- **D. 1** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **1A** np(1-p)
 - **1B** np
 - 1C p'
 - 1D $\frac{n}{n}$
- **D. 2** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - 2A $e^{-\lambda}$
 - $2B = \frac{1}{\lambda}$
 - **2**C λ*t*
 - $2D \frac{1}{\lambda t}$
- D. 3 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 3A $\frac{5!}{\binom{90}{5}}$
 - **3B** $\frac{5!}{90!}$
 - 3C $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - 3D $\frac{5!}{90^5}$
- **D. 4** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 4A Logicamente dipendenti
 - 4B Correlati positivamente
 - 4C Stocasticamente indipendenti
 - 4D Disgiunti
- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

- 5A 4
- $5B \qquad \frac{1}{2\pi}$
- $5C \quad \frac{1}{\sqrt{2\pi}}$
- **5D** 2
- **D. 6** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - $6A \lambda t$
 - **6B** $\frac{1}{\lambda t}$
 - 6C $e^{-\lambda}$
 - 6D $1 = e^{-\lambda t}$
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $7A \qquad \frac{1}{\sqrt{2\pi}}$
 - $7B \quad \frac{1}{2\pi}$
 - **7C** 0
 - 7D
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - **8A** λ*i*
 - **8B** $\frac{1}{\lambda t}$
 - 8C $\frac{1}{\lambda}$
 - 8D $e^{-\lambda}$
- D. 9 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni)
 - **9A** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **9B** $\frac{1}{10^3}$
 - $9C \qquad \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **9D** $\frac{3}{10}$

D. 10 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

10B
$$p^n$$

10C
$$np(1-p)$$

10D
$$\frac{n}{p}$$

D. 11 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

$$11A \qquad \left(\frac{1}{6}\right)^{10}$$

11B
$$1 - \left(\frac{5}{6}\right)^6$$

$$11C \quad \binom{10}{4} \left(\frac{1}{6}\right)^{10}$$

$$11D \quad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

D. 12 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?

$$12B \qquad \frac{1}{\sqrt{2\pi}}$$

$$12D \qquad \frac{1}{2\pi}$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

13C
$$\frac{1}{\sqrt{2\pi}}$$

13D
$$\frac{1}{\sqrt{\pi}}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

14C
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\frac{1}{6^2}$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]?}$

15A
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15B
$$\binom{6}{3} \frac{1}{6^3}$$

15C
$$1-\frac{20}{6^3}$$

15D
$$\frac{15}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$16A \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\frac{1}{10^3}$$

16C
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16D
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17A
$$1 - \left(\frac{2}{3}\right)^{13}$$

17B
$$\binom{13}{3} \frac{1}{3^{13}}$$

17C
$$\frac{1}{213}$$

17D
$$\frac{1}{\binom{13}{3}}$$

- D. 1 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 1A $\frac{5!}{90!}$
 - **1B** $\frac{5!}{\binom{90}{5}}$
 - 1C $\frac{5!}{90^5}$
 - 1D $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
- D. 2 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **2A** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **2B** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **2C** $\left(\frac{1}{6}\right)^{1}$
 - **2D** $1 \left(\frac{5}{6}\right)^6$
- **D. 3** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 3A Correlati positivamente
 - 3B Disgiunti
 - 3C Stocasticamente indipendenti
 - 3D Logicamente dipendenti
- **D. 4** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - 4A np
 - $4B \frac{1}{1}$
 - **4C** p
 - **4D** np(1-p)
- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?

