16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59B60B - Numero d'Ordine 31

D. 1	Tutte le equazioni di quinto grado sono		
	risolubuli per radicali.		

1A Vero

1B Falso

D. 2 La trascendenza di π è stata dimostrata dai greci.

> **2A** Vero

2B Falso

D. 3 Ogni estensione algebrica è finita.

3A Vero

3B Falso

D. 4 Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.

> **4A** Vero

4B Falso

D. 5 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in **D. 13** Sia $w \in \mathbb C$. $\mathbb{C}.$

5A Vero

5B Falso

6A Vero

6B Falso

irriducibile su \mathbb{R} .

7A Vero

7B Falso

D. 8 Polinomi monici sono sempre irriducibili.

> **8A** Vero

8B Falso

D.9 Il MCD di 1326 e 3216 è maggiore di 7?

> 9A Vero

9B Falso

D. 10 L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che $\omega^{\alpha} = 1$:

> 10A Vero

10B Falso

D. 11 L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.

> 11A Vero

11B Falso

D. 12 La trascendenza di π implica l'impossibilità della quadratura del cerchio.

> 12A Vero

12B Falso

Allora $w + \overline{w}$ è sempre reale.

> 13A Vero

Falso 13B

D. 6 Esistono infiniti polinomi irriducibili su D. 14 Ogni polinomio a coefficienti razionali ha una radice razionale.

> 14A Vero

14B Falso

 ${f D.7}$ Ogni polinomio irriducibile su ${\Bbb Q}$ è ${f D.15}$ Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:

> 2, -2ω , $-4\omega^2$, $-8\omega^3$ 15A

 $2, 2\omega, 4\omega^2, 8\omega^3$ 15B

 ω , 2ω , 4ω , 8ω 15C

2, ω , ω^2 , ω^3 15D

 $2, 2\omega, 2\omega^2, 2\omega^3$ 15E

16C $1 - x^6$

 $(1-x)^5$ 16D

16A $1-x+x^2$ **16B** $1+x+x^2+x^3+x^4+x^5$

16E 1-x

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59B60C - Numero d'Ordine 32

D. 1	La trascendenza d	πè	stata	dimostrata
	dai greci.			

1A Vero

1B Falso

D. 2 L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che $ω^α = 1$:

2A Vero

2B Falso

D. 3 Il MCD di 1326 e 3216 è maggiore di 7?

3A Vero

3B Falso

D. 4 Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .

4A Vero

4B Falso

D. 5 Ogni estensione algebrica è finita.

5A Vero

5B Falso

D. 6 Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.

6A Vero

6B Falso

D. 7 Esistono infiniti polinomi irriducibili su \mathbb{R} .

7A Vero

7B Falso

D. 8 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.

8A Vero

8B Falso

D. 9 Ogni polinomio a coefficienti razionali ha una radice razionale.

9A Vero

9B Falso

D. 10 Polinomi monici sono sempre irriducibili.

10A Vero

10B Falso

D. 11 L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.

11A Vero

11B Falso

D. 12 La trascendenza di π implica l'impossibilità della quadratura del cerchio.

12A Vero

12B Falso

D. 13 Tutte le equazioni di quinto grado sono risolubuli per radicali.

13A Vero

13B Falso

D. 14 Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.

14A Vero

14B Falso

Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:

