GEOMETRIA E ALGEBRA INGEGNERIA GESTIONALE

Soluzione del secondo facsimile d'esame

PRIMO ESERCIZIO

SECONDO ESERCIZIO

TERZO ESERCIZIO

QUARTO ESERCIZIO

Osserviamo che la matrice B è una matrice di Jordan avente due blocchi di ordine 2 relativi all'autovalore 3.

Consideriamo l'endomorfismo di \mathbb{R}^4 associato alla matrice A relativo alla base canonica $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$.

Osserviamo che la matrice A è una matrice formata da due blocchi di ordine 2. Pertanto abbiamo $\mathbb{R}^4 = V \oplus W$, con V sottospazio avente come base $\{\mathbf{e}_1, \mathbf{e}_2\}$ e W sottospazio avente come base $\{\mathbf{e}_3, \mathbf{e}_4\}$. I sottospazi V e W sono invarianti rispetto a f. Le matrici associate a $f_1 = f|_V$ e a $f_2 = f|_V$ relative alle due basi di cui sopra sono entrambe uguali alla matrice

$$A_1 = \left(\begin{array}{cc} 3 & 3 \\ 0 & 3 \end{array}\right)$$

Mostriamo che la matrice A_1 è simile alla matrice

$$B_1 = \left(\begin{array}{cc} 3 & 1 \\ 0 & 3 \end{array}\right)$$

Per far ciò, mostriamo che la matrice $A'=A_1-3I$ è simile alla matrice $B'=B_1-3I$. Abbiamo

$$A' = \left(\begin{array}{cc} 0 & 3\\ 0 & 0 \end{array}\right) \quad B' = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)$$

Possiamo considerare la matrice A' come la matrice associata all'endomorfismo $f_1 - 3I$ relativa alla base $\{\mathbf{e}_1, \mathbf{e}_2\}$ di V. Consideriamo il vettore \mathbf{e}_2 . Abbiamo $\mathbf{v}_2 = (f_1 - 3I)(\mathbf{e}_2) = 3\mathbf{e}_1$ e $\mathbf{v}_1 = (f_1 - 3I)3(\mathbf{e}_1) = \mathbf{0}$. Osserviamo che, poiché

$$N = \left(\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array}\right)$$

è invertibile, i vettori $\{\mathbf{v}_1, \mathbf{v}_2\}$ formano una base di V. La matrice associata a $f_1 - 3I$ relativa a tale base è la matrice B'. Segue che la matrice associata a f_1 relativa alla base $\{\mathbf{v}_1, \mathbf{v}_2\}$ è la matrice B_1 .

Ma la matrice A_1 è anche la matrice associata a f_2 relativa alla base $\{\mathbf{e}_3, \mathbf{e}_4\}$ di W. Ragionando come sopra si vede che i vettori $\{\mathbf{v}_3 = 3\mathbf{e}_3, \mathbf{v}_4 = \mathbf{e}_4\}$ formano una base di W tale che la matrice associata a f_2 relativa a dessa è la matrice B_1 . Da tutto ciò segue che la matrice associata ad f relativa alla base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ è la matrice B. Si ha pertanto $B = M^{-1}AM$ con

$$M = \left(\begin{array}{cccc} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$