D. 1 Nella distribuzione del numero di successi su *n* prove, del processo Bernoulliano, data da

 $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su *n* prove?

- **1A** np(1-p)
- 1B np
- $1C p^n$
- **1D** $\frac{n}{p}$
- D. 2 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - **2A** $\frac{1}{10^3}$
 - **2B** $\frac{3}{10}$
 - $2C \qquad \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **2D** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
- D. 3 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - $3A \quad \binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **3B** $\left(\frac{1}{6}\right)^{10}$
 - $3C \quad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **3D** $1-\left(\frac{5}{6}\right)^6$
- **D. 4** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $4A \qquad \frac{1}{2\pi}$
 - 4B
 - 4C (
 - 4D $\frac{1}{\sqrt{2\pi}}$
- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

- **5A** 2
- **5B** $\frac{1}{21}$
- 5C 4
- 5D $\frac{1}{\sqrt{2\pi}}$
- D. 6 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - $6A \qquad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **6B** $\frac{5!}{90!}$
 - **6C** $\frac{5!}{90^5}$
 - **6D** $\frac{5!}{\binom{90}{5}}$
- **D. 7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $7A \qquad \frac{1}{2\pi}$
 - 7B
 - **7C** 1
 - $7D \qquad \frac{1}{\sqrt{2\pi}}$
- **D. 8** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - $8A p^n$
 - **8B** np(1-p)
 - 8C -
 - **8D** n_j
- **D. 9** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - $9A \lambda t$
 - $\rho = \rho^{-\lambda t}$
 - 9C $\frac{1}{\lambda t}$
 - **9D** $1 e^{-\lambda t}$

- **D. 10** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 10A Correlati positivamente
 - 10B Logicamente dipendenti
 - 10C Disgiunti
 - 10D Stocasticamente indipendenti
- **D. 11** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - 11A $\frac{1}{\sqrt{2\pi}}$
 - **11B** 0
 - 11C
 - 11D $\frac{1}{\sqrt{\pi}}$
- **D. 12** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - 12A $\frac{1}{\lambda t}$
 - 12B $e^{-\lambda t}$
 - **12C** λ*t*
 - 12D $\frac{1}{\lambda}$
- **D. 13** Qual è la probabilità di **almeno due** 5 nel lancio di 10
 - **13A** $\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$
 - 13B $\frac{1}{6^2}$
 - $13C \quad \binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$
 - **13D** $1 \left(\frac{5}{6}\right)^{10} \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$
- **D. 14** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

- 14A $\frac{1}{\lambda}$
- $14B \qquad \frac{1}{\lambda}$
- 14C $e^{-\lambda}$
- **14D** λ*t*
- **D. 15** Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?
 - **15A** $3!\frac{1}{6}\left(\frac{5}{6}\right)^2$
 - **15B** $1 \frac{20}{6^3}$
 - 15C $\frac{15}{6^3}$
 - **15D** $\binom{6}{3} \frac{1}{6^3}$
- D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - **16A** $\frac{1}{10^3}$
 - **16B** $\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$
 - **16C** $\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **16D** $\frac{10}{40} \frac{9}{39} \frac{8}{38}$
- $\begin{array}{ll} \textbf{D. 17} & \text{Supponendo che nel gioco del calcio ogni squadra abbia} \\ & \text{probabilità } \frac{1}{3} \text{ di pareggiare, e che i risultati delle partite} \\ & \text{siano stocasticamente indipendenti, qual è la probabilità} \\ & \text{che in } 13 \text{ partite si ottengano 5 pareggi?} \end{array}$
 - **17A** $\frac{1}{\binom{13}{3}}$
 - 17B $\frac{1}{3^{13}}$
 - **17C** $1 \left(\frac{2}{3}\right)^1$
 - **17D** $\binom{13}{3} \frac{1}{3^{13}}$