15A 2, 2ω , $2\omega^2$, $2\omega^3$

15B 2, 2ω , $4\omega^2$, $8\omega^3$

15C ω, 2ω, 4ω, 8ω

15D 2, ω , ω^2 , ω^3

15E 2, -2ω , $-4\omega^2$, $-8\omega^3$

16A
$$1-x^6$$

16B
$$1 - x + x^2$$

16C 1-x

16D
$$(1-x)^5$$

16E
$$1+x+x^2+x^3+x^4+x^5$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

		Codice Compito: 57A58B5	59B60	D - N	Sumero d'Ordine 33	
D. 1	_	i polinomio irriducibile su $\mathbb Q$ è ucibile su $\mathbb R$.	D. 9	II M 7?	ACD di 1326 e 3216 è maggiore di	
	1A	Vero		9A	Vero	
	1B	Falso		9B	Falso	
D. 2		rascendenza di π implica l'imposside della quadratura del cerchio.	D. 10	met	ste una costruzione euclidea che per- te la trisezione dell'angolo con un	
	2A	Vero		-	do di approssimazione buono quanto uole.	
	2B	Falso		10A	Vero	
D. 3	Ogni	i estensione algebrica è finita.		10A 10B	Falso	
	3A	Vero	D 11			
	3B	Falso	D. 11		L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semblice.	
D. 4	Esist \mathbb{R} .	cono infiniti polinomi irriducibili su		11A 11B	Vero Falso	
	4A	Vero				
	4B	Falso	D. 12		te le equazioni di quinto grado sono lubuli per radicali.	
D. 5		polinomio a coefficienti razionali		12A	Vero	
	ha ui	na radice razionale.		12B	Falso	
	5A	Vero	D. 13	La 1	trascendenza di π è stata dimostrata	
	5B	Falso		dai	greci.	
D. 6		L'ordine di una radice n -esima dell'unità ω è il più piccolo intero positivo α tale che $\omega^{\alpha}=1$:		13A	Vero	
				13B	Falso	
	6A	Vero	D. 14		$w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre	
	6B	Falso		real	e.	
D 7	Oan	i polinomio di grado positivo a coef		14A	Vero	

D. 7 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in

 $\mathbb{C}.$

7A Vero

7B Falso

D. 8 Polinomi monici sono sempre irriducibi-

8A Vero

8B Falso

15A 1-x

6) è:

14B

15B $1 - x + x^2$

Falso

15C $1+x+x^2+x^3+x^4+x^5$

D. 15 $\phi_6(x)$ (il polinomio ciclotomico di ordine

15D $1-x^6$

15E $(1-x)^5$

- ${f D.\,16}$ Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - **16A** 2, ω , ω^2 , ω^3

- **16B** 2, -2ω , $-4\omega^2$, $-8\omega^3$
- **16C** ω, 2ω, 4ω, 8ω
- **16D** 2, 2 ω , 4 ω ², 8 ω ³
- **16E** 2, 2ω , $2\omega^2$, $2\omega^3$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

		Codice Compito: 57A58B5	59B60	E - N	umero d'Ordine 34
D. 1	Ogni	estensione algebrica è finita.		8B	Falso
	1A	Vero	D. 9	L'es	tenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è sem-
	1B	Falso		plice	2.
D. 2	II M	CD di 1326 e 3216 è maggiore di		9 A	Vero
	7?			9B	Falso
	2A	Vero	D. 10		rascendenza di π implica l'impossi-
	2B	Falso			à della quadratura del cerchio.
D. 3	Esist	e una costruzione euclidea che per-		10A	Vero
	mette	e la trisezione dell'angolo con un		10B	Falso
	grado di approssimazione buono quanto si vuole.		D. 11		e le equazioni di quinto grado sono ubuli per radicali.
	3A	Vero		11A	Vero
	3B	Falso		11B	Falso
D. 4		polinomio a coefficienti razionali na radice razionale.	D. 12	ωè	dine di una radice n -esima dell'unità il più piccolo intero positivo α tale
	4A	Vero		che	$\omega^{\alpha}=1$:
	4B	Falso		12A	Vero
D. 5		polinomio di grado positivo a coef-		12B	Falso
	ficier \mathbb{C} .	ficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C.$			rascendenza di π è stata dimostrata greci.
	5A	Vero		13A	Vero
	5B	Falso		13B	Falso
D. 6	Esist \mathbb{R} .	ono infiniti polinomi irriducibili su	D. 14	Sia reale	$w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre e.
	6A	Vero		14A	Vero
	6B	Falso		14B	Falso
D. 7	Polir li.	nomi monici sono sempre irriducibi-	D. 15	Sia onità.	ω una radice primitiva quarta dell'u- Le radici quarte complesse di 16 o:
	7A	Vero		15A	$2, 2\omega, 4\omega^2, 8\omega^3$

 $2, \omega, \omega^2, \omega^3$

 ω , 2ω , 4ω , 8ω

 $2, 2\omega, 2\omega^2, 2\omega^3$

 $2, -2\omega, -4\omega^2, -8\omega^3$

15B

15C

15D

15E

7B

8A

Falso

irriducibile su \mathbb{R} .

