- **D. 1** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 1A $e^{-\lambda}$
 - 1B $\frac{1}{\lambda_1}$
 - 1C $1-e^{-\lambda}$
 - **1D** λ
- D. 2 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - $2A \qquad \left(\frac{1}{6}\right)^{10}$
 - **2B** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - $2C \qquad 1 \left(\frac{5}{6}\right)^6$
 - **2D** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
- **D. 3** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $3A \qquad \frac{1}{\sqrt{2\pi}}$
 - **3B** 1
 - 3C (
 - $3D \qquad \frac{1}{2\pi}$
- **D. 4** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 4A Correlati positivamente
 - 4B Disgiunti
 - 4C Logicamente dipendenti
 - 4D Stocasticamente indipendenti
- **D. 5** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - $5A \lambda t$
 - **5B** $\frac{1}{\lambda}$

- 5C e^{-λt}
- **5D** $\frac{1}{\lambda}$
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 6A 4
 - **6B** $\frac{1}{2\pi}$
 - 6C $\frac{1}{\sqrt{2\pi}}$
 - **6D** 2
- **D. 7** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **7A** np(1-p)
 - **7B** *p*
 - 7C $\frac{n}{n}$
 - **7D** np
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 8A $e^{-\lambda}$
 - 8B $\frac{1}{\lambda}$
 - **8C** λ
 - **8D** $\frac{1}{\lambda t}$
- **D. 9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - 9A -
 - **9B** p'
 - **9C** np
 - **9D** np(1-p)
- **D. 10** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - **10A** 0
 - 10B

$$10C \qquad \frac{1}{\sqrt{2\pi}}$$

10D
$$\frac{1}{2\pi}$$

D. 11 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

11A
$$\frac{5!}{90!}$$

11B
$$\frac{5!}{90^5}$$

11C
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

11D
$$\frac{5!}{\binom{90}{5}}$$

D. 12 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

12A
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12B
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

12C
$$\frac{3}{10}$$

12D
$$\frac{1}{10^3}$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$13C \quad \frac{1}{\sqrt{\pi}}$$

$$13D \qquad \frac{1}{\sqrt{2\pi}}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14C
$$\frac{1}{6^2}$$

14D
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^9$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici $\overline{[0,1,2,3,4,5]}$?

15A
$$\binom{6}{3} \frac{1}{6^3}$$

15B
$$\frac{15}{6^3}$$

15C
$$1 - \frac{20}{6^3}$$

15D
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16C
$$\frac{1}{10^3}$$

16D
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17A
$$\binom{13}{3} \frac{1}{3^{13}}$$

17B
$$1 - \left(\frac{2}{3}\right)^{13}$$

17C
$$\frac{1}{\binom{13}{3}}$$

17D
$$\frac{1}{3^{13}}$$

D. 1 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

1A
$$\frac{3}{10}$$

1B
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

$$1C \quad \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

1D
$$\frac{1}{10^3}$$

D. 2 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$2B \qquad \frac{1}{\sqrt{\pi}}$$

$$2D \quad \frac{1}{\sqrt{2\pi}}$$

D. 3 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

3A
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

3B
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

3C
$$\frac{1}{6^2}$$

3D
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^{\frac{1}{6}}$$

D. 4 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici 0,1,2,3,4,5?

4A
$$1-\frac{20}{6^3}$$

4B
$$\binom{6}{3} \frac{1}{6^3}$$

4C
$$3!\frac{1}{6}\left(\frac{5}{6}\right)$$

4D
$$\frac{15}{6^3}$$

D. 5 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

$$5C \frac{n}{n}$$

5D
$$np(1-p)$$

D. 6 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

6A
$$\frac{1}{10^3}$$

6B
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

6C
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

6D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

D.7 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?

$$7B \qquad \frac{1}{2\pi}$$

7D
$$\frac{1}{\sqrt{2\pi}}$$

D. 8 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

8C
$$\frac{1}{2\pi}$$

8D
$$\frac{1}{\sqrt{2\pi}}$$

D. 9 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?

$$9A \qquad \frac{1}{\sqrt{2\pi}}$$

9D
$$\frac{1}{2\pi}$$

D. 10 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

10A
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

10B
$$\frac{5!}{90!}$$

10C
$$\frac{5!}{\binom{90}{5}}$$

10D
$$\frac{5!}{90!}$$

D. 11 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

11B
$$e^{-\lambda t}$$

11D
$$\frac{1}{\lambda t}$$

D. 12 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

$$12B \qquad \frac{1}{\lambda t}$$

12C
$$e^{-\lambda t}$$

12D
$$\lambda t$$

D. 13 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

13A
$$1-e^{-\lambda t}$$

13B
$$\frac{1}{\lambda t}$$

13D
$$e^{-\lambda t}$$

D. 14 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

$$14B \qquad \frac{n}{p}$$

14D
$$np(1-p)$$

D. 15 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

15A
$$1 - \left(\frac{5}{6}\right)^6$$

15B
$$\left(\frac{1}{6}\right)^{10}$$

$$15C \quad \binom{10}{4} \left(\frac{1}{6}\right)^{10}$$

$$15D \qquad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

- **D. 16** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 16A Correlati positivamente
 - 16B Disgiunti
 - 16C Stocasticamente indipendenti
 - 16D Logicamente dipendenti
- **D. 17** Supponendo che nel gioco del calcio ogni squadra abbia probabilità $\frac{1}{3}$ di pareggiare, e che i risultati delle partite siano stocasticamente indipendenti, qual è la probabilità che in 13 partite si ottengano 5 pareggi?