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 1A
 - 1B (
 - 1C $\frac{1}{2\pi}$
 - $1D \qquad \frac{1}{\sqrt{2\pi}}$
- **D. 2** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - 2A $e^{-\lambda t}$
 - $2B \frac{1}{\lambda}$
 - **2**C λ
 - **2D** $\frac{1}{\lambda}$
- **D. 3** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 3Δ λ
 - $3B \frac{1}{2}$
 - $3C e^{-\lambda}$
 - **3D** $\frac{1}{\lambda}$
- **D. 4** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **4A** np
 - **4B** $\frac{n}{p}$
 - **4C** np(1-p)
 - **4D** p^n
- D. 5 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - $5A \qquad \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **5B** $\frac{3}{10}$

- **5**C $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
- **5D** $\frac{1}{10^3}$
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $6A \qquad \frac{1}{2\pi}$
 - 6B
 - 6C $\frac{1}{\sqrt{2\pi}}$
 - **6D** 4
- D. 7 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **7A** $1-\left(\frac{5}{6}\right)^6$
 - **7B** $\left(\frac{1}{6}\right)^1$
 - 7C $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **7D** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
- D. 8 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - **8A** $\frac{5!}{\binom{90}{5}}$
 - **8B** $\frac{5!}{90!}$
 - 8C $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **8D** $\frac{5!}{90^5}$
- **D. 9** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 9A Disgiunti
 - 9B Correlati positivamente
 - 9C Stocasticamente indipendenti

D. 10 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

10A
$$1 - e^{-\lambda t}$$

10B
$$e^{-\lambda t}$$

$$10C \qquad \frac{1}{\lambda t}$$

D. 11 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

11B
$$np(1-p)$$

11C
$$\frac{n}{p}$$

D. 12 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?

12C
$$\frac{1}{\sqrt{2\pi}}$$

$$12D \qquad \frac{1}{2\pi}$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$13C \quad \frac{1}{\sqrt{2\pi}}$$

13D
$$\frac{1}{\sqrt{\pi}}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\frac{1}{62}$$

14B
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14C
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^9$$

15A
$$1 - \frac{20}{6^3}$$

15B
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15C
$$\binom{6}{3} \frac{1}{6^3}$$

15D
$$\frac{15}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\frac{1}{10^3}$$

16C
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

 $\begin{array}{ll} \textbf{D. 17} & \text{Supponendo che nel gioco del calcio ogni squadra abbia} \\ & \text{probabilità } \frac{1}{3} \text{ di pareggiare, e che i risultati delle partite} \\ & \text{siano stocasticamente indipendenti, qual è la probabilità} \\ & \text{che in } 13 \text{ partite si ottengano } 5 \text{ pareggi?} \end{array}$

17A
$$\frac{1}{3^{13}}$$

17B
$$\frac{1}{\binom{13}{3}}$$

17C
$$1 - \left(\frac{2}{3}\right)^{13}$$

17D
$$\binom{13}{3} \frac{1}{3^{13}}$$

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 1A $\frac{1}{\sqrt{2\pi}}$
 - $1B \qquad \frac{1}{2\pi}$
 - **1C** 0
 - **1D** 1
- D. 2 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - $2A \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **2B** $\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **2C** $\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 39$
 - **2D** $\frac{1}{10^3}$
- **D. 3** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - 3A (
 - 3B
 - 3C $\frac{1}{\sqrt{2\pi}}$
 - 3D $\frac{1}{\sqrt{\pi}}$
- D. 4 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?
 - **4A** $\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$
 - **4B** $1 \left(\frac{5}{6}\right)^{10} \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^{9}$
 - 4C $\frac{1}{66}$
 - **4D** $\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$
- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 5A 4
 - $5B \qquad \frac{1}{\sqrt{2\pi}}$

