D. 1 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$1A \qquad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

1B
$$\frac{1}{10^3}$$

1C
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3$$

1D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

D. 2 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

2A
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

$$\mathbf{2B} \quad \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

2C
$$\frac{1}{10^2}$$

2D
$$\frac{3}{10}$$

D. 3 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

$$3A \frac{1}{2}$$

3D
$$np(1-p)$$

D. 4 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$4\mathbf{B} \qquad \frac{1}{\sqrt{\pi}}$$

4D
$$\frac{1}{\sqrt{2\pi}}$$

- **D. 5** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 5A Logicamente dipendenti
 - 5B Correlati positivamente
 - 5C Stocasticamente indipendenti
 - 5D Disgiunti
- **D. 6** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

6A
$$e^{-\lambda}$$

6B
$$\frac{1}{\lambda}$$

6C
$$\frac{1}{\lambda}$$

D. 7 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

$$7A p^n$$

7B
$$\frac{n}{t}$$

7D
$$np(1-p)$$

D. 8 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

8A
$$\frac{5!}{90^5}$$

8B
$$\frac{5!}{90}$$

8C
$$\frac{5!}{\binom{90}{5}}$$

8D
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

D.9 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?

9C
$$\frac{1}{\sqrt{2\tau}}$$

9D
$$\frac{1}{2\pi}$$

D. 10 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

10A
$$e^{-\lambda t}$$

10C
$$\frac{1}{\lambda}$$

10D
$$\frac{1}{\lambda t}$$

D. 11 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

11A
$$1-e^{-\lambda t}$$

11C
$$\frac{1}{\lambda t}$$

11D
$$e^{-\lambda i}$$

D. 12 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

12A
$$1 - \left(\frac{5}{6}\right)^6$$

$$12B \qquad \left(\frac{1}{6}\right)^{10}$$

$$12C \quad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

12D
$$\binom{10}{4} \left(\frac{1}{6}\right)^{10}$$

D. 13 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?

$$13B \qquad \frac{1}{\sqrt{2\pi}}$$

$$13C \quad \frac{1}{2\pi}$$

D. 14 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

14C
$$\frac{1}{\sqrt{2\pi}}$$

14D
$$\frac{1}{2\pi}$$

D. 15 Qual è la probabilità di **almeno due** 5 nel lancio di 10 dadi simmetrici?

15A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15B
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15C
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

15D
$$\frac{1}{6^2}$$

D. 16 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?

16A
$$1 - \frac{20}{6^3}$$

16B
$$\frac{15}{6^3}$$

16C
$$\binom{6}{3} \frac{1}{6^3}$$

16D
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

17A
$$\frac{1}{\binom{13}{2}}$$

17B
$$1-\left(\frac{2}{3}\right)^1$$

17C
$$\frac{1}{3^{13}}$$

17D
$$\binom{13}{3} \frac{1}{3^{13}}$$

- **D. 1** Supponendo che nel gioco del calcio ogni squadra abbia probabilità $\frac{1}{3}$ di pareggiare, e che i risultati delle partite siano stocasticamente indipendenti, qual è la probabilità che in 13 partite si ottengano 5 pareggi?
 - $1A \qquad 1 \left(\frac{2}{3}\right)^{13}$
 - $\mathbf{1B} \qquad \frac{1}{\binom{13}{3}}$
 - 1C $\frac{1}{3^{13}}$
 - **1D** $\binom{13}{3} \frac{1}{3^{13}}$
- **D. 2** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $2A \qquad \frac{1}{\sqrt{2\pi}}$
 - 2B
 - **2C** 0
 - $2D \qquad \frac{1}{2\pi}$
- D. 3 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - **3A** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **3B** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - $3C \frac{1}{10^2}$
 - **3D** $\frac{3}{10}$
- **D. 4** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $4A \qquad \frac{1}{\sqrt{2\tau}}$
 - 4B 4
 - $4C \qquad \frac{1}{2\pi}$
 - **4D** 2

