10 Febbraio 2007

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58A59E60B - Numero d'Ordine 21

- **D. 1** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k>0. Allora $h_{(P,k)}^{-1}$ è uguale a:
 - **1A** $h_{(P,-k)}$
 - **1B** $h_{(P,k^{-1})}$
 - **1C** $h_{(-P,k)}$
 - **1D** $h_{(P^{-1},k^{-1})}$
- **D. 2** Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:
 - **2A** $t_{(3,2)}$
 - **2B** $t_{(-2,-3)}$
 - **2C** $-t_{(2,3)}$
 - **2D** $t_{(1/2,1/3)}$
- **D. 3** Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia $t_{\mathbf{v}}$ la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_{\mathbf{v}}$ è:

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

$$\left(\begin{array}{ccc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\
0 & 0 & 1
\end{array}\right)$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

- **D. 4** La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:
 - **4A**

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

4C

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

4D

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

- **D. 5** La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :
 - **5A** è una similitudine ma non un'isometria
 - 5B non è una trasformazione geometrica
 - **5C** è una isometria inversa
 - 5D è una simmetria rispetto ad un punto
- **D. 6** Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:

6A
$$r_{(D,\frac{3}{2}\pi)}$$

6B
$$r_{(D,\alpha)} \circ r_{(D,\alpha)}$$

6C
$$r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$$

6D
$$r_{(D,\frac{4}{6}\pi)}$$

D. 7 Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:

D. 8 Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r: -4x+2y+1=0$$

 $r': 2x-y+1=0$

allora $s_r \circ s_{r'}$ è uguale a:

8A una rotazione non nulla

8B una traslazione non nulla

8C una simmetria assiale

8D l'identità

D. 9 Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_v \circ f)$ é:

- **9A** il punto (2, -1)
- **9B** il punto (0,5)
- **9C** il punto (1,1)
- **9D** il punto (-1,6)
- **D. 10** Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:
 - 10A una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti
 - 10B una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti
 - **10C** sempre una rotazione (eventualmente nulla)
 - **10D** sempre una simmetria assiale
- **D. 11** La convessità è invariante:
 - 11A per isometrie dirette ma non per tutte le isometrie
 - 11B per isometrie ma non per similitudini
 - 11C per similitudini dirette ma non per tutte le similitudini
 - **11D** per similitudini
- **D. 12** L'insieme formato dall'identità e dalle simmetrie assiali
 - 12A non è chiuso rispetto alla composizione
 - 12B è un sottogruppo non commutativo del gruppo delle isometrie
 - **12C** ha elementi non dotati di inverso
 - 12D è un sottogruppo commutativo del gruppo delle isometrie
- **D. 13** Sia *R* un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di *R* sia *R* sono:
 - 13A una
 - 13B quattro
 - 13C otto
 - 13D due
- **D. 14** Il punto medio di un segmento è invariante

- **14A** per isometrie ma non per similitudini
- 14B per similitudini dirette ma non per tutte le similitudini
- **14C** per similitudini
- **14D** per isometrie dirette ma non per tutte le isometrie
- **D. 15** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- 15A $\frac{4\pi}{3}$
- 15B $\frac{\pi}{3}$
- **15C** $\frac{2\pi}{3}$
- 15D $\frac{\pi}{6}$
- **D. 16** Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'
 - **16A** nessuna delle altre risposte è esatta
 - **16B** è un gruppo commutativo con più di un elemento, qualsiasi sia M
 - **16C** è formato dalla sola identità, qualsiasi sia M
 - **16D** non è un gruppo, qualsiasi sia M
- **D. 17** L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:
 - 17A ha elementi non dotati di simmetrico
 - 17B non è chiuso rispetto all'addizione
 - **17C** è un gruppo non commutativo
 - **17D** è un gruppo commutativo

Università degli Studi di Roma "La Sapienza"
10 Febbraio 2007

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58A59E60C - Numero d'Ordine 22

- **D. 1** Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:
 - 1A tre
 - 1B una
 - 1C zero
 - 1D sei
- **D. 2** La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:
 - **2A**

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

2B

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

2C

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

2D

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

- **D. 3** Sia *R* un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di *R* sia *R* sono:
 - 3A una
 - 3B due
 - 3C quattro
 - **3D** otto
- **D. 4** Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:
 - **4A** $t_{(3,2)}$
 - **4B** $t_{(1/2,1/3)}$
 - **4C** $t_{(-2,-3)}$
 - **4D** $-t_{(2,3)}$

