimostrazione del teorema 12.2 per definire un
isomorfismo tra R2[x] e R2 utilizzando per R2[x] la base di Lagrange associata
ai punti 0 e 1 e per R2 la base canonica. Notare che l’isomorfismo che si ottiene
è diverso da quello ottenuto nell’esercizio precedente.

Nota 12.5 Per definire un isomorfismo tra spazi vettoriali aventi la stessa di-
mensione si è fatto ricorso alle basi degli spazi vettoriali. Cambiando base cam-
bia l’isomorfismo (vedere esercizio precedente). Per questa ragione l’isomorfismo
si dice non canonico. M

Teorema 12.6 Sia η : E −→ F un omomorfismo tra spazi vettoriali su K di
dimensione finita aventi come basi rispettivamente {e1, . . . , eq} e {f1, . . . , fq}.
Sia A la matrice associata ad η relativamente alle basi scelte. L’omomorfismo
η è un isomorfismo se e solo se la matrice A è invertibile.
Inoltre, se η è un isomorfismo, la matrice associata all’isomorfismo η−1 relati-
vamente alle basi date è la matrice A−1.

Dimostrazione Esercizio. �

Esercizio E.12.6 Dimostrare i seguenti teoremi:
1) A ∈ M(K, p, q) e B ∈ GL(K, p) =⇒ rkBA = rk A
2) A ∈ GL(K, q) e B ∈ GL(K, r, q) =⇒ rkBA = rk B
Suggerimento. In 1) pensare A come un omomorfismo e B come un isomorfismo.
In 2) viceversa.




