16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59D60B - Numero d'Ordine 41

- **D. 1** L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.
 - 1A Vero
 - 1B Falso
- **D. 2** Ogni polinomio a coefficienti razionali ha una radice razionale.
 - 2A Vero
 - 2B Falso
- **D. 3** Polinomi monici sono sempre irriducibili.
 - 3A Vero
 - 3B Falso
- **D. 4** La trascendenza di π implica l'impossibilità della quadratura del cerchio.
 - 4A Vero
 - 4B Falso
- **D. 5** L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che $ω^α = 1$:
 - 5A Vero
 - **5B** Falso
- **D. 6** Esiste una costruzione euclidea che permette la trisezione dell'angolo con un **D. 14** Sia $w \in \mathbb{C}$. grado di approssimazione buono quanto si vuole.
 - **6A** Vero
 - **6B** Falso
- **D. 7** Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .
 - 7A Vero
 - **7B** Falso
- **D. 8** Esistono infiniti polinomi irriducibili su

- **8A** Vero
- 8B Falso
- **D.9** Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.
 - 9A Vero
 - 9B Falso
- **D. 10** Il MCD di 1326 e 3216 è maggiore di 7?
 - 10A Vero
 - 10B Falso
- **D. 11** Ogni estensione algebrica è finita.
 - 11A Vero
 - 11B Falso
- **D. 12** Tutte le equazioni di quinto grado sono risolubuli per radicali.
 - 12A Vero
 - 12B Falso
- **D. 13** La trascendenza di π è stata dimostrata dai greci.
 - 13A Vero
 - 13B Falso
- **D. 14** Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.
 - 14A Vero
 - 14B Falso
- **D. 15** $\phi_6(x)$ (il polinomio ciclotomico di ordine 6) è:
 - **15A** $(1-x)^5$
 - **15B** $1 x + x^2$
 - **15C** $1-x^6$
 - **15D** 1-x
 - **15E** $1+x+x^2+x^3+x^4+x^5$

- ${f D.\,16}$ Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - **16A** 2, ω , ω^2 , ω^3

- **16B** 2, 2ω , $2\omega^2$, $2\omega^3$
- **16C** ω, 2ω, 4ω, 8ω
- **16D** 2, -2ω , $-4\omega^2$, $-8\omega^3$
- **16E** 2, 2ω , $4\omega^2$, $8\omega^3$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59D60C - Numero d'Ordine 42

D. 1	Ogni	polinomio	irriducibile	su	\mathbb{Q}	è
	irridu	cibile su \mathbb{R} .				

1A Vero

1B Falso

D. 2 L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che $ω^α = 1$:

2A Vero

2B Falso

D. 3 La trascendenza di π implica l'impossibilità della quadratura del cerchio.

3A Vero

3B Falso

D. 4 Esistono infiniti polinomi irriducibili su \mathbb{R} .

4A Vero

4B Falso

D. 5 Ogni estensione algebrica è finita.

5A Vero

5B Falso

D. 6 Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.

6A Vero

6B Falso

D. 7 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.

7A Vero

7B Falso

D. 8 Polinomi monici sono sempre irriducibili.

8A Vero

8B Falso

D. 9 Il MCD di 1326 e 3216 è maggiore di 7?

9A Vero

9B Falso

D. 10 L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.

10A Vero

10B Falso

D. 11 Tutte le equazioni di quinto grado sono risolubuli per radicali.

11A Vero

11B Falso

D. 12 La trascendenza di π è stata dimostrata dai greci.

12A Vero

12B Falso

D. 13 Ogni polinomio a coefficienti razionali ha una radice razionale.

13A Vero

13B Falso

D. 14 Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.

14A Vero

14B Falso

D. 15 Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:

15A 2, 2 ω , 4 ω ², 8 ω ³

15B 2, ω , ω^2 , ω^3

15C 2, -2ω , $-4\omega^2$, $-8\omega^3$

15D ω , 2 ω , 4 ω , 8 ω

15E 2, 2ω , $2\omega^2$, $2\omega^3$

16A
$$1 - x + x^2$$

16B
$$(1-x)^5$$

16C $1-x^6$

16D
$$1-x$$

16E
$$1+x+x^2+x^3+x^4+x^5$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59D60D - Numero d'Ordine 43