- **D. 5** Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:
 - **5A** una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti
 - **5B** una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti
 - **5C** sempre una simmetria assiale
 - **5D** sempre una rotazione (eventualmente nulla)
- **D. 6** La convessità è invariante:
 - **6A** per similitudini dirette ma non per tutte le similitudini
 - **6B** per similitudini
 - **6C** per isometrie dirette ma non per tutte le isometrie
 - **6D** per isometrie ma non per similitudini
- **D.** 7 L'insieme formato dall'identità e dalle simmetrie assiali
 - 7A non è chiuso rispetto alla composizione
 - **7B** è un sottogruppo commutativo del gruppo delle isometrie
 - **7C** è un sottogruppo non commutativo del gruppo delle isometrie
 - **7D** ha elementi non dotati di inverso
- **D. 8** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k > 0. Allora $h_{(P,k)}^{-1}$ è uguale a:
 - **8A** $h_{(-P,k)}$
 - **8B** $h_{(P,k^{-1})}$
 - **8C** $h_{(P,-k)}$
 - **8D** $h_{(P^{-1},k^{-1})}$
- **D. 9** La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :
 - **9A** è una similitudine ma non un'isometria
 - 9B è una simmetria rispetto ad un punto
 - **9C** non è una trasformazione geometrica
 - **9D** è una isometria inversa
- **D. 10** Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:
 - **10A** $r_{(D,\frac{4}{6}\pi)}$
 - **10B** $r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$
 - **10C** $r_{(D,\alpha)} \circ r_{(D,\alpha)}$
 - **10D** $r_{(D,\frac{3}{2}\pi)}$

D. 11 Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r: -4x+2y+1=0$$

 $r': 2x-y+1=0$

allora $s_r \circ s_{r'}$ è uguale a:

- 11A l'identità
- 11B una simmetria assiale
- 11C una rotazione non nulla
- 11D una traslazione non nulla

D. 12 Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia $t_{\mathbf{v}}$ la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_{\mathbf{v}}$ è:

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- **D. 13** Il punto medio di un segmento è invariante
 - **13A** per similitudini
 - 13B per isometrie dirette ma non per tutte le isometrie
 - 13C per isometrie ma non per similitudini
 - 13D per similitudini dirette ma non per tutte le similitudini
- **D. 14** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

è la rotazione in senso antiorario intorno all'origine di un angolo di ampiezza

 $\frac{\pi}{3}$

14B
$$\frac{47}{3}$$

14C
$$\frac{\pi}{6}$$

14D
$$\frac{2\pi}{3}$$

D. 15 Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_{\mathbf{v}} \circ f)$ é:

15A il punto
$$(0,5)$$

15B il punto
$$(-1,6)$$

15C il punto
$$(2, -1)$$

D. 16 Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'

16C è formato dalla sola identità, qualsiasi sia
$$M$$

16D è un gruppo commutativo con più di un elemento, qualsiasi sia
$$M$$

D. 17 L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:

- 17A non è chiuso rispetto all'addizione
- 17B ha elementi non dotati di simmetrico
- **17C** è un gruppo commutativo
- **17D** è un gruppo non commutativo

10 Febbraio 2007

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58A59E60D - Numero d'Ordine 23

D. 1 Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia t_v la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_v$ è:

1A

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

1B

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

1C

$$\left(\begin{array}{ccc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\
0 & 0 & 1
\end{array}\right)$$

1D

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

D. 2 Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r: -4x+2y+1=0$$

 $r': 2x-y+1=0$

allora $s_r \circ s_{r'}$ è uguale a:

- 2A l'identità
- 2B una rotazione non nulla
- **2C** una simmetria assiale
- **2D** una traslazione non nulla
- **D. 3** La convessità è invariante:
 - **3A** per similitudini
 - **3B** per isometrie ma non per similitudini
 - **3C** per similitudini dirette ma non per tutte le similitudini
 - **3D** per isometrie dirette ma non per tutte le isometrie
- **D. 4** Sia *R* un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di *R* sia *R* sono:

- 4A una
- 4B quattro
- 4C due
- **4D** otto
- **D. 5** Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:
 - **5A** $t_{(1/2,1/3)}$
 - **5B** $t_{(-2,-3)}$
 - **5C** $t_{(3,2)}$
 - **5D** $-t_{(2,3)}$
- **D. 6** L'insieme formato dall'identità e dalle simmetrie assiali
 - **6A** ha elementi non dotati di inverso
 - **6B** è un sottogruppo non commutativo del gruppo delle isometrie
 - **6C** è un sottogruppo commutativo del gruppo delle isometrie
 - 6D non è chiuso rispetto alla composizione
- **D. 7** Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:
 - **7A** $r_{(D,\frac{4}{6}\pi)}$
 - **7B** $r_{(D,\frac{3}{2}\pi)}$
 - **7C** $r_{(D,\alpha)} \circ r_{(D,\alpha)}$
 - **7D** $r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$
- **D. 8** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k > 0. Allora $h_{(P,k)}^{-1}$ è uguale a:
 - **8A** $h_{(-P,k)}$
 - **8B** $h_{(P^{-1},k^{-1})}$
 - 8C $h_{(P,-k)}$
 - **8D** $h_{(P,k^{-1})}$
- **D. 9** Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:
 - **9A** una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti
 - **9B** una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti
 - **9C** sempre una rotazione (eventualmente nulla)
 - **9D** sempre una simmetria assiale

- **D. 10** Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:
 - 10A sei
 - 10B zero
 - 10C una
 - **10D** tre
- **D. 11** Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'
 - 11A è un gruppo commutativo con più di un elemento, qualsiasi sia M
 - 11B non è un gruppo, qualsiasi sia M
 - 11C è formato dalla sola identità, qualsiasi sia M
 - 11D nessuna delle altre risposte è esatta
- **D. 12** Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_{\mathbf{v}} \circ f)$ é:

- **12A** il punto (1, 1)
- **12B** il punto (0,5)
- **12C** il punto (-1,6)
- **12D** il punto (2, -1)
- **D. 13** La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

- **D. 14** La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :
 - **14A** è una similitudine ma non un'isometria
 - 14B è una simmetria rispetto ad un punto
 - 14C non è una trasformazione geometrica
 - **14D** è una isometria inversa
- **D. 15** Il punto medio di un segmento è invariante
 - **15A** per similitudini
 - 15B per similitudini dirette ma non per tutte le similitudini
 - **15C** per isometrie ma non per similitudini
 - **15D** per isometrie dirette ma non per tutte le isometrie
- **D. 16** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- **16A** $\frac{27}{3}$
- 16B
- **16C** $\frac{4\pi}{3}$
- 16D $\frac{\pi}{3}$
- **D. 17** L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:
 - 17A è un gruppo commutativo
 - **17B** è un gruppo non commutativo
 - 17C ha elementi non dotati di simmetrico
 - 17D non è chiuso rispetto all'addizione

10 Febbraio 2007

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58A59E60E - Numero d'Ordine 24

- **D. 1** La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :
 - **1A** è una isometria inversa
 - 1B non è una trasformazione geometrica
 - 1C è una similitudine ma non un'isometria
 - 1**D** è una simmetria rispetto ad un punto
- **D. 2** Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r: -4x+2y+1=0$$

 $r': 2x-y+1=0$

$$r'$$
: $2x - y + 1 = 0$

allora $s_r \circ s_{r'}$ è uguale a:

- **2A** una rotazione non nulla
- **2B** una traslazione non nulla
- **2C** una simmetria assiale
- **2D** l'identità
- **D. 3** Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:
 - **3A** una
 - **3B** tre
 - **3C** sei
 - **3D** zero
- **D. 4** Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_v \circ f)$ é:

- **4A** il punto (0,5)
- **4B** il punto (2,-1)
- **4C** il punto (1,1)
- il punto (-1,6)
- **D. 5** Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:

- **5A** $r_{(D,\alpha)} \circ r_{(D,\alpha)}$
- **5B** $r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$
- **5C** $r_{(D,\frac{4}{6}\pi)}$
- **5D** $r_{(D,\frac{3}{2}\pi)}$
- **D. 6** La convessità è invariante:
 - **6A** per similitudini
 - **6B** per isometrie ma non per similitudini
 - **6C** per isometrie dirette ma non per tutte le isometrie
 - **6D** per similitudini dirette ma non per tutte le similitudini
- **D. 7** Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'
 - **7A** è un gruppo commutativo con più di un elemento, qualsiasi sia M
 - **7B** è formato dalla sola identità, qualsiasi sia M
 - **7C** nessuna delle altre risposte è esatta
 - **7D** non è un gruppo, qualsiasi sia M
- **D. 8** Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:
 - **8A** $t_{(3,2)}$
 - **8B** $t_{(-2,-3)}$
 - **8C** $-t_{(2,3)}$
 - **8D** $t_{(1/2,1/3)}$
- **D. 9** La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:
 - **9A**

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

9B

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

9C

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

9D

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

- **D. 10** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k > 0. Allora $h_{(P,k)}^{-1}$ è uguale a:
 - **10A** $h_{(P^{-1},k^{-1})}$
 - **10B** $h_{(P,-k)}$
 - **10C** $h_{(P,k^{-1})}$
 - **10D** $h_{(-P,k)}$
- **D. 11** Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:
 - 11A una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti
 - 11B una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti
 - 11C sempre una rotazione (eventualmente nulla)
 - 11D sempre una simmetria assiale
- **D. 12** L'insieme formato dall'identità e dalle simmetrie assiali
 - 12A è un sottogruppo non commutativo del gruppo delle isometrie
 - **12B** ha elementi non dotati di inverso
 - 12C non è chiuso rispetto alla composizione
 - 12D è un sottogruppo commutativo del gruppo delle isometrie
- **D. 13** Sia *R* un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di *R* sia *R* sono:
 - 13A otto
 - 13B due
 - 13C una
 - 13D quattro
- **D. 14** Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia $t_{\mathbf{v}}$ la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_{\mathbf{v}}$ è:

14A

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

14B

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1
\end{pmatrix}$$

14D

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

- **D. 15** Il punto medio di un segmento è invariante
 - 15A per similitudini
 - **15B** per isometrie ma non per similitudini
 - **15C** per isometrie dirette ma non per tutte le isometrie
 - 15D per similitudini dirette ma non per tutte le similitudini
- **D. 16** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- **16A** $\frac{2\pi}{3}$
- **16B** $\frac{\pi}{3}$
- **16C** $\frac{4\pi}{3}$
- **16D** $\frac{\pi}{6}$
- **D. 17** L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:
 - 17A ha elementi non dotati di simmetrico
 - **17B** è un gruppo non commutativo
 - 17C non è chiuso rispetto all'addizione
 - **17D** è un gruppo commutativo