- 5C $\frac{1}{2\pi}$
- 5D 2
- D. 6 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **6A** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **6B** $\left(\frac{1}{6}\right)^{10}$
 - **6C** $1 \left(\frac{5}{6}\right)^6$
 - **6D** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
- D. 7 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 7A $\frac{5!}{905}$
 - **7B** $\frac{5!}{90!}$
 - **7C** $\frac{5!}{\binom{90}{5}}$
 - **7D** $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
- **D. 8** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **8A** *np*
 - **8B** np(1-p)
 - 8C p
 - **8D** $\frac{n}{p}$
- **D. 9** Nella distribuzione del numero di successi su *n* prove, del processo Bernoulliano, data da $p_n^n = \binom{n}{n} p^h (1-p)^{n-h}$, qual è la varianza del numero di
 - $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **9A** np(1-p)
 - **9B** $\frac{n}{p}$
 - **9C** np
 - **9D** p^n

D. 10 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, **D. 14** Nella distribuzione del numero di successi al tempo t del $e^{-\frac{1}{2}(x^2)}$ quanto vale la varianza?

$$10A \qquad \frac{1}{2\pi}$$

$$10D \qquad \frac{1}{\sqrt{2\pi}}$$

- D. 11 Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi $A \in B$.
 - 11A Correlati positivamente
 - 11B Disgiunti
 - 11C Stocasticamente indipendenti
 - 11D Logicamente dipendenti
- D. 12 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

12A
$$\frac{1}{10^3}$$

12B
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12C
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12D
$$\frac{3}{10}$$

D. 13 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

$$13A \qquad 1 - e^{-\lambda t}$$

13B
$$\lambda t$$

13C
$$\frac{1}{\lambda t}$$

13D
$$e^{-\lambda t}$$

processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

14A
$$\frac{1}{\lambda t}$$

14B
$$\frac{1}{\lambda}$$

14C
$$e^{-\lambda t}$$

è la probabilità di ottenere **D. 15** Qual somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?

15A
$$\binom{6}{3} \frac{1}{6^3}$$

15B
$$1 - \frac{20}{6^3}$$

15C
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15D
$$\frac{15}{6^3}$$

D. 16 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t)=\frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

16A
$$e^{-\lambda}$$

$$16B \quad \frac{1}{\lambda}$$

16C
$$\frac{1}{\lambda}$$

17A
$$\frac{1}{\binom{13}{2}}$$

17B
$$1 - \left(\frac{2}{3}\right)^{13}$$

17C
$$\frac{1}{3^{13}}$$

17D
$$\binom{13}{3} \frac{1}{3^{13}}$$

- **D. 1** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 1A Logicamente dipendenti
 - 1B Stocasticamente indipendenti
 - 1C Correlati positivamente
 - 1D Disgiunti
- **D. 2** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - $2A \lambda t$
 - **2B** $e^{-\lambda}$
 - $2C \frac{1}{\lambda}$
 - 2D $1-e^{-\lambda}$
- - **3A** $1-\frac{20}{6^3}$
 - **3B** $3!\frac{1}{6}\left(\frac{5}{6}\right)^{\frac{1}{2}}$
 - 3C $\frac{15}{6^3}$
 - **3D** $\binom{6}{3} \frac{1}{6^3}$
- **D. 4** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - 4A $\frac{n}{n}$
 - $\mathbf{AR} \quad nn(1-n)$
 - 4C np
 - **4D** *p*
- D. 5 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

- **5A** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
- **5B** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
- **5C** $\frac{1}{10^3}$
- **5D** $\frac{3}{10}$
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - **6A** 0
 - $\mathbf{6B} \quad \frac{1}{\sqrt{2\pi}}$
 - 6C $\frac{1}{2\pi}$
 - 6D
- **D. 7** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 7A $\frac{1}{\lambda}$
 - $7B \frac{1}{\lambda}$
 - 7C λ*t*
 - 7D α-λ
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $8A \qquad \frac{1}{2\pi}$
 - **8B** 1
 - **8C** 0
 - 8D $\frac{1}{\sqrt{2\pi}}$
- **D. 9** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $9A \qquad \frac{1}{\sqrt{2\pi}}$
 - 9B
 - 9C 2
 - 9D $\frac{1}{2\pi}$
- D. 10 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