	D. 1	Ogni estensione	algebrica è finita.
--	-------------	-----------------	---------------------

1A Vero

1B Falso

D. 2 Il MCD di 1326 e 3216 è maggiore di 79

2A Vero

2B Falso

D. 3 Polinomi monici sono sempre irriducibili.

3A Vero

3B Falso

D. 4 Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .

4A Vero

4B Falso

D. 5 Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.

5A Vero

5B Falso

D. 6 Esistono infiniti polinomi irriducibili su \mathbb{R} .

6A Vero

6B Falso

D. 7 Ogni polinomio a coefficienti razionali ha una radice razionale.

7A Vero

7B Falso

D. 8 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.

8A Vero

8B Falso

D. 9 L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.

9A Vero

9B Falso

D. 10 La trascendenza di π implica l'impossibilità della quadratura del cerchio.

10A Vero

10B Falso

D. 11 L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che ω^α = 1:

11A Vero

11B Falso

D. 12 Tutte le equazioni di quinto grado sono risolubuli per radicali.

12A Vero

12B Falso

D. 13 La trascendenza di π è stata dimostrata dai greci.

13A Vero

13B Falso

D. 14 Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.

14A Vero

14B Falso

Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:

15A 2, 2 ω , 4 ω ², 8 ω ³

15B 2, 2ω , $2\omega^2$, $2\omega^3$

15C 2, ω , ω^2 , ω^3

15D 2, -2ω , $-4\omega^2$, $-8\omega^3$

15E ω , 2 ω , 4 ω , 8 ω

16A
$$1 - x + x^2$$

16B
$$1 - x$$

16C $1-x^6$

16D
$$(1-x)^5$$

16E
$$1+x+x^2+x^3+x^4+x^5$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59D60E - Numero d'Ordine 44

D. 1	L'ordine di una radice <i>n</i> -esima dell'unità
	ω è il più piccolo intero positivo α tale
	che $\omega^{\alpha} = 1$:

1A Vero

1B Falso

D. 2 Tutte le equazioni di quinto grado sono risolubuli per radicali.

2A Vero

2B Falso

D. 3 La trascendenza di π implica l'impossibilità della quadratura del cerchio.

3A Vero

3B Falso

D. 4 Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .

4A Vero

4B Falso

D. 5 Polinomi monici sono sempre irriducibili.

5A Vero

5B Falso

D. 6 Esistono infiniti polinomi irriducibili su \mathbb{R} .

6A Vero

6B Falso

D. 7 Il MCD di 1326 e 3216 è maggiore di 7?

7A Vero

7B Falso

D. 8 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.

8A Vero

8B Falso

D. 9 Ogni estensione algebrica è finita.

9A Vero

9B Falso

D. 10 Ogni polinomio a coefficienti razionali ha una radice razionale.

10A Vero

10B Falso

D. 11 Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.

11A Vero

11B Falso

D. 12 L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.

12A Vero

12B Falso

D. 13 La trascendenza di π è stata dimostrata dai greci.

13A Vero

13B Falso

D. 14 Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.

14A Vero

14B Falso

Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:

15A ω , 2 ω , 4 ω , 8 ω

15B 2, ω , ω^2 , ω^3

15C 2, -2ω , $-4\omega^2$, $-8\omega^3$

15D 2, 2ω , $2\omega^2$, $2\omega^3$

15E 2, 2ω , $4\omega^2$, $8\omega^3$

16A
$$1-x$$

16B
$$1 - x^6$$

16C
$$1 - x + x^2$$

16D
$$1+x+x^2+x^3+x^4+x^5$$

16E
$$(1-x)^5$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59E60A - Numero d'Ordine 45

D. 1	L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è sem-
	plice.

- 1A Vero
- 1B Falso
- **D. 2** Polinomi monici sono sempre irriducibili.
 - 2A Vero
 - 2B Falso
- **D. 3** La trascendenza di π implica l'impossibilità della quadratura del cerchio.
 - 3A Vero
 - 3B Falso
- **D. 4** Tutte le equazioni di quinto grado sono risolubuli per radicali.
 - 4A Vero
 - 4B Falso
- **D. 5** La trascendenza di π è stata dimostrata dai greci.
 - **5A** Vero
 - 5B Falso
- **D. 6** Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.
 - **6A** Vero
 - 6B Falso
- **D. 7** Ogni polinomio a coefficienti razionali ha una radice razionale.
 - **7A** Vero
 - **7B** Falso
- **D. 8** Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .
 - 8A Vero