10 Febbraio 2007

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58B59A60A - Numero d'Ordine 25

- **D. 1** Sia *R* un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di *R* sia *R* sono:
 - 1A otto
 - 1B quattro
 - 1C due
 - 1D una
- **D. 2** Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:
 - **2A** sempre una rotazione (eventualmente nulla)
 - **2B** sempre una simmetria assiale
 - **2C** una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti
 - **2D** una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti
- **D. 3** Il punto medio di un segmento è invariante
 - **3A** per similitudini
 - **3B** per similitudini dirette ma non per tutte le similitudini
 - **3C** per isometrie ma non per similitudini
 - **3D** per isometrie dirette ma non per tutte le isometrie
- **D. 4** Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_v \circ f)$ é:

- **4A** il punto (1, 1)
- **4B** il punto (2, -1)
- **4C** il punto (-1,6)
- **4D** il punto (0,5)
- **D. 5** Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia $t_{\mathbf{v}}$ la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_{\mathbf{v}}$ è:

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

5B

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

5C

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

5D

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

- **D. 6** Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:
 - **6A** tre
 - **6B** una
 - **6C** sei
 - **6D** zero
- **D.** 7 Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:
 - **7A** $-t_{(2,3)}$
 - **7B** $t_{(1/2,1/3)}$
 - **7**C $t_{(-2,-3)}$
 - **7D** $t_{(3,2)}$
- **D. 8** Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r : -4x + 2y + 1 = 0$$

$$r: -4x+2y+1=0$$

 $r': 2x-y+1=0$

allora $s_r \circ s_{r'}$ è uguale a:

- **8A** una rotazione non nulla
- **8B** l'identità
- **8C** una simmetria assiale
- **8D** una traslazione non nulla
- **D. 9** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k > 0. Allora $h_{(P,k)}^{-1}$ è uguale a:

9A
$$h_{(P,-k)}$$

9B
$$h_{(P,k^{-1})}$$

9C
$$h_{(P^{-1},k^{-1})}$$

9D
$$h_{(-P,k)}$$

D. 10 La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:

10A

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

10B

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

10C

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

10D

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

D. 11 Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:

11A
$$r_{(D,\alpha)} \circ r_{(D,\alpha)}$$

11B
$$r_{(D,\frac{4}{6}\pi)}$$

11C
$$r_{(D,\frac{3}{2}\pi)}$$

11D
$$r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$$

D. 12 La convessità è invariante:

12A per isometrie dirette ma non per tutte le isometrie

12B per isometrie ma non per similitudini

12C per similitudini

12D per similitudini dirette ma non per tutte le similitudini

D. 13 L'insieme formato dall'identità e dalle simmetrie assiali

13A è un sottogruppo commutativo del gruppo delle isometrie

13B non è chiuso rispetto alla composizione

13C è un sottogruppo non commutativo del gruppo delle isometrie

13D ha elementi non dotati di inverso

D. 14 La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :

- **14A** è una isometria inversa
- 14B non è una trasformazione geometrica
- 14C è una simmetria rispetto ad un punto
- **14D** è una similitudine ma non un'isometria
- **D. 15** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- 15A
- 15B $\frac{\pi}{6}$
- **15C** $\frac{2\pi}{3}$
- 15D $\frac{4\pi}{3}$
- **D. 16** L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:
 - **16A** non è chiuso rispetto all'addizione
 - **16B** ha elementi non dotati di simmetrico
 - **16C** è un gruppo commutativo
 - **16D** è un gruppo non commutativo
- **D. 17** Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'
 - 17A è un gruppo commutativo con più di un elemento, qualsiasi sia M
 - **17B** non è un gruppo, qualsiasi sia *M*
 - 17C nessuna delle altre risposte è esatta
 - **17D** è formato dalla sola identità, qualsiasi sia M

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58B59A60B - Numero d'Ordine 26

- **D. 1** Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:
 - 1A zero
 - 1B sei
 - 1C tre
 - 1D una
- **D. 2** Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia $t_{\mathbf{v}}$ la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_{\mathbf{v}}$ è:

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

- **D. 3** La convessità è invariante:
 - **3A** per similitudini
 - **3B** per similitudini dirette ma non per tutte le similitudini
 - **3C** per isometrie ma non per similitudini
 - **3D** per isometrie dirette ma non per tutte le isometrie
- **D. 4** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k > 0. Allora $h_{(P,k)}^{-1}$ è uguale a:
 - **4A** $h_{(P,k^{-1})}$
 - **4B** $h_{(P,-k)}$

4C
$$h_{(-P,k)}$$

4D
$$h_{(P^{-1},k^{-1})}$$

- **D. 5** Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:
 - **5A** $t_{(-2,-3)}$
 - **5B** $t_{(3,2)}$
 - **5C** $t_{(1/2,1/3)}$
 - **5D** $-t_{(2,3)}$
- **D. 6** L'insieme formato dall'identità e dalle simmetrie assiali
 - **6A** ha elementi non dotati di inverso
 - **6B** è un sottogruppo non commutativo del gruppo delle isometrie
 - **6C** è un sottogruppo commutativo del gruppo delle isometrie
 - **6D** non è chiuso rispetto alla composizione
- **D. 7** La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