$$10A \qquad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

10B
$$1 - \left(\frac{5}{6}\right)^6$$

10C
$$\binom{10}{4} \left(\frac{1}{6}\right)^{10}$$

10D
$$\left(\frac{1}{6}\right)^{10}$$

D. 11 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{n} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

11A
$$np(1-p)$$

11C
$$p^n$$

D. 12 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

12A
$$e^{-\lambda t}$$

12B
$$\frac{1}{\lambda}$$

12C
$$\frac{1}{\lambda}$$

12D
$$\lambda t$$

D. 13 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

13A
$$\frac{5!}{90!}$$

13B
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

13C
$$\frac{5!}{\binom{90}{5}}$$

13D
$$\frac{5!}{905}$$

D. 14 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

14A
$$\frac{1}{\sqrt{2\pi}}$$

14C
$$\frac{1}{\sqrt{\pi}}$$

D. 15 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

15A
$$1 - \left(\frac{5}{6}\right)^{10} - \binom{10}{1} \frac{1}{6} \left(\frac{5}{6}\right)^{9}$$

15B
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15C
$$\frac{1}{6^2}$$

15D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{1}{10^3}$$

$$16B \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

$$16C \quad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

17A
$$\binom{13}{3} \frac{1}{3^{13}}$$

17B
$$\frac{1}{3^{13}}$$

17C
$$\frac{1}{\binom{13}{3}}$$

17D
$$1 - \left(\frac{2}{3}\right)^{13}$$

- **D. 1** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - 1A $\frac{1}{\sqrt{5}}$
 - 1B
 - 1C $\frac{1}{\sqrt{2\tau}}$
 - **1D** 0
- D. 2 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - $2A \qquad \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **2B** $\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$
 - **2C** $\frac{1}{10^3}$
 - **2D** $\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
- **D. 3** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 3A
 - **3B** 0
 - $3C \quad \frac{1}{\sqrt{2\tau}}$
 - 3D $\frac{1}{2\pi}$
- D. 4 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **4A** $1-\left(\frac{5}{6}\right)^6$
 - **4B** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **4C** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **4D** $\left(\frac{1}{6}\right)^{1}$
- **D. 5** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

5A
$$np(1-p)$$

- **5B** *p*
- 5C -
- 5D n
- **D. 6** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **6A** np(1-p)
 - **6B** $\frac{n}{n}$
 - **6C** p^n
 - **6D** n₁
- D. 7 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 7A $\frac{5!}{90^5}$
 - **7B** $\frac{5!}{90!}$
 - 7C $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **7D** $\frac{5!}{\binom{90}{5}}$
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 8A (
 - $8B \qquad \frac{1}{2\pi}$
 - 8C $\frac{1}{\sqrt{2\pi}}$
 - 8D
- **D. 9** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 9A
 - **9B** $\frac{1}{2\pi}$
 - 9C $\frac{1}{\sqrt{2\pi}}$
 - 9D
- **D. 10** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

10B
$$\frac{1}{2}$$

10C
$$e^{-\lambda t}$$

10D
$$1 - e^{-\lambda}$$

- **D. 11** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 11A Correlati positivamente
 - 11B Disgiunti
 - 11C Logicamente dipendenti
 - 11D Stocasticamente indipendenti
- D. 12 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

12A
$$\frac{1}{10^3}$$

12B
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12C
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12D
$$\frac{3}{10}$$

D. 13 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

13A
$$\frac{1}{\lambda}$$

13B
$$\frac{1}{\lambda}$$

13D
$$e^{-\lambda t}$$

D. 14 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

14B
$$e^{-\lambda t}$$

14C
$$\frac{1}{\lambda t}$$

14D
$$\frac{1}{2}$$

D. 15 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

15A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

15C
$$\frac{1}{6^2}$$

15D
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 16 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?