- **D. 5** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - $5A \qquad \frac{1}{\lambda t}$
 - **5B** $\frac{1}{\lambda}$
 - **5C** $e^{-\lambda t}$
 - **5D** λ
- **D. 6** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **6A** $\frac{n}{p}$
 - **6B** p'
 - **6C** np
 - **6D** np(1-p)
- D. 7 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - 7A $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **7B** $1-\left(\frac{5}{6}\right)^6$
 - **7C** $\left(\frac{1}{6}\right)^1$
 - **7D** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 8A
 - $8B \frac{1}{2\pi}$
 - 8C $\frac{1}{\sqrt{2\pi}}$
 - 8D (
- D. 9 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - **9A** $\frac{5!}{90^5}$
 - **9B** $\frac{5!}{\binom{90}{5}}$

$$9C \qquad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

9D
$$\frac{5!}{90!}$$

D. 10 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

10A
$$e^{-\lambda}$$

10B
$$\lambda t$$

10C
$$\frac{1}{\lambda}$$

10D
$$\frac{1}{\lambda}$$

D. 11 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_n^h = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

11A
$$\frac{n}{p}$$

11C
$$np(1-p)$$

11D
$$p^n$$

- **D. 12** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 12A Disgiunti
 - 12B Stocasticamente indipendenti
 - 12C Correlati positivamente
 - 12D Logicamente dipendenti
- **D. 13** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

13A
$$e^{-\lambda i}$$

13C
$$\frac{1}{\lambda t}$$

13D
$$1 - e^{-\lambda t}$$

D. 14 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

14C
$$\frac{1}{\sqrt{\pi}}$$

$$14D \qquad \frac{1}{\sqrt{2\pi}}$$

D. 15 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

15A
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15B
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15C
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^9$$

15D
$$\frac{1}{6^2}$$

D. 16 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?

16A
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

16B
$$1 - \frac{20}{6^3}$$

16C
$$\frac{15}{6^3}$$

16D
$$\binom{6}{3} \frac{1}{6^3}$$

D. 17 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

17A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17B
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17C
$$\frac{1}{10^3}$$

17D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

- **D. 1** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 1A Logicamente dipendenti
 - 1B Stocasticamente indipendenti
 - 1C Disgiunti
 - 1D Correlati positivamente
- **D. 2** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - $2A \frac{1}{\lambda}$
 - **2B** λ
 - 2C $\frac{1}{\lambda}$
 - **2D** $e^{-\lambda t}$
- **D. 3** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 3A $\frac{1}{\lambda t}$
 - $3B \lambda t$
 - $3C e^{-\lambda t}$
 - 3D 1 α-λ
- **D. 4** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - **4A**
 - $4B \qquad \frac{1}{\sqrt{2\pi}}$
 - 4C $\frac{1}{2\pi}$
 - **4D** 1
- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $5A \qquad \frac{1}{2\pi}$
 - $5B \qquad \frac{1}{\sqrt{2\pi}}$

- **5C** 2
- 5D
- D. 6 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **6A** $\left(\frac{1}{6}\right)^{10}$
 - **6B** $1-\left(\frac{5}{6}\right)^6$
 - **6C** $\binom{10}{4} \left(\frac{1}{6}\right)^1$
 - **6D** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
- **D. 7** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - $7A \frac{n}{p}$
 - **7B** np(1-p)
 - **7C** p
 - **7D** *np*
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 8Α λι
 - 8B $e^{-\lambda t}$
 - 8C $\frac{1}{\lambda}$
 - **8D** $\frac{1}{\lambda t}$
- **D. 9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **9A** *np*
 - 9B n
 - 9C $\frac{n}{p}$
 - **9D** np(1-p)
- **D. 10** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $10A \qquad \frac{1}{\sqrt{2\pi}}$

$$10B \qquad \frac{1}{2\pi}$$

D. 11 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

11A
$$\frac{5!}{\binom{90}{5}}$$

11B
$$\frac{5!}{90!}$$

11C
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

11D
$$\frac{5!}{90^5}$$

D. 12 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

12A
$$\frac{1}{10^3}$$

12B
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12C
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12D
$$\frac{3}{16}$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$13B \qquad \frac{1}{\sqrt{\pi}}$$

13D
$$\frac{1}{\sqrt{2\pi}}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^{9}$$

14C
$$\frac{1}{6^2}$$

14D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?