Vero

 $\mathbf{D.8}$ Ogni polinomio irriducibile su $\mathbb Q$ è

16A
$$1+x+x^2+x^3+x^4+x^5$$

16B
$$(1-x)^5$$

16C $1 - x^6$

16D
$$1-x$$

16E
$$1 - x + x^2$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59C60A - Numero d'Ordine 35

D. 1 Polinomi monici sono sempre irriducibili.

> **1A** Vero

1**B** Falso

D. 2 L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che $\omega^{\alpha} = 1$:

> **2A** Vero

2B Falso

D. 3 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbf D.11$ La trascendenza di π implica l'impossi- $\mathbb{C}.$

3A Vero

3B Falso

4A Vero

4B Falso

7?

5A Vero

5B Falso

D.6 Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .

> **6A** Vero

6B Falso

D. 7 Ogni estensione algebrica è finita.

7A Vero

7B Falso

D. 8 Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.

8A Vero

8B Falso

Ogni polinomio a coefficienti razionali ha una radice razionale.

> 9A Vero

9B Falso

D. 10 L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.

> 10A Vero

10B Falso

bilità della quadratura del cerchio.

11A Vero

11B Falso

D. 4 Esistono infiniti polinomi irriducibili su D. 12 Tutte le equazioni di quinto grado sono risolubuli per radicali.

> 12A Vero

12B Falso

D. 5 Il MCD di 1326 e 3216 è maggiore di **D. 13** La trascendenza di π è stata dimostrata dai greci.

> 13A Vero

13B Falso

D. 14 Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.

> 14A Vero

14B Falso

D. 15 Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:

> 15A ω , 2ω , 4ω , 8ω

15B 2, ω , ω^2 , ω^3

 $2, 2\omega, 2\omega^2, 2\omega^3$ 15C

 $2, -2\omega, -4\omega^2, -8\omega^3$ 15D

 $2, 2\omega, 4\omega^2, 8\omega^3$ 15E

D. 16
$$\phi_6(x)$$
 (il polinomio ciclotomico di ordine 6) è:

16A
$$1 - x + x^2$$

16B
$$1-x^6$$

16C
$$1+x+x^2+x^3+x^4+x^5$$

16D
$$(1-x)^5$$

16E
$$1-x$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59C60B - Numero d'Ordine 36

D. 1	Il MCD di 1326 e 3216 è maggiore di
	7?

1A Vero

1B Falso

D. 2 Ogni estensione algebrica è finita.

2A Vero

2B Falso

D. 3 Ogni polinomio di grado positivo a coefficienti nel campo C ha uno zero in $\mathbb{C}.$

> **3A** Vero

3B Falso

D. 4 La trascendenza di π implica l'impossibilità della quadratura del cerchio.

> **4A** Vero

4B Falso

D. 5 Esistono infiniti polinomi irriducibili su $\mathbb{R}.$

> 5A Vero

5B Falso

D. 6 Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto **D. 14** Sia $w \in \mathbb{C}$. si vuole.

6A Vero

6B Falso

D.7 Ogni polinomio a coefficienti razionali D.15ha una radice razionale.

> **7A** Vero

7B Falso

D.8 Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .

> **8A** Vero

8B Falso

D. 9 Polinomi monici sono sempre irriducibi-

9A Vero

9B Falso

D. 10 L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.

> 10A Vero

10B Falso

D. 11 L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che $\omega^{\alpha} = 1$:

> 11A Vero

11B Falso

D. 12 Tutte le equazioni di quinto grado sono risolubuli per radicali.

> 12A Vero

12B Falso

D. 13 La trascendenza di π è stata dimostrata dai greci.

> 13A Vero

13B Falso

Allora $w + \overline{w}$ è sempre reale.

> 14A Vero

14B Falso

 $\phi_6(x)$ (il polinomio ciclotomico di ordine 6) è:

> $1 - x^6$ 15A

 $1 + x + x^2 + x^3 + x^4 + x^5$ 15B

 $1 - x + x^2$ 15C

1-x15D

 $(1-x)^5$ 15E

- ${f D.\,16}$ Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - **16A** 2, 2ω , $4\omega^2$, $8\omega^3$

- **16B** 2, ω , ω^2 , ω^3
- **16C** 2, 2ω , $2\omega^2$, $2\omega^3$
- **16D** ω, 2ω, 4ω, 8ω
- **16E** 2, -2ω , $-4\omega^2$, $-8\omega^3$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59C60C - Numero d'Ordine 37