16A
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

16B
$$1 - \frac{20}{6^3}$$

16C
$$\frac{15}{6^3}$$

16D
$$\binom{6}{3} \frac{1}{6^3}$$

17A
$$\binom{13}{3} \frac{1}{3^{13}}$$

17B
$$1 - \left(\frac{2}{3}\right)^{13}$$

17C
$$\frac{1}{\binom{13}{3}}$$

17D
$$\frac{1}{3^{13}}$$

D. 1 Nella distribuzione del numero di successi su *n* prove, del processo Bernoulliano, data da $p_n^n = \binom{n}{2} p^h (1-p)^{n-h}$ qual è la media del numero di

 $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

- 1A p
- **1B** *np*
- **1C** np(1-p)
- **1D** $\frac{n}{p}$
- D. 2 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?
 - $2A \qquad \frac{1}{6^2}$
 - **2B** $1 \left(\frac{5}{6}\right)^{10} \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^{9}$
 - $2C \qquad \binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^2$
 - **2D** $\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$
- **D. 3** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 3A $e^{-\lambda t}$
 - **3B** $\frac{1}{\lambda t}$
 - 3C $1-e^{-\lambda}$
 - **3D** λ
- **D. 4** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - $4A \frac{n}{r}$
 - **4B** p^n
 - 4C n₁
 - **4D** np(1-p)
- D. 5 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **5A** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **5B** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **5C** $\left(\frac{1}{6}\right)^{1}$

- **5D** $1 \left(\frac{5}{6}\right)^6$
- D. 6 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - **6A** $\frac{3}{10}$
 - **6B** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **6C** $\frac{1}{10^3}$
 - **6D** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
- **D. 7** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 7A $\frac{1}{\lambda}$
 - 7B $e^{-\lambda}$
 - 7C $\frac{1}{\lambda t}$
 - 7D 2
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - **8A**
 - 8B $\frac{1}{\sqrt{2\pi}}$
 - 8C (
 - 8D $\frac{1}{2\pi}$
- **D. 9** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 9A
 - $9B \qquad \frac{1}{\sqrt{2\pi}}$
 - **9C** (
 - 9D $\frac{1}{2\pi}$
- **D. 10** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

$$10A \qquad \frac{1}{\sqrt{2\pi}}$$

$$10B \qquad \frac{1}{2\pi}$$

D. 11 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

11A
$$\frac{5!}{\binom{90}{5}}$$

11B
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

11C
$$\frac{5!}{90^5}$$

11D
$$\frac{5!}{90!}$$

D. 12 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

12A
$$\lambda t$$

12B
$$e^{-\lambda t}$$

12C
$$\frac{1}{\lambda}$$

12D
$$\frac{1}{\lambda t}$$

- **D. 13** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 13A Logicamente dipendenti
 - 13B Correlati positivamente
 - 13C Disgiunti
 - 13D Stocasticamente indipendenti
- **D. 14** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$14C \quad \frac{1}{\sqrt{2\pi}}$$

$$14D \qquad \frac{1}{\sqrt{\pi}}$$

15A
$$\frac{15}{6^3}$$

15B
$$\binom{6}{3} \frac{1}{6^3}$$

15C
$$1 - \frac{20}{6^3}$$

15D
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\frac{1}{10^3}$$

16C
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17A
$$1 - \left(\frac{2}{3}\right)^{13}$$

17B
$$\frac{1}{\binom{13}{3}}$$

17C
$$\binom{13}{3} \frac{1}{3^{13}}$$

17D
$$\frac{1}{3^{13}}$$

- **D. 1** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - 1A $\frac{n}{p}$
 - **1B** *p*
 - 1C np
 - **1D** np(1-p)
- **D. 2** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $2A \qquad \frac{1}{\sqrt{2\pi}}$
 - $2B \qquad \frac{1}{2\pi}$
 - 2C 1
 - **2D** 0
- D. 3 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 3A $\frac{5!}{90!}$
 - 3B $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - 3C $\frac{5!}{90!}$
 - **3D** $\frac{5!}{\binom{90}{5}}$
- **D. 4** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 4A $e^{-\lambda}$
 - **4B** λt
 - $4C = \frac{1}{24}$
 - **4D** $1 e^{-\lambda}$
- D. 5 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **5A** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **5B** $\left(\frac{1}{6}\right)^1$