15A
$$\binom{6}{3} \frac{1}{6^3}$$

15B
$$1 - \frac{20}{6^3}$$

15C
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15D
$$\frac{15}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$16A \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16C
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16D
$$\frac{1}{10^3}$$

17A
$$\frac{1}{3^{13}}$$

17B
$$\binom{13}{3} \frac{1}{3^{13}}$$

17C
$$\frac{1}{\binom{13}{3}}$$

17D
$$1 - \left(\frac{2}{3}\right)^{13}$$

- **D. 1** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 1 Λ _α-λι
 - **1B** $1-e^{-\lambda t}$
 - 1C $\frac{1}{2}$
 - **1D** λ
- D. 2 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **2A** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **2B** $1-\left(\frac{5}{6}\right)^6$
 - **2C** $\left(\frac{1}{6}\right)^{\frac{1}{6}}$
 - **2D** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
- D. 3 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 3A $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - 3B $\frac{5!}{90^5}$
 - 3C $\frac{5!}{\binom{90}{5}}$
 - 3D $\frac{5!}{90!}$
- **D. 4** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 4A Correlati positivamente
 - 4B Stocasticamente indipendenti
 - 4C Logicamente dipendenti
 - 4D Disgiunti
- **D. 5** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

- 5A
- $5B \qquad \frac{1}{\sqrt{\tau}}$
- 5C (
- 5D $\frac{1}{\sqrt{2\pi}}$
- D. 6 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - **6A** $\frac{1}{10^3}$
 - **6B** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **6C** $\frac{3}{10}$
 - **6D** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 7A (
 - 7B $\frac{1}{\sqrt{2\pi}}$
 - 7C
 - **7D** $\frac{1}{2\pi}$
- **D. 8** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - 8A nj
 - 8B p^n
 - 8C $\frac{n}{n}$
 - **8D** np(1-p)
- **D. 9** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - $9A \qquad \frac{1}{\lambda t}$
 - 9B $\frac{1}{\lambda}$
 - 9C $e^{-\lambda}$

- **D. 10** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 10A $\frac{1}{\lambda t}$
 - **10B** λ*t*
 - 10C $e^{-\lambda t}$
 - 10D $\frac{1}{\lambda}$
- **D. 11** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **11A** np(1-p)
 - **11B** *np*
 - 11C p'
 - 11D $\frac{n}{p}$
- **D. 12** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 12A $\frac{1}{2\pi}$
 - 12B 1
 - 12C $\frac{1}{\sqrt{2\pi}}$
 - **12D** 0
- **D. 13** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $13A \qquad \frac{1}{\sqrt{2\pi}}$
 - $13B \qquad \frac{1}{2\pi}$
 - 13C 2
 - 13D 4
- D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?
 - **14A** $\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$

14B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

14C
$$\frac{1}{6^2}$$

14D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

- D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?
 - **15A** $\binom{6}{3} \frac{1}{6^3}$
 - 15B $\frac{15}{6^3}$
 - **15C** $3!\frac{1}{6}\left(\frac{5}{6}\right)^2$
 - **15D** $1 \frac{20}{6^3}$
- D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - $16A \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **16B** $\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - 16C $\frac{1}{10^3}$
 - **16D** $\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$
- **D. 17** Supponendo che nel gioco del calcio ogni squadra abbia probabilità $\frac{1}{3}$ di pareggiare, e che i risultati delle partite siano stocasticamente indipendenti, qual è la probabilità che in 13 partite si ottengano 5 pareggi?
 - 17A $\frac{1}{3^{13}}$
 - **17B** $\frac{1}{\binom{13}{3}}$
 - 17C $\binom{13}{3} \frac{1}{3^{13}}$
 - **17D** $1 \left(\frac{2}{3}\right)^{13}$

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 1A (
 - 1B
 - 1C $\frac{1}{\sqrt{21}}$
 - $1D \qquad \frac{1}{2\pi}$
- **D. 2** Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?
 - **2A** $\frac{15}{6^3}$
 - **2B** $\binom{6}{3} \frac{1}{6^3}$
 - $2C \qquad 3!\frac{1}{6}\left(\frac{5}{6}\right)$
 - **2D** $1-\frac{20}{6^3}$
- **D. 3** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 3A $\frac{1}{\lambda t}$
 - **3B** λ*i*
 - 3C α-λι
 - 3D $\frac{1}{\lambda}$
- **D. 4** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_n^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **4A** *np*
 - **4B** np(1-p)
 - 4C
 - **4D** p^n
- D. 5 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - **5A** $\frac{5!}{90!}$