- **D. 8** Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:
 - **8A** sempre una simmetria assiale
 - **8B** sempre una rotazione (eventualmente nulla)
 - **8C** una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti
 - **8D** una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti
- **D. 9** Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:

9A
$$r_{(D,\frac{4}{6}\pi)}$$

9B
$$r_{(D,\frac{3}{2}\pi)}$$

9C
$$r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$$

9D
$$r_{(D,\alpha)} \circ r_{(D,\alpha)}$$

D. 10 Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r: -4x+2y+1=0$$

 $r': 2x-y+1=0$

allora $s_r \circ s_{r'}$ è uguale a:

- 10A l'identità
- 10B una simmetria assiale
- **10C** una rotazione non nulla
- 10D una traslazione non nulla

D. 11 La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :

- 11A non è una trasformazione geometrica
- 11B è una isometria inversa
- 11C è una similitudine ma non un'isometria
- 11D è una simmetria rispetto ad un punto

D. 12 Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_{\mathbf{v}} \circ f)$ é:

12B il punto
$$(0,5)$$

12C il punto
$$(-1,6)$$

12D il punto
$$(2, -1)$$

D. 13 Sia *R* un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di *R* sia *R* sono:

D. 14 Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'

- 14A è formato dalla sola identità, qualsiasi sia M
- 14B è un gruppo commutativo con più di un elemento, qualsiasi sia M
- **14C** nessuna delle altre risposte è esatta
- **14D** non è un gruppo, qualsiasi sia *M*
- **D. 15** Il punto medio di un segmento è invariante
 - 15A per similitudini
 - **15B** per isometrie ma non per similitudini
 - 15C per similitudini dirette ma non per tutte le similitudini
 - **15D** per isometrie dirette ma non per tutte le isometrie
- **D. 16** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- 16A $\frac{\pi}{6}$
- **16B** $\frac{2\pi}{3}$
- **16C** $\frac{4\pi}{3}$
- **16D** $\frac{\pi}{3}$
- **D. 17** L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:
 - 17A non è chiuso rispetto all'addizione
 - **17B** è un gruppo commutativo
 - **17C** è un gruppo non commutativo
 - 17D ha elementi non dotati di simmetrico

10 Febbraio 2007

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58B59A60C - Numero d'Ordine 27

- **D. 1** Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:
 - 1A una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti
 - **1B** sempre una simmetria assiale
 - **1C** sempre una rotazione (eventualmente nulla)
 - 1D una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti
- **D. 2** Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:
 - 2A sei
 - **2B** tre
 - 2C zero
 - 2D una
- **D. 3** Il punto medio di un segmento è invariante
 - **3A** per isometrie dirette ma non per tutte le isometrie
 - **3B** per similitudini dirette ma non per tutte le similitudini
 - 3C per similitudini
 - **3D** per isometrie ma non per similitudini
- **D. 4** Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia $t_{\mathbf{v}}$ la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_{\mathbf{v}}$ è:

4A

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

4B

$$\left(\begin{array}{ccc} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 0 & 1 \end{array}\right)$$

4C

$$\left(\begin{array}{ccc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\
0 & 0 & 1
\end{array}\right)$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

- **D. 5** Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'
 - 5A nessuna delle altre risposte è esatta
 - **5B** non è un gruppo, qualsiasi sia M
 - **5C** è formato dalla sola identità, qualsiasi sia *M*
 - **5D** è un gruppo commutativo con più di un elemento, qualsiasi sia M
- **D. 6** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k > 0. Allora $h_{(P,k)}^{-1}$ è uguale a:
 - **6A** $h_{(-P,k)}$
 - **6B** $h_{(P,-k)}$
 - **6C** $h_{(P^{-1},k^{-1})}$
 - **6D** $h_{(P,k^{-1})}$
- **D. 7** La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:

7A

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

7B

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

7C

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

7D

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

- **D. 8** Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:
 - **8A** $r_{(D,\alpha)} \circ r_{(D,\alpha)}$
 - **8B** $r_{(D,\frac{3}{2}\pi)}$
 - **8C** $r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$
 - **8D** $r_{(D,\frac{4}{6}\pi)}$

- **D. 9** Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:
 - **9A** $t_{(1/2,1/3)}$
 - **9B** $-t_{(2,3)}$
 - **9C** $t_{(-2,-3)}$
 - **9D** $t_{(3,2)}$
- **D. 10** Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r: -4x + 2y + 1 = 0$$

r': 2x - y + 1 = 0

allora $s_r \circ s_{r'}$ è uguale a:

- 10A una rotazione non nulla
- 10B una traslazione non nulla
- 10C l'identità
- 10D una simmetria assiale
- **D. 11** La convessità è invariante:
 - 11A per isometrie ma non per similitudini
 - 11B per similitudini dirette ma non per tutte le similitudini
 - 11C per isometrie dirette ma non per tutte le isometrie
 - **11D** per similitudini
- **D. 12** L'insieme formato dall'identità e dalle simmetrie assiali
 - **12A** ha elementi non dotati di inverso
 - 12B non è chiuso rispetto alla composizione
 - 12C è un sottogruppo commutativo del gruppo delle isometrie
 - 12D è un sottogruppo non commutativo del gruppo delle isometrie
- **D. 13** La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :
 - 13A è una similitudine ma non un'isometria
 - 13B è una isometria inversa
 - 13C è una simmetria rispetto ad un punto
 - 13D non è una trasformazione geometrica
- **D. 14** Sia *R* un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di *R* sia *R* sono:
 - 14A due
 - 14B una
 - 14C quattro
 - 14D otto

D. 15 Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_{\mathbf{v}} \circ f)$ é:

- **15A** il punto (1, 1)
- **15B** il punto (2, -1)
- **15C** il punto (-1,6)
- **15D** il punto (0,5)
- **D. 16** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- **16A** $\frac{2\pi}{3}$
- 16B $\frac{7}{6}$
- 16C $\frac{7}{2}$
- 16D $\frac{4\pi}{3}$
- **D. 17** L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:
 - 17A è un gruppo commutativo
 - 17B non è chiuso rispetto all'addizione
 - **17C** è un gruppo non commutativo
 - 17D ha elementi non dotati di simmetrico

10 Febbraio 2007

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58B59A60D - Numero d'Ordine 28

- **D. 1** L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:
 - 1A non è chiuso rispetto all'addizione
 - **1B** è un gruppo non commutativo
 - 1C è un gruppo commutativo
 - **1D** ha elementi non dotati di simmetrico
- **D. 2** Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_v \circ f)$ é:

- **2A** il punto (1,1)
- **2B** il punto (-1,6)
- **2C** il punto (0,5)
- **2D** il punto (2, -1)
- **D. 3** Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:
 - **3A** una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti
 - **3B** sempre una rotazione (eventualmente nulla)
 - **3C** una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti
 - **3D** sempre una simmetria assiale
- **D. 4** Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia $t_{\mathbf{v}}$ la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_{\mathbf{v}}$ è:

4A

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

4B

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1
\end{pmatrix}$$

$$\left(\begin{array}{ccc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\
0 & 0 & 1
\end{array}\right)$$

4D

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

- **D. 5** La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :
 - **5**A è una isometria inversa
 - **5B** è una similitudine ma non un'isometria
 - **5**C non è una trasformazione geometrica
 - **5D** è una simmetria rispetto ad un punto
- **D. 6** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k > 0. Allora $h_{(P,k)}^{-1}$ è uguale a:
 - **6A** $h_{(P,-k)}$
 - **6B** $h_{(P,k^{-1})}$
 - **6C** $h_{(P^{-1},k^{-1})}$
 - **6D** $h_{(-P,k)}$
- **D.** 7 La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:

7A

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

7B

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

7C

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

7D

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

D. 8 Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r: -4x+2y+1=0$$

 $r': 2x-y+1=0$

$$r'$$
: $2x - y + 1 = 0$

- **8A** una simmetria assiale
- 8B l'identità
- **8C** una rotazione non nulla
- **8D** una traslazione non nulla
- **D. 9** Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:
 - **9A** $r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$
 - **9B** $r_{(D,\frac{3}{2}\pi)}$
 - **9C** $r_{(D,\frac{4}{6}\pi)}$
 - **9D** $r_{(D,\alpha)} \circ r_{(D,\alpha)}$
- **D. 10** Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:
 - 10A zero
 - 10B una
 - 10C sei
 - **10D** tre
- **D. 11** Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:
 - **11A** $t_{(3,2)}$
 - **11B** $t_{(1/2,1/3)}$
 - 11C $t_{(-2,-3)}$
 - 11D $-t_{(2,3)}$
- **D. 12** La convessità è invariante:
 - 12A per similitudini dirette ma non per tutte le similitudini
 - 12B per isometrie dirette ma non per tutte le isometrie
 - **12C** per isometrie ma non per similitudini
 - **12D** per similitudini
- **D. 13** L'insieme formato dall'identità e dalle simmetrie assiali
 - 13A non è chiuso rispetto alla composizione
 - 13B è un sottogruppo commutativo del gruppo delle isometrie
 - 13C è un sottogruppo non commutativo del gruppo delle isometrie
 - 13D ha elementi non dotati di inverso
- **D. 14** Sia *R* un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di *R* sia *R* sono:
 - 14A otto

- 14B una
- 14C due
- 14D quattro
- **D. 15** Il punto medio di un segmento è invariante
 - **15A** per similitudini dirette ma non per tutte le similitudini
 - **15B** per isometrie ma non per similitudini
 - **15C** per isometrie dirette ma non per tutte le isometrie
 - **15D** per similitudini
- **D. 16** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- 16A $\frac{\pi}{3}$
- **16B** $\frac{2\pi}{3}$
- **16C** $\frac{47}{3}$
- 16D $\frac{\pi}{6}$
- **D. 17** Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'
 - 17A non è un gruppo, qualsiasi sia M
 - 17B è un gruppo commutativo con più di un elemento, qualsiasi sia M
 - 17C è formato dalla sola identità, qualsiasi sia M
 - 17D nessuna delle altre risposte è esatta