- **5C** $1-\left(\frac{5}{6}\right)^6$
- **5D** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $6A \qquad \frac{1}{2\pi}$
 - **6B** (
 - 6C
 - **6D** $\frac{1}{\sqrt{2\pi}}$
- **D. 7** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **7A** *np*
 - **7B** p^n
 - **7C** np(1-p)
 - **7D** $\frac{n}{p}$
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - 8A $\frac{1}{\lambda}$
 - λ 8B λι
 - 8C $e^{-\lambda t}$
 - **8D** $\frac{1}{\lambda t}$
- **D. 9** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 9A 2
 - 9B $\frac{1}{\sqrt{2\pi}}$
 - 9C 4
 - 9D $\frac{1}{2\pi}$
- **D. 10** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.

- 10A Stocasticamente indipendenti
- 10B Logicamente dipendenti
- 10C Correlati positivamente
- 10D Disgiunti
- D. 11 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - 11A $\frac{3}{10}$
 - **11B** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **11C** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - 11D $\frac{1}{10^3}$
- **D. 12** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - $12A \qquad \frac{1}{\lambda t}$
 - 12B $e^{-\lambda t}$
 - 12C $\frac{1}{\lambda}$
 - **12D** λ
- **D. 13** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - 13A
 - $13B \qquad \frac{1}{\sqrt{2\pi}}$
 - 13C (
 - 13D $\frac{1}{\sqrt{\pi}}$
- D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

14C
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\frac{1}{6^2}$$

- D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?
 - 15A $\frac{15}{6^3}$
 - **15B** $3!\frac{1}{6}\left(\frac{5}{6}\right)^2$
 - **15C** $\binom{6}{3} \frac{1}{6^3}$
 - **15D** $1 \frac{20}{6^3}$
- D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - 16A $\frac{1}{10^3}$
 - **16B** $\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$
 - $16C \quad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **16D** $\frac{10}{40} \frac{9}{39} \frac{8}{38}$
- **D. 17** Supponendo che nel gioco del calcio ogni squadra abbia probabilità $\frac{1}{3}$ di pareggiare, e che i risultati delle partite siano stocasticamente indipendenti, qual è la probabilità che in 13 partite si ottengano 5 pareggi?
 - 17A $\frac{1}{3^{13}}$
 - **17B** $\frac{1}{\binom{13}{3}}$
 - **17C** $1 \left(\frac{2}{3}\right)^{13}$
 - **17D** $\binom{13}{3} \frac{1}{3^{13}}$

- D. 1 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 1A $\frac{5!}{\binom{90}{5}}$
 - 1B $\frac{5!}{90^5}$
 - 1C $\frac{5!}{90!}$
 - 1D $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
- **D. 2** Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - $2A \qquad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - $2\mathbf{B} \qquad \left(\frac{1}{6}\right)^{10}$
 - **2C** $1-\left(\frac{5}{6}\right)^6$
 - **2D** $\binom{10}{4} \left(\frac{1}{6}\right)^1$
- **D. 3** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $3A \qquad \frac{1}{2\pi}$
 - $3B \qquad \frac{1}{\sqrt{2\pi}}$
 - **3C** 1
 - **3D** 0
- **D. 4** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 4A Stocasticamente indipendenti
 - 4B Logicamente dipendenti
 - 4C Correlati positivamente
 - 4D Disgiunti

- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $5A \qquad \frac{1}{\sqrt{2\pi}}$
 - 5B ·
 - **5C** 2
 - 5D $\frac{1}{2\pi}$
- **D. 6** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_n^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **6A** np(1-p)
 - 6B
 - **6C** p^n
 - **6D** np
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $7A \qquad \frac{1}{\sqrt{2\pi}}$
 - **7B** 0
 - 7C
 - **7D** $\frac{1}{2\pi}$
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 8A $e^{-\lambda t}$
 - 8B $\frac{1}{\lambda}$
 - 8C $\frac{1}{\lambda t}$
 - **8D** λ
- **D. 9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - 9A np
 - **9B** p^n
 - **9C** np(1-p)
 - 9D $\frac{n}{p}$