- $5B \quad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
- **5C** $\frac{5!}{\binom{90}{5}}$
- **5D** $\frac{5!}{90^5}$
- **D. 6** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 6A Stocasticamente indipendenti
 - 6B Disgiunti
 - 6C Logicamente dipendenti
 - 6D Correlati positivamente
- **D. 7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 74
 - **7B** $\frac{1}{2}$
 - 7C 4
 - 7D $\frac{1}{\sqrt{2\pi}}$
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 8A (
 - **8B** 1
 - **8C** $\frac{1}{2\pi}$
 - **8D** $\frac{1}{\sqrt{2\pi}}$
- D. 9 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **9A** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **9B** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **9C** $1-\left(\frac{5}{6}\right)^6$
 - **9D** $\left(\frac{1}{6}\right)^{10}$

D. 10 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

10A
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

10B
$$\frac{3}{10}$$

10C
$$\frac{1}{10^3}$$

10D
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

D. 11 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

11A
$$\frac{1}{\sqrt{\pi}}$$

$$11B \qquad \frac{1}{\sqrt{2\pi}}$$

D. 12 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

12A
$$\frac{1}{6^2}$$

12B
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

12C
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^{9}$$

12D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 13 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

13A
$$\frac{1}{\lambda t}$$

13B
$$e^{-\lambda t}$$

13C
$$1 - e^{-\lambda t}$$

D. 14 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

$$14A \qquad \frac{1}{\lambda t}$$

14B
$$\lambda t$$

14C
$$e^{-\lambda t}$$

14D
$$\frac{1}{\lambda}$$

D. 15 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

15A
$$\frac{n}{p}$$

15D
$$np(1-p)$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16B
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16C
$$\frac{1}{10^3}$$

16D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17A
$$\frac{1}{213}$$

17B
$$1 - \left(\frac{2}{3}\right)^{13}$$

17C
$$\binom{13}{3} \frac{1}{3^{13}}$$

17D
$$\frac{1}{\binom{13}{3}}$$

- **D. 1** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **1A** *np*
 - **1B** np(1-p)
 - 1C p
 - 1D $\frac{n}{p}$
- **D. 2** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **2A** np(1-p)
 - $2B = \frac{n}{n}$
 - 2C np
 - $2D p^{i}$
- **D. 3** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 3A $\frac{1}{\sqrt{2\pi}}$
 - $3B \frac{1}{2\pi}$
 - **3C** 2
 - **3D** 4
- D. 4 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **4A** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **4B** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **4C** $\left(\frac{1}{6}\right)$
 - **4D** $1-\left(\frac{5}{6}\right)^6$
- **D. 5** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.

- **5A** Correlati positivamente
- 5B Stocasticamente indipendenti
- 5C Disgiunti
- 5D Logicamente dipendenti
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - **6A** 1
 - $\mathbf{6B} \quad \frac{1}{\sqrt{2\pi}}$
 - **6C** 0
 - **6D** $\frac{1}{2\pi}$
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $7A \qquad \frac{1}{\sqrt{2\pi}}$
 - $7B \qquad \frac{1}{2\pi}$
 - 7C
 - **7D** (
- D. 8 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - $8A \qquad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **8B** $\frac{5!}{90!}$
 - 8C $\frac{5!}{90^5}$
 - **8D** $\frac{5!}{\binom{90}{5}}$
- D. 9 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - $9A \qquad \binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **9B** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **9C** $\frac{1}{10^2}$

9D
$$\frac{3}{10}$$

D. 10 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$10A \qquad \frac{1}{\sqrt{2\pi}}$$

$$10B \qquad \frac{1}{\sqrt{\pi}}$$

D. 11 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

11A
$$\frac{1}{\lambda_1}$$

11B
$$\lambda t$$

11C
$$\frac{1}{\lambda}$$

11D
$$e^{-\lambda t}$$

D. 12 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

12A
$$\frac{1}{\lambda}$$

12B
$$\frac{1}{\lambda}$$

12C
$$e^{-\lambda t}$$

D. 13 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

13A
$$\lambda t$$

13B
$$e^{-\lambda t}$$

13C
$$1 - e^{-\lambda}$$

13D
$$\frac{1}{\lambda t}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

14C
$$\frac{1}{6^2}$$

14D
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?