- 5A (
- $\mathbf{5B} \quad \frac{1}{2\pi}$
- 5C
- **5D** $\frac{1}{\sqrt{2\pi}}$
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - **6A** 1
 - $\mathbf{6B} \quad \frac{1}{2\pi}$
 - 6C $\frac{1}{\sqrt{2\pi}}$
 - **6D** (
- **D. 7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $7A \qquad \frac{1}{\sqrt{2\pi}}$
 - 7B 2
 - 7C $\frac{1}{2\pi}$
 - 7D ·
- D. 8 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - **8A** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **8B** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - 8C $\frac{3}{10}$
 - **8D** $\frac{1}{10^3}$
- **D. 9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **9A** np
 - **9B** p^n
 - **9C** np(1-p)
 - **9D** $\frac{n}{p}$

D. 10 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

10A
$$e^{-\lambda t}$$

10C
$$\frac{1}{\lambda t}$$

10D
$$\frac{1}{\lambda}$$

D. 11 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

11A
$$e^{-\lambda t}$$

11B
$$1 - e^{-\lambda t}$$

11C
$$\frac{1}{\lambda_t}$$

D. 12 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$12A \qquad \frac{1}{\sqrt{\pi}}$$

$$12B \qquad \frac{1}{\sqrt{2\pi}}$$

D. 13 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

13A
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^{9}$$

13B
$$\frac{1}{6^2}$$

13C
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

13D
$$\binom{10}{2} \frac{1}{6^2} \binom{5}{6}$$

14A
$$1 - \frac{20}{6^3}$$

14B
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

14C
$$\frac{15}{6^3}$$

14D
$$\binom{6}{3} \frac{1}{6^3}$$

D. 15 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

15A
$$\frac{1}{10^3}$$

15B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

15C
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

15D
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

D. 16 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

$$16A \qquad \frac{1}{\lambda t}$$

16B
$$e^{-\lambda t}$$

16D
$$\frac{1}{\lambda}$$

17A
$$\frac{1}{\binom{13}{3}}$$

17B
$$1 - \left(\frac{2}{3}\right)^{13}$$

17C
$$\frac{1}{3^{13}}$$

17D
$$\binom{13}{3} \frac{1}{3^{13}}$$

Linguaggio dell'incertezza 2

Codice Compito: 57A58A59A60D - Numero d'Ordine 3

LEGENDA: per monete o dadi simmetrici si intende che la probabilità è uguale per ogni faccia. Nel caso dei dadi le 6 facce sono contrassegnate dai valori: 0,1,2,3,4,5.

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $1A \qquad \frac{1}{2\pi}$
 - **1B** 1
 - 1C $\frac{1}{\sqrt{2\tau}}$
 - **1D** 0
- **D. 2** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - $2A \qquad \frac{1}{\lambda}$
 - $2R e^{-\lambda}$
 - **2**C λ
 - 2D $\frac{1}{\lambda_1}$
- **D. 3** Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **3A** $1-\left(\frac{5}{6}\right)^6$
 - **3B** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - $3C \qquad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **3D** $\left(\frac{1}{6}\right)^1$
- **D. 4** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 4A Correlati positivamente
 - 4B Logicamente dipendenti
 - 4C Disgiunti
 - 4D Stocasticamente indipendenti
- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

$$5A \qquad \frac{1}{\sqrt{2\pi}}$$

- 5B
- 5C $\frac{1}{2\pi}$
- 5D
- **D. 6** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - $6A \frac{1}{\lambda t}$
 - 6B 2
 - **6C** $1 e^{-\lambda t}$
 - **6D** $e^{-\lambda}$
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 7A
 - 7B
 - 7C $\frac{1}{\sqrt{2\pi}}$
 - 7D $\frac{1}{2\pi}$
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - 8A $\frac{1}{\lambda}$
 - **8B** $\frac{1}{\lambda_1}$
 - 8C λt
 - 8D $e^{-\lambda}$
- D. 9 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - $9A \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **9B** $\frac{5!}{90!}$
 - **9C** $\frac{5!}{90^5}$
 - **9D** $\frac{5!}{\binom{90}{5}}$

D. 10 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

10A
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

10B
$$\frac{3}{10}$$

10C
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

10D
$$\frac{1}{10^3}$$

D. 11 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{n} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

11A
$$np(1-p)$$

11C
$$\frac{n}{p}$$

11D
$$p^n$$

D. 12 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_n^n = \binom{n}{n} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

12A
$$\frac{n}{p}$$

12B
$$p^n$$

12D
$$np(1-p)$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$13B \qquad \frac{1}{\sqrt{2\pi}}$$

13D
$$\frac{1}{\sqrt{\pi}}$$

D. 14 Qual è la probabilità di **almeno due** 5 nel lancio di 10 dadi simmetrici?

14A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$\frac{1}{6^2}$$

$$14C \quad \binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?