D. 10 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

10A
$$e^{-\lambda t}$$

10C
$$1 - e^{-\lambda}$$

10D
$$\frac{1}{\lambda t}$$

D. 11 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

11B
$$\frac{1}{\lambda_1}$$

11C
$$e^{-\lambda t}$$

11D
$$\frac{1}{\lambda}$$

D. 12 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

12A
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12B
$$\frac{1}{10^2}$$

12C
$$\frac{3}{10}$$

12D
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

13C
$$\frac{1}{\sqrt{2\pi}}$$

13D
$$\frac{1}{\sqrt{\pi}}$$

D. 14 Qual è la probabilità di **almeno due** 5 nel lancio di 10 dadi simmetrici?

14A
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^9$$

14B
$$\frac{1}{6^2}$$

$$14C \quad \binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?

15A
$$\frac{15}{6^3}$$

15B
$$\binom{6}{3} \frac{1}{6^3}$$

15C
$$1 - \frac{20}{6^3}$$

15D
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16B
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

$$16C \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16D
$$\frac{1}{10^3}$$

17A
$$1 - \left(\frac{2}{3}\right)^{13}$$

17B
$$\binom{13}{3} \frac{1}{3^{13}}$$

17C
$$\frac{1}{\binom{13}{3}}$$

17D
$$\frac{1}{3^{13}}$$

- **D. 1** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 1A Stocasticamente indipendenti
 - 1B Disgiunti
 - 1C Logicamente dipendenti
 - 1D Correlati positivamente
- D. 2 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

2A
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

2B
$$\frac{1}{10^3}$$

2C
$$\frac{3}{16}$$

2D
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

D. 3 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?

$$3A \qquad \frac{1}{2\pi}$$

3C
$$\frac{1}{\sqrt{2\pi}}$$

- **3D** 0
- **D. 4** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

4B
$$\frac{1}{\sqrt{2\tau}}$$

4C
$$\frac{1}{\sqrt{\pi}}$$

- **4D** 0
- **D. 5** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

- $5A \frac{1}{2}$
- $5B \lambda t$
- $5C \frac{1}{\lambda t}$
- 5D α-λ
- вр е ...
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $6A \qquad \frac{1}{\sqrt{2\pi}}$
 - 6B
 - 6C (
 - **6D** $\frac{1}{2\pi}$
- **D. 7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 7A 2
 - 7B $\frac{1}{\sqrt{2\pi}}$
 - 7C
 - **7D** $\frac{1}{2\pi}$
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 8A $1-e^{-\lambda t}$
 - **8B** $\frac{1}{\lambda t}$
 - $8C e^{-\lambda t}$
 - 8D λt
- **0.9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **9A** *np*
 - **9B** np(1-p)
 - 9C 1
 - 9D $\frac{n}{n}$
- **D. 10** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

10A
$$np(1-p)$$

10D
$$\frac{n}{t}$$

D. 11 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

11A
$$\binom{10}{4} \left(\frac{1}{6}\right)^{10}$$

$$\mathbf{11B} \quad \left(\frac{1}{6}\right)^{10}$$

11C
$$\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

11D
$$1 - \left(\frac{5}{6}\right)^6$$

D. 12 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

12A
$$\frac{5!}{90!}$$

12B
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

12C
$$\frac{5!}{90^5}$$

12D
$$\frac{5!}{\binom{90}{5}}$$

D. 13 Qual è la probabilità di **almeno due** 5 nel lancio di 10 dadi simmetrici?

$$13A \qquad \binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)$$

13B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

13C
$$\frac{1}{6^2}$$

13D
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 14 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?