10 Febbraio 2007

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58B59A60E - Numero d'Ordine 29

- **D. 1** Sia *R* un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di *R* sia *R* sono:
 - 1A una
 - 1B quattro
 - 1C otto
 - 1D due
- **D. 2** Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:
 - **2A** $r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$
 - **2B** $r_{(D,\alpha)} \circ r_{(D,\alpha)}$
 - **2C** $r_{(D,\frac{4}{6}\pi)}$
 - **2D** $r_{(D,\frac{3}{2}\pi)}$
- **D. 3** Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:
 - 3A tre
 - 3B una
 - 3C zero
 - 3D sei
- **D. 4** Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:
 - **4A** una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti
 - **4B** una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti
 - **4C** sempre una simmetria assiale
 - **4D** sempre una rotazione (eventualmente nulla)
- **D. 5** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k > 0. Allora $h_{(P,k)}^{-1}$ è uguale a:
 - **5A** $h_{(P^{-1},k^{-1})}$
 - **5B** $h_{(P,-k)}$
 - **5C** $h_{(-P,k)}$

5D
$$h_{(P,k^{-1})}$$

- **D. 6** Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'
 - **6A** è formato dalla sola identità, qualsiasi sia *M*
 - **6B** è un gruppo commutativo con più di un elemento, qualsiasi sia M
 - 6C nessuna delle altre risposte è esatta
 - **6D** non è un gruppo, qualsiasi sia M
- **D. 7** Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:
 - **7A** $-t_{(2,3)}$
 - **7B** $t_{(3,2)}$
 - **7C** $t_{(-2,-3)}$
 - **7D** $t_{(1/2,1/3)}$
- **D. 8** Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_{\mathbf{v}} \circ f)$ é:

- **8A** il punto (1, 1)
- **8B** il punto (2, -1)
- **8C** il punto (-1,6)
- **8D** il punto (0,5)
- **D. 9** La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:

9A

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

9B

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

9C

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

9D

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

D. 10 Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r: -4x+2y+1=0$$

r' : 2x - y + 1 = 0

allora $s_r \circ s_{r'}$ è uguale a:

- 10A l'identità
- 10B una rotazione non nulla
- **10C** una traslazione non nulla
- 10D una simmetria assiale
- **D. 11** La convessità è invariante:
 - 11A per isometrie dirette ma non per tutte le isometrie
 - 11B per similitudini
 - 11C per similitudini dirette ma non per tutte le similitudini
 - 11D per isometrie ma non per similitudini
- **D. 12** L'insieme formato dall'identità e dalle simmetrie assiali
 - 12A è un sottogruppo commutativo del gruppo delle isometrie
 - 12B non è chiuso rispetto alla composizione
 - **12C** ha elementi non dotati di inverso
 - 12D è un sottogruppo non commutativo del gruppo delle isometrie
- **D. 13** La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :
 - 13A è una isometria inversa
 - 13B è una simmetria rispetto ad un punto
 - 13C è una similitudine ma non un'isometria
 - 13D non è una trasformazione geometrica
- **D. 14** Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia $t_{\mathbf{v}}$ la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_{\mathbf{v}}$ è:

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 1
\end{pmatrix}$$

$$\left(\begin{array}{ccc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 0 & 1 \end{array}\right)$$

- **D. 15** Il punto medio di un segmento è invariante
 - **15A** per isometrie ma non per similitudini
 - **15B** per isometrie dirette ma non per tutte le isometrie
 - 15C per similitudini
 - 15D per similitudini dirette ma non per tutte le similitudini
- **D. 16** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- **16A** $\frac{47}{3}$
- 16B $\frac{7}{5}$
- 16C
- **16D** $\frac{2\pi}{3}$
- **D. 17** L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:
 - **17A** è un gruppo commutativo
 - 17B non è chiuso rispetto all'addizione
 - **17C** è un gruppo non commutativo
 - 17D ha elementi non dotati di simmetrico

10 Febbraio 2007

SSIS del Lazio

Trasformazioni geometriche 1 per A047 e A048

Codice Compito: 57A58B59B60A - Numero d'Ordine 30

D. 1 Siano s_r e $s_{r'}$ le simmetrie rispetto alle rette r e r' di equazioni:

$$r: -4x+2y+1=0$$

 $r': 2x-y+1=0$

$$r' : 2x - y + 1 = 0$$

allora $s_r \circ s_{r'}$ è uguale a:

- **1A** una traslazione non nulla
- 1B una rotazione non nulla
- 1C l'identità
- 1D una simmetria assiale
- **D. 2** Indichiamo con $h_{(P,k)}$ l'omotetia di centro il punto P e rapporto k > 0. Allora $h_{(P,k)}^{-1}$ è uguale a:
 - **2A** $h_{(P^{-1},k^{-1})}$
 - **2B** $h_{(P,k^{-1})}$
 - $h_{(P,-k)}$ **2C**
 - **2D** $h_{(-P,k)}$
- **D. 3** La convessità è invariante:
 - **3A** per isometrie dirette ma non per tutte le isometrie
 - **3B** per isometrie ma non per similitudini
 - **3C** per similitudini
 - **3D** per similitudini dirette ma non per tutte le similitudini
- **D. 4** Sia T un triangolo scaleno contenuto in un piano π . Le similitudini del piano π tali che l'immagine di T sia T sono:
 - **4A** tre
 - **4B** sei
 - **4C** una
 - **4D** zero
- **D. 5** Sia R un rettangolo avente due lati di lunghezza doppia degli altri due. Le isometrie del piano tali che l'immagine di R sia R sono:
 - **5A** otto
 - 5B quattro
 - **5**C una

D. 6 L'insieme formato dall'identità e dalle simmetrie assiali

6A non è chiuso rispetto alla composizione

6B è un sottogruppo non commutativo del gruppo delle isometrie

6C ha elementi non dotati di inverso

6D è un sottogruppo commutativo del gruppo delle isometrie

D. 7 Indichiamo con $t_{(h,k)}$ la traslazione del vettore $\mathbf{v} = (h,k)$. Allora $t_{(2,3)}^{-1}$ è uguale a:

7A $-t_{(2,3)}$

7B $t_{(1/2,1/3)}$

7C $t_{(-2,-3)}$

7D $t_{(3,2)}$

D. 8 Sia M un sottoinsieme di un piano π . Sia T' insieme delle isometrie del piano tali che l'immagine di M sia M stesso. Allora T'

8A nessuna delle altre risposte è esatta

8B è formato dalla sola identità, qualsiasi sia *M*

8C non è un gruppo, qualsiasi sia *M*

8D è un gruppo commutativo con più di un elemento, qualsiasi sia M

D. 9 La rotazione intorno ad un punto in senso orario dell'angolo di ampiezza 5π :

9A non è una trasformazione geometrica

9B è una similitudine ma non un'isometria

9C è una isometria inversa

9D è una simmetria rispetto ad un punto

D. 10 Sia t_v la traslazione del vettore

 $\mathbf{v} = (-1,3)$ e sia f l'isometria associata alla matrice

$$\left(\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Allora l'immagine dell'origine attraverso l'isometria $(t_{\mathbf{v}} \circ f)$ é:

10A il punto (0,5)

10B il punto (2, -1)

10C il punto (-1,6)

10D il punto (1, 1)

D. 11 La matrice associata alla simmetria rispetto al punto 0 = (0.0) è:

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

11B

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

11C

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

11D

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

D. 12 Indichiamo con $r_{D,\alpha}$ la rotazione intorno a D dell'angolo $\alpha = \frac{2}{3}\pi$ in senso antiorario. Allora $r_{(D,\alpha)}^{-1}$ è uguale a:

12A
$$r_{(D,\alpha)} \circ r_{(D,\alpha)} \circ r_{(D,\alpha)}$$

12B
$$r_{(D,\alpha)} \circ r_{(D,\alpha)}$$

12C
$$r_{(D,\frac{4}{6}\pi)}$$

12D
$$r_{(D,\frac{3}{2}\pi)}$$

D. 13 Siano date n rette che si intersecano in un punto. Si consideri una composizione f delle n simmetrie rispetto alle n rette. Allora f è:

13A sempre una simmetria assiale

una rotazione (eventualmente nulla) se n è pari e una simmetria assiale altrimenti

13C sempre una rotazione (eventualmente nulla)

13D una simmetria assiale se n è pari e una rotazione (eventualmente nulla) altrimenti

D. 14 Sia $r_{O,\alpha}$ la rotazione in senso antiorario di centro O di un angolo di ampiezza $\pi/4$ e sia $t_{\mathbf{v}}$ la traslazione del vettore $\mathbf{v} = (1,0)$. La matrice associata a $r_{O,\alpha} \circ t_{\mathbf{v}}$ è:

14A

$$\begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

14B

$$\left(\begin{array}{ccc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\
0 & 0 & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 0 & 1 \end{array}\right)$$

14D

$$\left(\begin{array}{ccc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 0 & 1 \end{array}\right)$$

- **D. 15** Il punto medio di un segmento è invariante
 - 15A per similitudini
 - **15B** per isometrie dirette ma non per tutte le isometrie
 - **15C** per isometrie ma non per similitudini
 - 15D per similitudini dirette ma non per tutte le similitudini
- **D. 16** La trasformazione geometrica associata alla matrice

$$\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- 16A $\frac{\pi}{3}$
- **16B** $\frac{27}{3}$
- 16C $\frac{\pi}{6}$
- 16D $\frac{4\pi}{3}$
- **D. 17** L'insieme dei numeri interi relativi divisibili per 3 con l'operazione di addizione:
 - 17A ha elementi non dotati di simmetrico
 - **17B** è un gruppo non commutativo
 - 17C è un gruppo commutativo
 - 17D non è chiuso rispetto all'addizione