D. 1	Polinomi monici sono sempre irriducibi-
	li.

1A Vero

1**B** Falso

D. 2 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in

> **2A** Vero

2B Falso

D. 3 Esistono infiniti polinomi irriducibili su

3A Vero

3B Falso

D. 4 L'ordine di una radice *n*-esima dell'unità che $\omega^{\alpha} = 1$:

> **4A** Vero

4B Falso

D. 5 Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.

> 5A Vero

5B Falso

D. 6 Ogni estensione algebrica è finita.

6A Vero

6B Falso

D. 7 L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.

> **7A** Vero

7B Falso

D. 8 Ogni polinomio a coefficienti razionali ha una radice razionale.

8A Vero

8B Falso

D.9 Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .

> 9A Vero

9B Falso

D. 10 Il MCD di 1326 e 3216 è maggiore di 7?

> 10A Vero

10B Falso

D. 11 La trascendenza di π implica l'impossibilità della quadratura del cerchio.

> 11A Vero

11B Falso

 ω è il più piccolo intero positivo α tale **D. 12** Tutte le equazioni di quinto grado sono risolubuli per radicali.

> 12A Vero

12B Falso

D. 13 La trascendenza di π è stata dimostrata dai greci.

> 13A Vero

13B Falso

D. 14 Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.

> 14A Vero

14B Falso

D. 15 Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:

> 2, 2ω , $2\omega^2$, $2\omega^3$ 15A

15B $2, -2\omega, -4\omega^2, -8\omega^3$

15C ω , 2ω , 4ω , 8ω

2, ω , ω^2 , ω^3 15D

2, 2ω , $4\omega^2$, $8\omega^3$ 15E

16A $1+x+x^2+x^3+x^4+x^5$

16B $1 - x + x^2$

16C $1-x^6$

16D 1-x

16E $(1-x)^5$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

		111	5CDI 4	_	
		Codice Compito: 57A58B5	59C60	D - N	Numero d'Ordine 38
D. 1	II M 7?	CD di 1326 e 3216 è maggiore di		8B	Falso
	1A 1B	Vero Falso	D. 9	ωè	rdine di una radice <i>n</i> -esima dell'unità il più piccolo intero positivo α tale $\omega^{\alpha} = 1$:
D. 2	Ogni	polinomio irriducibile su $\mathbb Q$ è ucibile su $\mathbb R$.		9A 9B	Vero Falso
	2A 2B	Vero Falso	D. 10	L'es plic	stenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è seme.
D. 3	Ogni	polinomio a coefficienti razionali na radice razionale.		10A 10B	Vero Falso
	3A 3B	Vero Falso	D. 11		trascendenza di π implica l'impossità della quadratura del cerchio.
D. 4		nomi monici sono sempre irriducibi-		11A 11B	Vero Falso
	4A 4B	Vero Falso	D. 12		te le equazioni di quinto grado sono lubuli per radicali.
D. 5	Esist	re una costruzione euclidea che per- e la trisezione dell'angolo con un		12A 12B	Vero Falso
	grado di approssimazione buono quanto si vuole.		D. 13		trascendenza di π è stata dimostrata greci.
	5A	Vero		13A	Vero
	5B	Falso		13B	Falso
D. 6	Esist \mathbb{R} .	ono infiniti polinomi irriducibili su	D. 14	Sia real	$w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre e.
	6A 6B	Vero Falso		14A 14B	Vero Falso
D 7		nolinomio di grado nositivo a coef-	D. 15	Sia	ω una radice primitiva quarta dell'u-

D. 7 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.

7A Vero

7B Falso

D. 8 Ogni estensione algebrica è finita.

8A Vero

15A 2, 2ω , $4\omega^2$, $8\omega^3$

15B 2, ω , ω^2 , ω^3

sono:

15C 2, -2ω , $-4\omega^2$, $-8\omega^3$

nità. Le radici quarte complesse di 16

15D 2, 2ω , $2\omega^2$, $2\omega^3$

15E ω , 2 ω , 4 ω , 8 ω

16C
$$1 - x + x^2$$

16A
$$(1-x)^5$$

16D
$$1-x$$

16A
$$(1-x)^5$$

16B $1+x+x^2+x^3+x^4+x^5$

16E
$$1-x^6$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59C60E - Numero d'Ordine 39