15A
$$\frac{15}{6^3}$$

15B
$$\binom{6}{3} \frac{1}{6^3}$$

15C
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15D
$$1 - \frac{20}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

$$16B \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16C
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16D
$$\frac{1}{10^3}$$

17A
$$\frac{1}{\binom{13}{3}}$$

17B
$$\frac{1}{213}$$

17C
$$\binom{13}{3} \frac{1}{3^{13}}$$

17D
$$1-\left(\frac{2}{3}\right)^{13}$$

D. 1 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

$$1A \quad \frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

1B
$$\frac{1}{10^3}$$

$$1C \quad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

1D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

D. 2 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

$$e^{-\lambda i}$$

2C
$$\frac{1}{\lambda}$$

2D
$$\frac{1}{\lambda}$$

D. 3 A quale valore tende la varianza della frequenza relativa del numero delle teste su n lanci di una moneta simmetrica, quando n tende all'infinito?

$$3C \quad \frac{1}{\sqrt{\pi}}$$

3D
$$\frac{1}{\sqrt{2\pi}}$$

D. 4 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

4A
$$\frac{5!}{\binom{90}{5}}$$

4B
$$\frac{5!}{90^5}$$

4C
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

4D
$$\frac{5!}{90}$$

D. 5 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

5C
$$1-e^{-\lambda t}$$

5D
$$\frac{1}{2}$$

D. 6 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

$$\mathbf{6B} \quad \frac{1}{2\pi}$$

6D
$$\frac{1}{\sqrt{2\pi}}$$

D.7 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?

$$7A \qquad \frac{1}{2\pi}$$

$$7B \frac{1}{\sqrt{2\pi}}$$

D. 8 Nella distribuzione del numero di successi su *n* prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

8B
$$p^n$$

8C
$$np(1-p)$$

8D
$$\frac{n}{p}$$

Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di

$$p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$$
, qual è la varianza del numero successi su n prove?

9A
$$\frac{n}{p}$$

9C
$$p^n$$

9D
$$np(1-p)$$

D. 10 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?

$$10B \qquad \frac{1}{\sqrt{2\pi}}$$

10D
$$\frac{1}{2\pi}$$

D. 11 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

11A
$$\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

11B
$$\left(\frac{1}{6}\right)^1$$

11C
$$\binom{10}{4} \left(\frac{1}{6}\right)^1$$

$$11D \qquad 1 - \left(\frac{5}{6}\right)^6$$

- **D. 12** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 12A Stocasticamente indipendenti
 - 12B Correlati positivamente
 - 12C Disgiunti
 - 12D Logicamente dipendenti
- **D. 13** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

13A
$$\frac{1}{\lambda}$$

13B
$$\frac{1}{\lambda_1}$$

13D
$$e^{-\lambda t}$$

D. 14 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

14A
$$\frac{1}{10^3}$$

14B
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

14C
$$\frac{3}{10}$$

14D
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

D. 15 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

15A
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^{9}$$

15B
$$\frac{1}{6^2}$$

15C
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 16 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?

16A
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

16B
$$1 - \frac{20}{6^3}$$

16C
$$\binom{6}{3} \frac{1}{6^3}$$

16D
$$\frac{15}{6^3}$$

17A
$$1 - \left(\frac{2}{3}\right)^{13}$$

17B
$$\binom{13}{3} \frac{1}{3^{13}}$$

17C
$$\frac{1}{3^{13}}$$

17D
$$\frac{1}{\binom{13}{3}}$$

- **D. 1** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - 1A $\frac{n}{p}$
 - **1B** *p*
 - **1C** np(1-p)
 - 1**D** np
- D. 2 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - $2A \qquad 1 \left(\frac{5}{6}\right)^6$
 - **2B** $\binom{10}{4} \left(\frac{1}{6}\right)^1$
 - **2C** $\left(\frac{1}{6}\right)^{10}$
 - **2D** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
- D. 3 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 3A $\frac{5!}{90}$
 - **3B** $\frac{5!}{\binom{90}{5}}$
 - 3C $\frac{5!}{90.89.88.87.86}$
 - 3D $\frac{5!}{90^5}$
- D. 4 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - **4A** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **4B** $\frac{1}{10^3}$
 - $4C \qquad \binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **4D** $\frac{3}{10}$