15A
$$1 - \frac{20}{6^3}$$

15B
$$\binom{6}{3} \frac{1}{6^3}$$

15C
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15D
$$\frac{15}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\frac{1}{10^2}$$

16C
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

17A
$$1 - \left(\frac{2}{3}\right)^{13}$$

17B
$$\frac{1}{3^{13}}$$

17C
$$\frac{1}{\binom{13}{2}}$$

17D
$$\binom{13}{3} \frac{1}{3^{13}}$$

LEGENDA: per monete o dadi simmetrici si intende che la probabilità è uguale per ogni faccia. Nel caso dei dadi le 6 facce sono contrassegnate dai valori: 0,1,2,3,4,5.

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 1A
 - **1B** (
 - 1C $\frac{1}{\sqrt{2\tau}}$
 - 1D $\frac{1}{2\pi}$
- **D. 2** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **2A** np(1-p)
 - **2B** p^n
 - 2C np
 - 2D $\frac{n}{n}$
- D. 3 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - $3A \qquad \binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **3B** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **3C** $\frac{3}{10}$
 - **3D** $\frac{1}{10^3}$
- **D. 4** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - $4A \frac{n}{t}$
 - **4B** p^n
 - 4C np
 - **4D** np(1-p)
- **D. 5** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - $5A \lambda t$

- $5B \frac{1}{\lambda}$
- 5C e^{-λ}
- **5D** $\frac{1}{\lambda_i}$
- D. 6 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **6A** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **6B** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **6C** $\left(\frac{1}{6}\right)^{10}$
 - **6D** $1-\left(\frac{5}{6}\right)^6$
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 7A (
 - **7B** $\frac{1}{\sqrt{27}}$
 - 7C
 - 7D $\frac{1}{2\pi}$
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 8A $\frac{1}{\sqrt{2\pi}}$
 - 8B 2
 - 8C 4
 - 8D $\frac{1}{2\pi}$
- D. 9 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - $9A \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **9B** $\frac{5!}{\binom{90}{5}}$
 - 9C $\frac{5!}{90^5}$
 - **9D** $\frac{5!}{90!}$

- **D. 10** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 10A Stocasticamente indipendenti
 - 10B Logicamente dipendenti
 - 10C Correlati positivamente
 - 10D Disgiunti
- **D. 11** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - 11A $\frac{1}{\sqrt{\pi}}$
 - **11B** 0
 - 11C
 - $11D \quad \frac{1}{\sqrt{2\pi}}$
- **D. 12** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - $12A \qquad \frac{1}{\lambda t}$
 - 12B $\frac{1}{\lambda}$
 - 12C $e^{-\lambda t}$
 - **12D** λ*t*
- **D. 13** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 13A $e^{-\lambda t}$
 - **13B** $1 e^{-\lambda t}$
 - 13C $\frac{1}{\lambda t}$
 - **13D** λ
- D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^9$$

14B
$$\frac{1}{6^2}$$

$$14C \quad \binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?

15A
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15B
$$\frac{15}{6^3}$$

15C
$$\binom{6}{3} \frac{1}{6^3}$$

15D
$$1 - \frac{20}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$16A \qquad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16C
$$\frac{1}{10^3}$$

16D
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17A
$$\frac{1}{3^{13}}$$

17B
$$\binom{13}{3} \frac{1}{3^{13}}$$

17C
$$\frac{1}{\binom{13}{3}}$$

17D
$$1 - \left(\frac{2}{3}\right)^{13}$$

- **D. 1** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 1A Logicamente dipendenti
 - 1B Correlati positivamente
 - 1C Disgiunti
 - 1D Stocasticamente indipendenti
- **D. 2** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - $2A p^n$
 - **2B** np(1-p)
 - 2C np
 - **2D** $\frac{n}{p}$
- D. 3 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - **3A** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **3B** $\frac{3}{10}$
 - 3C $\frac{1}{10^3}$
 - **3D** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
- **D. 4** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - **4A** λ
 - $4B \qquad \frac{1}{\lambda}$
 - $4C \frac{1}{\lambda t}$
 - aD $e^{-\lambda t}$
- **D. 5** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