8B Falso

D. 9 L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che $ω^α = 1$:

9A Vero

9B Falso

D. 10 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.

- 10A Vero
- 10B Falso
- **D. 11** Esistono infiniti polinomi irriducibili su \mathbb{R} .
 - 11A Vero
 - 11B Falso
- **D. 12** II MCD di 1326 e 3216 è maggiore di 7?
 - 12A Vero
 - 12B Falso
- **D. 13** Ogni estensione algebrica è finita.
 - 13A Vero
 - 13B Falso
- **D. 14** Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.
 - 14A Vero
 - 14B Falso
 - Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - **15A** 2, 2 ω , 4 ω ², 8 ω ³
 - **15B** 2, -2ω , $-4\omega^2$, $-8\omega^3$
 - 15C ω , 2 ω , 4 ω , 8 ω
 - **15D** 2, 2ω , $2\omega^2$, $2\omega^3$
 - 15E 2, ω , ω^2 , ω^3

16A
$$1+x+x^2+x^3+x^4+x^5$$

16B
$$1-x$$

16C $(1-x)^5$

16D
$$1-x^6$$

16E
$$1 - x + x^2$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59E60B - Numero d'Ordine 46

D. 1	Ogni 1A 1B	estensione algebrica è finita. Vero Falso	D. 9	met grad	te una costruzione euclidea che per- te la trisezione dell'angolo con un lo di approssimazione buono quanto nole.
D. 2	L'orα ωè	dine di una radice <i>n</i> -esima dell'unità il più piccolo intero positivo α tale $\mathfrak{v}^{\alpha} = 1$:		9A 9B	Vero Falso
	2A 2B	Vero Falso		L'es plice	stenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è seme.
D. 3	Polir li.	nomi monici sono sempre irriducibi-		10B	Falso
	3A	Vero	D. 11		rascendenza di π implica l'impossi- à della quadratura del cerchio

- **D. 4** Il MCD di 1326 e 3216 è maggiore di 7?
 - **4A** Vero

Falso

3B

- **4B** Falso
- D. 5 Ogni polinomio a coefficienti razionali ha una radice razionale.
 - 5A Vero
 - 5B Falso
- **D.6** Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .
 - **6A** Vero
 - **6B** Falso
- D. 7 Esistono infiniti polinomi irriducibili su
 - **7**A Vero
 - **7B** Falso
- D. 8 Ogni polinomio di grado positivo a coefficienti nel campo C ha uno zero in $\mathbb{C}.$
 - **8A** Vero
 - **8B** Falso

- bilità della quadratura del cerchio.
 - 11A Vero
 - 11B Falso
- D. 12 Tutte le equazioni di quinto grado sono risolubuli per radicali.
 - 12A Vero
 - 12B Falso
- **D. 13** La trascendenza di π è stata dimostrata dai greci.
 - 13A Vero
 - 13B Falso
- **D. 14** Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.
 - 14A Vero
 - 14B Falso
- **D. 15** Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - $2, 2\omega, 2\omega^2, 2\omega^3$ 15A
 - $2, 2\omega, 4\omega^2, 8\omega^3$ 15B
 - $2, \omega, \omega^2, \omega^3$ 15C
 - ω , 2ω , 4ω , 8ω 15D
 - $2, -2\omega, -4\omega^2, -8\omega^3$ 15E

D. 16
$$\phi_6(x)$$
 (il polinomio ciclotomico di ordine 6) è:

16A
$$1 - x + x^2$$

16B
$$1 - x$$

16C
$$1+x+x^2+x^3+x^4+x^5$$

16D
$$(1-x)^5$$

16E
$$1-x^6$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59E60C - Numero d'Ordine 47

D. 1	L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è sem-
	plice.

1A Vero

1B Falso

D. 2 La trascendenza di π è stata dimostrata dai greci.

> 2A Vero

2B Falso

D. 3 Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbf D.\,\mathbf 11$ Tutte le equazioni di quinto grado sono

3A Vero

3B Falso

li.

4A Vero

4B Falso

D. 5 Il MCD di 1326 e 3216 è maggiore di 7?

> 5A Vero

5B Falso

D. 6 Ogni estensione algebrica è finita.

Vero **6A**

6B Falso

D. 7 Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.

> **7A** Vero

7B Falso

D. 8 La trascendenza di π implica l'impossibilità della quadratura del cerchio.

> **8A** Vero

8B Falso

D. 9 Esistono infiniti polinomi irriducibili su \mathbb{R} .

> 9A Vero

9B Falso

D. 10 Ogni polinomio a coefficienti razionali ha una radice razionale.

> 10A Vero

10B Falso

risolubuli per radicali.