- **D. 5** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **5A** np(1-p)
 - **5B** *np*
 - $5C p^n$
 - **5D** $\frac{n}{p}$
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $6A \qquad \frac{1}{2\pi}$
 - **6B** 0
 - $6C \quad \frac{1}{\sqrt{2\pi}}$
 - 6D
- **D. 7** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 7A Correlati positivamente
 - 7B Disgiunti
 - 7C Stocasticamente indipendenti
 - 7D Logicamente dipendenti
- **D. 8** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - 8A
 - 8B (
 - 8C $\frac{1}{\sqrt{7}}$
 - 8D $\frac{1}{\sqrt{2\pi}}$
- **D. 9** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - **9A** 2
 - **9B** 4
 - $9C \qquad \frac{1}{2\pi}$

9D
$$\frac{1}{\sqrt{2\pi}}$$

D. 10 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?

10C
$$\frac{1}{\sqrt{2\pi}}$$

$$10D \qquad \frac{1}{2\pi}$$

D. 11 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

11A
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

11B
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

11C
$$\frac{1}{6}$$

11D
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 12 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

$$12A \qquad \frac{1}{\lambda t}$$

12C
$$e^{-\lambda i}$$

12D
$$1 - e^{-\lambda t}$$

13A
$$\frac{15}{6^3}$$

13B
$$\binom{6}{3} \frac{1}{6}$$

13C
$$1-\frac{20}{6^3}$$

13D
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

D. 14 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

14A
$$\frac{1}{\lambda}$$

14C
$$e^{-\lambda t}$$

14D
$$\frac{1}{\lambda}$$

D. 15 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

15A
$$\frac{1}{10^3}$$

15B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

15C
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

15D
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

D. 16 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

$$16A \qquad \frac{1}{\lambda_i}$$

16D
$$e^{-\lambda t}$$

17A
$$1 - \left(\frac{2}{3}\right)^{13}$$

17B
$$\binom{13}{3} \frac{1}{3^{13}}$$

17C
$$\frac{1}{3^{13}}$$

17D
$$\frac{1}{\binom{13}{3}}$$

Linguaggio dell'incertezza 2

Codice Compito: 57A58C59B60E - Numero d'Ordine 59

LEGENDA: per monete o dadi simmetrici si intende che la probabilità è uguale per ogni faccia. Nel caso dei dadi le 6 facce sono contrassegnate dai valori: 0,1,2,3,4,5.

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - **1A** 1
 - **1B** $\frac{1}{2\pi}$
 - 1C 0
 - $1D \qquad \frac{1}{\sqrt{2\pi}}$
- **D. 2** Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?
 - **2A** $3!\frac{1}{6}\left(\frac{5}{6}\right)^2$
 - **2B** $1 \frac{20}{6^3}$
 - **2C** $\frac{15}{6^3}$
 - **2D** $\binom{6}{3} \frac{1}{6^3}$
- **D. 3** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 3A Correlati positivamente
 - 3B Stocasticamente indipendenti
 - 3C Logicamente dipendenti
 - 3D Disgiunti
- **D. 4** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 4A $1-e^{-\lambda}$
 - **4B** λt
 - 4C $e^{-\lambda t}$
 - **4D** $\frac{1}{\lambda t}$
- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 5A (
 - $5B \quad \frac{1}{\sqrt{2\pi}}$

- $\frac{1}{2\tau}$
- 5D 1
- **D. 6** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **6A** p^n
 - **6B** n₁
 - **6C** np(1-p)
 - **6D** $\frac{n}{p}$
- **D. 7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 7A 2
 - 7B $\frac{1}{\sqrt{2\pi}}$
 - **7C**
 - **7D** $\frac{1}{2\pi}$
- D. 8 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - **8A** $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **8B** $\frac{5!}{\binom{90}{5}}$
 - 8C $\frac{5!}{90^5}$
 - **8D** $\frac{5!}{90!}$
- **0.9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **9A** np(1-p)
 - **9B** *np*
 - 9C $\frac{n}{2}$
 - **9D** p^{i}
- D. 10 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

10A
$$\frac{1}{10^3}$$

10B
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

10C
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

10D
$$\frac{3}{10}$$

D. 11 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

11A
$$\binom{10}{4} \left(\frac{1}{6}\right)^{10}$$

11B
$$\left(\frac{1}{6}\right)^{10}$$

$$11C \quad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

11D
$$1 - \left(\frac{5}{6}\right)^6$$

D. 12 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$12C \qquad \frac{1}{\sqrt{\pi}}$$

$$12D \qquad \frac{1}{\sqrt{2\pi}}$$

D. 13 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

13A
$$\frac{1}{6^2}$$

13B
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

13C
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^9$$

13D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 14 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