- $5A \frac{1}{\lambda t}$
- **5B** *e*
- 5C 2
- 5D $\frac{1}{\lambda}$
- D. 6 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **6A** $1 \left(\frac{5}{6}\right)^6$
 - **6B** $\left(\frac{1}{6}\right)^{1}$
 - **6C** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **6D** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $7A \qquad \frac{1}{2\pi}$
 - **7B** 0
 - 7C $\frac{1}{\sqrt{2\pi}}$
 - 7D
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 8A $\frac{1}{2\pi}$
 - **8B** 0
 - 8C
 - 8D $\frac{1}{\sqrt{2\pi}}$
- **9. Nella** distribuzione del numero di successi su *n* prove, del processo Bernoulliano, data da $\frac{n^n}{n^n} \frac{(n) \cdot n^h}{n^n} \frac{1}{n^n} \frac{1}{n^$

 $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

- **9A** *p*
- **9B** np(1-p)
- 9C $\frac{n}{p}$
- **9D** np
- **D. 10** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

$$10A \qquad \frac{1}{2\pi}$$

$$10C \qquad \frac{1}{\sqrt{2\pi}}$$

D. 11 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

11A
$$\frac{5!}{90}$$

11B
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

11C
$$\frac{5!}{\binom{90}{5}}$$

11D
$$\frac{5!}{90!}$$

D. 12 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$12B \qquad \frac{1}{\sqrt{\pi}}$$

$$12C \quad \frac{1}{\sqrt{2\pi}}$$

D. 13 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

13A
$$1-e^{-\lambda t}$$

13B
$$e^{-\lambda t}$$

13D
$$\frac{1}{\lambda t}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\frac{1}{6^2}$$

14B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

14C
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?

15A
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15B
$$1 - \frac{20}{6^3}$$

15C
$$\binom{6}{3} \frac{1}{6^3}$$

15D
$$\frac{15}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

$$16B \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

$$16C \quad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16D
$$\frac{1}{10^3}$$

17A
$$\binom{13}{3} \frac{1}{3^{13}}$$

17B
$$1 - \left(\frac{2}{3}\right)^{13}$$

17C
$$\frac{1}{\binom{13}{2}}$$

17D
$$\frac{1}{3^{13}}$$

- D. 1 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - 1A $\frac{1}{10^3}$
 - $\mathbf{1B} \qquad \binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - 1C $\frac{3}{10}$
 - **1D** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
- **D. 2** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - **2A** $1 e^{-\lambda t}$
 - **2B** λ
 - 2C $\frac{1}{\lambda}$
 - **2D** $e^{-\lambda t}$
- **D. 3** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - $3\Delta e^{-\lambda t}$
 - 3B
 - **3**C λ
 - **3D** $\frac{1}{\lambda t}$
- **D. 4** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - **4A**
 - 4B $\frac{1}{\sqrt{2\tau}}$
 - 4C (
 - 4D $\frac{1}{\sqrt{\pi}}$
- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?

$$5A \qquad \frac{1}{\sqrt{2\tau}}$$

- 5B (
- 5C
- 5D $\frac{1}{2\pi}$
- **D. 6** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **6A** np
 - **6B** $\frac{n}{n}$
 - **6C** np(1-p)
 - **6D** p^{t}
- **D. 7** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - **7A** λ*i*
 - 7B
 - 7C $\frac{1}{\lambda t}$
 - 7D $e^{-\lambda t}$
- D. 8 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **8A** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **8B** $1 \left(\frac{5}{6}\right)^6$
 - **8C** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **8D** $\left(\frac{1}{6}\right)^1$
- **D. 9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **9A** np(1-p)
 - **9B** *np*
 - 9C $\frac{n}{n}$
 - 9D *p*
- **D. 10** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - **10A** 0