11A Vero

11B Falso

D. 4 Polinomi monici sono sempre irriducibi- **D. 12** L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che $\omega^{\alpha} = 1$:

> 12A Vero

12B Falso

D. 13 Ogni polinomio irriducibile su Q è irriducibile su \mathbb{R} .

> 13A Vero

13B Falso

D. 14 Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.

> 14A Vero

14B Falso

Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:

> 15A $2, 2\omega, 2\omega^2, 2\omega^3$

15B ω , 2ω , 4ω , 8ω

 $2, -2\omega, -4\omega^2, -8\omega^3$ 15C

2, ω , ω^2 , ω^3 15D

2, 2ω , $4\omega^2$, $8\omega^3$ 15E

16A
$$(1-x)^5$$

16B
$$1 - x + x^2$$

16C $1-x^6$

16D
$$1+x+x^2+x^3+x^4+x^5$$

16E
$$1-x$$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59E60D - Numero d'Ordine 48

D. 1	Il MCD di 1326 e 3216 è maggiore di
	7?

- 1A Vero
- 1B Falso
- **D. 2** La trascendenza di π è stata dimostrata **D. 10** Esiste una costruzione euclidea che perdai greci. Esiste una costruzione dell'angolo con un
 - 2A Vero
 - 2B Falso
- **D. 3** Ogni polinomio a coefficienti razionali ha una radice razionale.
 - 3A Vero
 - 3B Falso
- **D. 4** Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.
 - 4A Vero
 - 4B Falso
- **D. 5** Polinomi monici sono sempre irriducibili.
 - 5A Vero
 - **5B** Falso
- **D. 6** L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale α che α = 1:
 - **6A** Vero
 - 6B Falso
- **D. 7** Ogni estensione algebrica è finita.
 - **7A** Vero
 - **7B** Falso
- **D. 8** Esistono infiniti polinomi irriducibili su \mathbb{R} .
 - 8A Vero
 - 8B Falso

- **D.9** Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .
 - 9A Vero
 - 9B Falso
 - Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.
 - 10A Vero
 - 10B Falso
- **D. 11** L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.
 - 11A Vero
 - 11B Falso
- **D. 12** La trascendenza di π implica l'impossibilità della quadratura del cerchio.
 - 12A Vero
 - 12B Falso
- **D. 13** Tutte le equazioni di quinto grado sono risolubuli per radicali.
 - 13A Vero
 - 13B Falso
- **D. 14** Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.
 - 14A Vero
 - 14B Falso
- **D. 15** $\phi_6(x)$ (il polinomio ciclotomico di ordine 6) è:
 - **15A** $1 x + x^2$
 - **15B** 1 x
 - **15C** $(1-x)^5$
 - **15D** $1+x+x^2+x^3+x^4+x^5$
 - **15E** $1-x^6$

- ${f D.\,16}$ Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - **16A** 2, 2ω , $2\omega^2$, $2\omega^3$

- **16B** 2, ω , ω^2 , ω^3
- **16C** ω, 2ω, 4ω, 8ω
- **16D** 2, 2ω , $4\omega^2$, $8\omega^3$
- **16E** 2, -2ω , $-4\omega^2$, $-8\omega^3$

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58B59E60E - Numero d'Ordine 49

D. 1	L'ordine di una radice <i>n</i> -esima dell'unità
	ω è il più piccolo intero positivo α tale
	che $\omega^{\alpha} = 1$:

- **1A** Vero
- 1B Falso

- **2A** Vero
- **2B** Falso

D. 3 L'estenione algebrica
$$\mathbb{Q}[\sqrt{2}][\sqrt{5}]$$
 è semplice.

- **3A** Vero
- **3B** Falso

- **4A** Vero
- **4B** Falso

D. 5 Ogni polinomio irriducibile su
$$\mathbb{Q}$$
 è irriducibile su \mathbb{R} .

- 5A Vero
- **5B** Falso

- **6A** Vero
- **6B** Falso

D. 7 Ogni polinomio a coefficienti razionali ha una radice razionale.

D. 15
$$\phi_6(x)$$
 (il polinomio ciclotomico di ordine

- **7A** Vero
- **7B** Falso

D. 9 Esistono infiniti polinomi irriducibili su

- 9A Vero
- 9B Falso

D. 10 Ogni polinomio di grado positivo a coefficienti nel campo
$$\mathbb C$$
 ha uno zero in $\mathbb C$.

- 10A Vero
- 10B Falso

D. 3 L'estenione algebrica
$$\mathbb{Q}[\sqrt{2}][\sqrt{5}]$$
 è semblice $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ La trascendenza di π implica l'impossibilità della quadratura del cerchio.