14A
$$1 - \frac{20}{6^3}$$

14B
$$\binom{6}{3} \frac{1}{6^3}$$

14C
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

14D
$$\frac{15}{6^3}$$

D. 15 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

15A
$$\frac{1}{\lambda}$$

15B
$$\lambda t$$

15C
$$\frac{1}{\lambda t}$$

15D
$$e^{-\lambda}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$16A \qquad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16C
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16D
$$\frac{1}{10^3}$$

17A
$$\binom{13}{3} \frac{1}{3^{13}}$$

17B
$$\frac{1}{\binom{13}{3}}$$

17C
$$1 - \left(\frac{2}{3}\right)^{11}$$

17D
$$\frac{1}{3^{13}}$$

- D. 1 Qual è la probabilità di **almeno due** 5 nel lancio di 10 dadi simmetrici?
 - 1A $\frac{1}{6^2}$
 - **1B** $1 \left(\frac{5}{6}\right)^{10} \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^{9}$
 - 1C $\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)$
 - **1D** $\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^2$
- **D. 2** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $2A \qquad \frac{1}{\sqrt{2\pi}}$
 - **2B** 0
 - $2C \qquad \frac{1}{2\pi}$
 - **2D** 1
- **D. 3** Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?
 - 3A $\frac{15}{6^3}$
 - **3B** $3!\frac{1}{6}\left(\frac{5}{6}\right)$
 - 3C $\binom{6}{3} \frac{1}{6}$
 - **3D** $1-\frac{20}{6^3}$
- D. 4 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - **4A** $\frac{5!}{\binom{90}{5}}$
 - $\mathbf{4B} \qquad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - 4C $\frac{5!}{90^5}$
 - **4D** $\frac{5!}{90!}$
- **D. 5** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

- **5A** np(1-p)
- 5B -
- p p^n
- **5D** *np*
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 6A
 - $\mathbf{6B} \qquad \frac{1}{\sqrt{2\pi}}$
 - 6C $\frac{1}{2\pi}$
 - **6D** 0
- **D. 7** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 7A Stocasticamente indipendenti
 - 7B Disgiunti
 - 7C Correlati positivamente
 - 7D Logicamente dipendenti
- **D. 8** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - 8A np
 - **8B** $\frac{n}{p}$
 - **8C** np(1-p)
 - 8D p'
- 9. Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **9A** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - 9B $\left(\frac{1}{6}\right)^{1}$
 - 9C $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **9D** $1 \left(\frac{5}{6}\right)^6$

- **D. 10** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - **10A** λ*t*
 - 10B $e^{-\lambda t}$
 - 10C $\frac{1}{\lambda}$
 - **10D** $\frac{1}{\lambda}$
- **D. 11** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 11A $\frac{1}{2\pi}$
 - 11B
 - 11C $\frac{1}{\sqrt{2\pi}}$
 - 11D 2
- **D. 12** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - $12A \qquad 1 e^{-\lambda t}$
 - 12B $e^{-\lambda i}$
 - 12C $\frac{1}{\lambda t}$
 - **12D** λ
- D. 13 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - **13A** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - 13B $\frac{3}{10}$
 - 13C $\frac{1}{10^3}$
 - **13D** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$

- **D. 14** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - **14A** λ*t*
 - 14B $e^{-\lambda t}$
 - 14C $\frac{1}{\lambda}$
 - 14D $\frac{1}{\lambda t}$
- **D. 15** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - 15A
 - $15B \qquad \frac{1}{\sqrt{2\pi}}$
 - 15C $\frac{1}{\sqrt{\pi}}$
 - 15D (
- D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - **16A** $\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **16B** $\frac{1}{10^3}$
 - **16C** $\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$
 - **16D** $\frac{10}{40} \frac{9}{39} \frac{8}{38}$
- **D. 17** Supponendo che nel gioco del calcio ogni squadra abbia probabilità $\frac{1}{3}$ di pareggiare, e che i risultati delle partite siano stocasticamente indipendenti, qual è la probabilità che in 13 partite si ottengano 5 pareggi?
 - 17A $\frac{1}{\binom{13}{3}}$
 - 17B $\frac{1}{3^{13}}$
 - 17C $\binom{13}{3} \frac{1}{3^{13}}$
 - **17D** $1 \left(\frac{2}{3}\right)^{13}$