14A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

14B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

14C
$$\frac{1}{10^3}$$

14D
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

 $\begin{array}{ll} \textbf{D. 15} & \text{Supponendo che nel gioco del calcio ogni squadra abbia} \\ & \text{probabilità } \frac{1}{3} \, \text{di pareggiare, e che i risultati delle partite} \\ & \text{siano stocasticamente indipendenti, qual è la probabilità} \\ & \text{che in } 13 \, \text{partite si ottengano 5 pareggi?} \end{array}$

15A
$$\binom{13}{3} \frac{1}{3^{13}}$$

15B
$$\frac{1}{3^{13}}$$

15C
$$\frac{1}{\binom{13}{3}}$$

15D
$$1 - \left(\frac{2}{3}\right)^{13}$$

D. 16 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

$$16A \qquad \frac{1}{\lambda}$$

16B
$$e^{-\lambda}$$

$$16D \quad \frac{1}{\lambda t}$$

D. 17 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

17B
$$e^{-\lambda}$$

17C
$$\frac{1}{2}$$

17D
$$\frac{1}{\lambda t}$$

- **D. 1** Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?
 - **1A** $1 \frac{20}{63}$
 - **1B** $\binom{6}{3} \frac{1}{6^3}$
 - $1C \qquad 3! \frac{1}{6} \left(\frac{5}{6} \right)$
 - 1D $\frac{15}{6^3}$
- **D. 2** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 2A
 - **2B** 0
 - 2C $\frac{1}{\sqrt{2\tau}}$
 - $2D \qquad \frac{1}{2\pi}$
- **D. 3** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - $3A \qquad \frac{1}{\lambda t}$
 - **3B** λε
 - 3C $\frac{1}{\lambda}$
 - 3D $e^{-\lambda t}$
- D. 4 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - $4A \qquad \binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **4B** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **4C** $\frac{1}{10^3}$
 - **4D** $\frac{3}{10}$
- **D. 5** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

- 5A
- 5B
- 5C $\frac{1}{\sqrt{\pi}}$
- **5D** $\frac{1}{\sqrt{2\pi}}$
- D. 6 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **6A** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **6B** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **6C** $1 \left(\frac{5}{6}\right)^6$
 - **6D** $\left(\frac{1}{6}\right)^{10}$
- **D.7** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $7A \qquad \frac{1}{2\pi}$
 - **7B** $\frac{1}{\sqrt{2\pi}}$
 - **7C** 1
 - **7D** (
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - **8A** 2
 - **8B** $\frac{1}{\sqrt{2}}$
 - 8C 4
 - 8D $\frac{1}{2\pi}$
- D. 9 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - $9A \qquad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **9B** $\frac{5!}{\binom{90}{5}}$
 - **9C** $\frac{5!}{90!}$

9D
$$\frac{5!}{90^5}$$

D. 10 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

$$\begin{array}{ccc}
 10A & \frac{n}{p} \\
 10B & p'
 \end{array}$$

10C
$$np(1-p)$$

10D *np*

- **D. 11** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 11A Logicamente dipendenti
 - 11B Correlati positivamente
 - 11C Disgiunti
 - 11D Stocasticamente indipendenti
- **D. 12** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

$$12A \qquad \frac{1}{\lambda t}$$

12B
$$e^{-\lambda t}$$

12C
$$\frac{1}{\lambda}$$

12D λ

D. 13 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

13B
$$e^{-\lambda}$$

13C
$$\frac{1}{\lambda_i}$$

13D
$$1 - e^{-\lambda t}$$

D. 14 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

14A
$$\frac{n}{p}$$

14B
$$p^n$$

14D
$$np(1-p)$$

D. 15 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

15A
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15B
$$1 - \left(\frac{5}{6}\right)^{10} - \binom{10}{1} \frac{1}{6} \left(\frac{5}{6}\right)^{9}$$

15C
$$\frac{1}{6^2}$$

15D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16B
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

$$16C \quad \frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16D
$$\frac{1}{10^3}$$

17A
$$\frac{1}{\binom{13}{3}}$$

17B
$$1 - \left(\frac{2}{3}\right)^{13}$$

17C
$$\binom{13}{3} \frac{1}{3^{13}}$$

17D
$$\frac{1}{3^{13}}$$