- **D. 1** L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo ω tale che $\omega^{\alpha} = 1$:
 - 1A Vero
 - 1B Falso
- **D. 2** Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .
 - 2A Vero
 - 2B Falso
- **D. 3** La trascendenza di π implica l'impossibilità della quadratura del cerchio.
 - 3A Vero
 - 3B Falso
- **D. 4** Esistono infiniti polinomi irriducibili su \mathbb{R} .
 - 4A Vero
 - 4B Falso
- **D. 5** Ogni estensione algebrica è finita.
 - 5A Vero
 - 5B Falso
- **D. 6** Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.
 - 6A Vero
 - 6B Falso
- **D. 7** Polinomi monici sono sempre irriducibili.
 - 7A Vero
 - 7B Falso
- **D. 8** Ogni polinomio a coefficienti razionali ha una radice razionale.
 - 8A Vero
 - 8B Falso

- **D.9** Il MCD di 1326 e 3216 è maggiore di 7?
 - 9A Vero
 - 9B Falso
- **D. 10** Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.
 - 10A Vero
 - 10B Falso
- **D. 11** L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.
 - 11A Vero
 - 11B Falso
- **D. 12** Tutte le equazioni di quinto grado sono risolubuli per radicali.
 - 12A Vero
 - 12B Falso
- **D. 13** La trascendenza di π è stata dimostrata dai greci.
 - 13A Vero
 - 13B Falso
- **D. 14** Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.
 - 14A Vero
 - 14B Falso
- Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - 15A ω , 2 ω , 4 ω , 8 ω
 - **15B** 2, -2ω , $-4\omega^2$, $-8\omega^3$
 - **15C** 2, 2ω , $2\omega^2$, $2\omega^3$
 - 15D 2, ω , ω^2 , ω^3
 - **15E** 2, 2ω , $4\omega^2$, $8\omega^3$

16A
$$(1-x)^5$$

16B
$$1 - x + x^2$$

16C 1-x

16D
$$1+x+x^2+x^3+x^4+x^5$$

16E
$$1-x^6$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59D60A - Numero d'Ordine 40

8A

8B

9A

9B

plice.

Vero

Falso

Vero

Falso

D. 9 Polinomi monici sono sempre irriducibi-

D. 10 L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è sem-

D. 1	Esiste una costruzione euclidea che per-
	mette la trisezione dell'angolo con un
	grado di approssimazione buono quanto
	si vuole.

- **1A** Vero
- **1B** Falso
- D. 2 Ogni polinomio a coefficienti razionali ha una radice razionale.
 - 2A Vero
 - **2B** Falso
- 10A Vero
- 10B Falso

D. 3 Ogni polinomio irriducibile su
$$\mathbb{Q}$$
 è **D. 11** La trascendenza di π implica l'impossi-irriducibile su \mathbb{R} .

- 3A Vero
- **3B** Falso

- 11A Vero
- 11B Falso

- **4A** Vero
- **4B** Falso
- D. 4 Il MCD di 1326 e 3216 è maggiore di D. 12 Tutte le equazioni di quinto grado sono risolubuli per radicali.

bilità della quadratura del cerchio.

- 12A Vero
- 12B Falso

- 5A Vero
- **5B** Falso
- ${f D.5}~$ Esistono infiniti polinomi irriducibili su ${f D.13}~$ La trascendenza di π è stata dimostrata dai greci.
 - 13A Vero
 - 13B Falso

D. 6 L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che $\omega^{\alpha} = 1$:

- **6A** Vero
- **6B** Falso

- **D. 14** Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.
 - 14A Vero
 - 14B Falso

D. 7 Ogni estensione algebrica è finita.

- **7A** Vero
- **7B** Falso
- D. 8 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb{C}.$
- **D. 15** Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - $2, 2\omega, 4\omega^2, 8\omega^3$ 15A
 - 15B ω , 2ω , 4ω , 8ω
 - $2, \omega, \omega^2, \omega^3$ 15C
 - $2, 2\omega, 2\omega^2, 2\omega^3$ 15D
 - $2, -2\omega, -4\omega^2, -8\omega^3$ 15E

16A
$$(1-x)^5$$

16B
$$1-x$$

16C
$$1 - x + x^2$$

16D
$$1 - x^6$$

16E
$$1+x+x^2+x^3+x^4+x^5$$