- 11A Vero
- 11B Falso

- 12A Vero
- 12B Falso

D. 13 La trascendenza di
$$\pi$$
 è stata dimostrata dai greci.

- 13A Vero
- 13B Falso

D. 14 Sia
$$w \in \mathbb{C}$$
. Allora $w + \overline{w}$ è sempre reale.

- 14A Vero
- 14B Falso

D. 15
$$\phi_6(x)$$
 (il polinomio ciclotomico di ordine 6) è:

- 15A $1 - x^6$
- $(1-x)^5$ 15B
- $1 x + x^2$ 15C
- 15D

15E
$$1+x+x^2+x^3+x^4+x^5$$

- ${f D.\,16}$ Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - **16A** 2, 2ω , $2\omega^2$, $2\omega^3$

- **16B** 2, 2 ω , 4 ω ², 8 ω ³
- **16C** 2, ω , ω^2 , ω^3
- **16D** 2, -2ω , $-4\omega^2$, $-8\omega^3$
- **16E** ω, 2ω, 4ω, 8ω

16 Dicembre 2006

SSIS del Lazio

Algebra 2

Codice Compito: 57A58C59A60A - Numero d'Ordine 50

D. 1	Il M	ICD di	1326	e 3	216	è	maggiore di	D. 9	1
	7?								1
	1 4	T 7							٤
	IA	Vero							S

- **D. 2** Ogni polinomio a coefficienti razionali ha una radice razionale.
 - 2A Vero

Falso

1**B**

- 2B Falso
- **D. 3** Ogni estensione algebrica è finita.
 - 3A Vero
 - 3B Falso
- **D. 4** L'ordine di una radice *n*-esima dell'unità ω è il più piccolo intero positivo α tale che ω^α = 1:
 - 4A Vero
 - 4B Falso
- **D.5** Ogni polinomio irriducibile su \mathbb{Q} è irriducibile su \mathbb{R} .
 - 5A Vero
 - 5B Falso
- **D. 6** Esistono infiniti polinomi irriducibili su \mathbb{R} .
 - 6A Vero
 - 6B Falso
- **D. 7** Ogni polinomio di grado positivo a coefficienti nel campo $\mathbb C$ ha uno zero in $\mathbb C$.
 - 7A Vero
 - **7B** Falso
- **D. 8** Polinomi monici sono sempre irriducibili.
 - 8A Vero
 - 8B Falso

- Esiste una costruzione euclidea che permette la trisezione dell'angolo con un grado di approssimazione buono quanto si vuole.
 - 9A Vero
 - 9B Falso
- **D. 10** L'estenione algebrica $\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ è semplice.
 - 10A Vero
 - 10B Falso
- **D. 11** La trascendenza di π implica l'impossibilità della quadratura del cerchio.
 - 11A Vero
 - 11B Falso
- **D. 12** Tutte le equazioni di quinto grado sono risolubuli per radicali.
 - 12A Vero
 - 12B Falso
- **D. 13** La trascendenza di π è stata dimostrata dai greci.
 - 13A Vero
 - 13B Falso
- **D. 14** Sia $w \in \mathbb{C}$. Allora $w + \overline{w}$ è sempre reale.
 - 14A Vero
 - 14B Falso
- Sia ω una radice primitiva quarta dell'unità. Le radici quarte complesse di 16 sono:
 - **15A** 2, 2ω , $2\omega^2$, $2\omega^3$
 - 15B ω , 2 ω , 4 ω , 8 ω
 - **15C** 2, -2ω , $-4\omega^2$, $-8\omega^3$
 - **15D** 2. 2 ω , 4 ω^2 , 8 ω^3
 - 15E 2, ω , ω^2 , ω^3

16A
$$1 - x + x^2$$

16B
$$1-x^6$$

16C $(1-x)^5$

16D
$$1-x$$

16E
$$1+x+x^2+x^3+x^4+x^5$$