$$10B \qquad \frac{1}{\sqrt{2\pi}}$$

10C
$$\frac{1}{2\pi}$$

D. 11 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

11A
$$\frac{1}{2\pi}$$

$$11B \qquad \frac{1}{\sqrt{27}}$$

D. 12 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

12A
$$\frac{5!}{90!}$$

12B
$$\frac{5!}{90^5}$$

12C
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

12D
$$\frac{5!}{\binom{90}{5}}$$

- **D. 13** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 13A Disgiunti
 - 13B Stocasticamente indipendenti
 - 13C Correlati positivamente
 - 13D Logicamente dipendenti
- **D. 14** Qual è la probabilità di **almeno due** 5 nel lancio di 10

14A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$\frac{1}{6^2}$$

14C
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

14D
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?

15A
$$1 - \frac{20}{6^3}$$

15B
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15C
$$\binom{6}{3} \frac{1}{6^3}$$

15D
$$\frac{15}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$16A \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

$$16C \quad \frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16D
$$\frac{1}{10^3}$$

17A
$$1 - \left(\frac{2}{3}\right)^{12}$$

17B
$$\binom{13}{3} \frac{1}{3^{13}}$$

17C
$$\frac{1}{213}$$

17D
$$\frac{1}{\binom{13}{3}}$$

D. 1 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

$$1A \quad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

1B
$$\frac{5!}{90}$$

1C
$$\frac{5!}{\binom{90}{5}}$$

1D
$$\frac{5!}{90^5}$$

D. 2 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?

$$2\mathbf{B} \quad \frac{1}{\sqrt{2}}$$

$$2D \qquad \frac{1}{2\pi}$$

D. 3 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

$$3\mathbf{B} \qquad \frac{1}{\lambda t}$$

3C
$$e^{-\lambda}$$

3D
$$\frac{1}{\lambda}$$

- **D. 4** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 4A Correlati positivamente
 - 4B Stocasticamente indipendenti
 - 4C Logicamente dipendenti
 - 4D Disgiunti
- D. 5 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

5A
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

5B
$$\frac{3}{10}$$

5C
$$\frac{1}{10^3}$$

5D
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

D. 6 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?

$$6A \qquad \frac{1}{2\pi}$$

6B
$$\frac{1}{\sqrt{2\pi}}$$

D. 7 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

7A
$$e^{-\lambda}$$

$$7B \lambda t$$

7C
$$1-e^{-\lambda}$$

7D
$$\frac{1}{\lambda t}$$

D. 8 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

$$8A \lambda t$$

8B
$$\frac{1}{\lambda t}$$

8D
$$\frac{1}{\lambda}$$

D. 9 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

9A
$$np(1-p)$$

9C
$$p^n$$

9D
$$\frac{n}{p}$$

D. 10 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

$$10A \qquad \frac{1}{2\pi}$$

10D
$$\frac{1}{\sqrt{2\pi}}$$

D. 11 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{n} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

11A
$$p^n$$

11C
$$np(1-p)$$

11D
$$\frac{n}{p}$$

D. 12 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

$$12A \qquad \left(\frac{1}{6}\right)^{10}$$

12B
$$\binom{10}{4} \left(\frac{1}{6}\right)^1$$

$$12C \qquad 1 - \left(\frac{5}{6}\right)$$

12D
$$\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$13B \qquad \frac{1}{\sqrt{2\pi}}$$

13D
$$\frac{1}{\sqrt{\pi}}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

14C
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\frac{1}{6^2}$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?

15A
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15B
$$1 - \frac{20}{6^3}$$

15C
$$\binom{6}{3} \frac{1}{6^3}$$

15D
$$\frac{15}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$16A \qquad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

$$16C \quad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16D
$$\frac{1}{10^3}$$

17A
$$1 - \left(\frac{2}{3}\right)^{13}$$

17B
$$\binom{13}{3} \frac{1}{3^{13}}$$

17C
$$\frac{1}{213}$$

17D
$$\frac{1}{\binom{13}{3}}$$

- **D. 1** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - 1A $\frac{1}{\lambda t}$
 - 1B $e^{-\lambda t}$
 - 1C λ
 - 1D $\frac{1}{\lambda}$
- **D. 2** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_n^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - 2A np
 - $\mathbf{2B} \quad p^n$
 - **2C** np(1-p)
 - **2D** $\frac{n}{p}$
- D. 3 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **3A** $1 \left(\frac{5}{6}\right)^6$
 - **3B** $\left(\frac{1}{6}\right)^{\frac{1}{6}}$
 - $3C \quad \binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **3D** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
- **D. 4** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 4A $e^{-\lambda}$
 - **4B** λt
 - $4C \frac{1}{\lambda}$
 - **4D** $\frac{1}{\lambda t}$
- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 5A 1
 - $5B \qquad \frac{1}{2\pi}$
 - **5C** 0

- **5D** $\frac{1}{\sqrt{2}}$
- **D. 6** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - **6A** $1 e^{-\lambda t}$
 - $6R e^{-\lambda t}$
 - 6C $\frac{1}{\lambda_1}$
 - **6D** λ*t*
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $7A \frac{1}{2\pi}$
 - **7B** 0
 - **7C** 1
 - 7D $\frac{1}{\sqrt{2\pi}}$
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $8A \qquad \frac{1}{\sqrt{2\pi}}$
 - 8B $\frac{1}{2\pi}$
 - **8C** 2
 - 8D 4
- **D. 9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **9A** np(1-p)
 - **9B** *np*
 - 9C $\frac{n}{n}$
 - **9D** p'
- D. 10 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 10A $\frac{5!}{90!}$

10B
$$\frac{5!}{\binom{90}{5}}$$

$$10C \quad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

10D
$$\frac{5!}{90^5}$$

- **D. 11** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso so di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 11A Disgiunti
 - 11B Correlati positivamente
 - 11C Logicamente dipendenti
 - 11D Stocasticamente indipendenti
- D. 12 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

12A
$$\frac{1}{10^3}$$

12B
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12C
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12D
$$\frac{3}{10}$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

13C
$$\frac{1}{\sqrt{7}}$$

13D
$$\frac{1}{\sqrt{2\pi}}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^{9}$$

14C
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\frac{1}{6^2}$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?

15A
$$\binom{6}{3} \frac{1}{6^3}$$

15B
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15C
$$\frac{15}{6^3}$$

15D
$$1 - \frac{20}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$16A \qquad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16C
$$\frac{1}{10^3}$$

16D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17A
$$1 - \left(\frac{2}{3}\right)^{13}$$

17B
$$\frac{1}{313}$$

17C
$$\binom{13}{3} \frac{1}{3^{13}}$$

17D
$$\frac{1}{\binom{13}{3}}$$

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 1A
 - $1B \frac{1}{2\pi}$
 - 1C $\frac{1}{\sqrt{2\tau}}$
 - **1D** 0
- **D. 2** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - $2A e^{-\lambda t}$
 - **2B** $\frac{1}{\lambda t}$
 - 2C $\frac{1}{\lambda}$
 - $2D \lambda t$
- **D. 3** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 3A
 - $3B \qquad \frac{1}{\sqrt{2\pi}}$
 - 3C $\frac{1}{2\pi}$
 - **3D** 0
- D. 4 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - 4A $\left(\frac{1}{6}\right)^{10}$
 - **4B** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **4C** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **4D** $1-\left(\frac{5}{6}\right)^6$
- **D. 5** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - $6A e^{-\lambda i}$
 - 5B $\frac{1}{\lambda t}$
 - **5C** λt

- 5D $1 e^{-\lambda t}$
- **D. 6** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - **6A** λ*t*
 - **6B** $\frac{1}{\lambda_i}$
 - 6C $\frac{1}{\lambda}$
 - **6D** $e^{-\lambda}$
- **D. 7** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - 7A np
 - **7B** np(1-p)
 - 7C p^n
 - **7D** $\frac{n}{r}$
- **D. 8** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **8A** *np*
 - **8B** np(1-p)
 - 8C p'
 - **8D** $\frac{n}{L}$
- **D. 9** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 9A
 - 9B $\frac{1}{\sqrt{2\pi}}$
 - 9C $\frac{1}{2\pi}$
 - **9D** 2
- D. 10 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - $10A \qquad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$

10B
$$\frac{5!}{\binom{90}{5}}$$

10C
$$\frac{5!}{90!}$$

10D
$$\frac{5!}{90^5}$$

- **D. 11** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 11A Logicamente dipendenti
 - 11B Disgiunti
 - 11C Stocasticamente indipendenti
 - 11D Correlati positivamente
- D. 12 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

12A
$$\frac{1}{10^3}$$

12B
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12C
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12D
$$\frac{3}{10}$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$13B \qquad \frac{1}{\sqrt{2\pi}}$$

13C
$$\frac{1}{\sqrt{\pi}}$$

- **13D** 1
- D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\frac{1}{6^2}$$

14B
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14C
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

14D
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?

15A
$$\frac{15}{6^3}$$

15B
$$\binom{6}{3} \frac{1}{6^3}$$

15C
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15D
$$1 - \frac{20}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$16A \qquad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

$$16B \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16C
$$\frac{1}{10^3}$$

16D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

17A
$$\binom{13}{3} \frac{1}{3^{13}}$$

17B
$$\frac{1}{\binom{13}{3}}$$

17C
$$\frac{1}{3^{13}}$$

17D
$$1 - \left(\frac{2}{3}\right)^{13}$$

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $1A \qquad \frac{1}{\sqrt{2\pi}}$
 - **1B** 4
 - 1C $\frac{1}{2\pi}$
 - 1D 2
- **D. 2** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - $2A \qquad 1 e^{-\lambda t}$
 - $e^{-\lambda i}$
 - $2C \frac{1}{\lambda_i}$
 - **2D** λt
- D. 3 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 3A $\frac{5!}{90!}$
 - **3B** $\frac{5!}{\binom{90}{5}}$
 - 3C $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - 3D $\frac{5!}{90^5}$
- D. 4 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **4A** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **4B** $1-\left(\frac{5}{6}\right)^6$
 - **4C** $\binom{10}{4} \left(\frac{1}{6}\right)^1$
 - **4D** $\left(\frac{1}{6}\right)^1$
- **D. 5** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

- $5A \frac{n}{r}$
- 5B np
- 5C p'
- **5D** np(1-p)
- **D. 6** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **6A** np(1-p)
 - 6B
 - **6C** np
 - **6D** $\frac{n}{p}$
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $7A \qquad \frac{1}{\sqrt{2\pi}}$
 - **7B**
 - **7C** 0
 - 7D $\frac{1}{2\pi}$
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 8A (
 - 8B $\frac{1}{2\pi}$
 - 8C $\frac{1}{\sqrt{2\pi}}$
 - **8D** 1
- **D. 9** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - $9A \frac{1}{\lambda}$
 - 9B $\frac{1}{\lambda t}$
 - 9C $e^{-\lambda}$
 - **9D** λ
- **D. 10** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 10A λ

$$10B \qquad \frac{1}{\lambda t}$$

10C
$$\frac{1}{\lambda}$$

10D
$$e^{-\lambda t}$$

- **D. 11** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 11A Correlati positivamente
 - 11B Stocasticamente indipendenti
 - 11C Disgiunti
 - 11D Logicamente dipendenti
- D. 12 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

12A
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12B
$$\frac{1}{10^3}$$

12C
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12D
$$\frac{3}{10}$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$13B \qquad \frac{1}{\sqrt{7}}$$

$$13D \qquad \frac{1}{\sqrt{2\pi}}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^9$$

14B
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14C
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\frac{1}{6^2}$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?

15A
$$\frac{15}{6^3}$$

15B
$$\binom{6}{3} \frac{1}{6^3}$$

15C
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15D
$$1 - \frac{20}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16C
$$\frac{1}{10^3}$$

16D
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17A
$$\frac{1}{3^{13}}$$

17B
$$1 - \left(\frac{2}{3}\right)^{13}$$

17C
$$\frac{1}{\binom{13}{3}}$$

17D
$$\binom{13}{3} \frac{1}{3^{11}}$$