17A
$$\frac{1}{\binom{13}{3}}$$

17B
$$1 - \left(\frac{2}{3}\right)^1$$

17C
$$\binom{13}{3} \frac{1}{3^{13}}$$

17D
$$\frac{1}{3^{13}}$$

D. 1 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

1A
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

1B
$$\frac{1}{10^3}$$

$$1C \quad \binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

1D
$$\frac{3}{10}$$

D. 2 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

2B
$$e^{-\lambda}$$

2C
$$1 - e^{-\lambda}$$

2D
$$\frac{1}{\lambda t}$$

D. 3 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

3A
$$\frac{n}{p}$$

3B
$$np(1-p)$$

- **3D** *np*
- **D. 4** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

4C
$$np(1-p)$$

4D
$$\frac{n}{n}$$

D. 5 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

5A
$$\binom{10}{4} \left(\frac{1}{6}\right)^{10}$$

5B
$$\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

- **5**C $1-\left(\frac{5}{6}\right)^{6}$
- **5D** $\left(\frac{1}{6}\right)^1$
- **D. 6** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$\mathbf{6B} \quad \frac{1}{\sqrt{2\pi}}$$

6D
$$\frac{1}{\sqrt{\pi}}$$

D. 7 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

$$7B \qquad \frac{1}{2\pi}$$

7C
$$\frac{1}{\sqrt{2\pi}}$$

D. 8 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?

8A
$$\frac{1}{\sqrt{2\pi}}$$

8D
$$\frac{1}{2\pi}$$

D. 9 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

9A
$$\frac{5!}{90!}$$

9B
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

9C
$$\frac{5!}{\binom{90}{5}}$$

9D
$$\frac{5!}{90^5}$$

D. 10 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?

$$10A \qquad \frac{1}{\sqrt{2\pi}}$$

$$10D \qquad \frac{1}{2\pi}$$

- **D. 11** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso so di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 11A Correlati positivamente
 - 11B Disgiunti
 - 11C Logicamente dipendenti
 - 11D Stocasticamente indipendenti
- D. 12 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

$$12A \qquad \binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

12B
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^{9}$$

12C
$$\frac{1}{6^2}$$

12D
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 13 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

13A
$$\frac{1}{\lambda t}$$

13B
$$\lambda t$$

13C
$$\frac{1}{\lambda}$$

13D
$$e^{-\lambda t}$$

D. 14 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

14A
$$\frac{1}{\lambda}$$

14B
$$\frac{1}{\lambda t}$$

14C
$$e^{-\lambda t}$$

14D
$$\lambda t$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?

15A
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15B
$$1 - \frac{20}{6^3}$$

15C
$$\binom{6}{3} \frac{1}{6^3}$$

15D
$$\frac{15}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{1}{10^3}$$

16B
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

$$16C \quad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17A
$$\frac{1}{3^{13}}$$

17B
$$\frac{1}{\binom{13}{3}}$$

17C
$$1 - \left(\frac{2}{3}\right)^1$$

17D
$$\binom{13}{3} \frac{1}{3^{13}}$$

SSIS del Lazio

Linguaggio dell'incertezza 2

Codice Compito: 57A58C59C60E - Numero d'Ordine 64

LEGENDA: per monete o dadi simmetrici si intende che la probabilità è uguale per ogni faccia. Nel caso dei dadi le 6 facce sono contrassegnate dai valori: 0,1,2,3,4,5.

- **D. 1** Supponendo che nel gioco del calcio ogni squadra abbia probabilità $\frac{1}{3}$ di pareggiare, e che i risultati delle partite siano stocasticamente indipendenti, qual è la probabilità che in 13 partite si ottengano 5 pareggi?
 - 1A $\frac{1}{3^{13}}$
 - **1B** $\frac{1}{\binom{13}{3}}$
 - $1C \qquad 1 \left(\frac{2}{3}\right)^1$
 - **1D** $\binom{13}{3} \frac{1}{3^{13}}$
- **D. 2** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - $2A \qquad \frac{1}{\lambda t}$
 - **2B** λε
 - $2C \frac{1}{\lambda}$
 - **2D** $e^{-\lambda}$
- **D. 3** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - 3A (
 - 3B $\frac{1}{\sqrt{\pi}}$
 - **3C** 1
 - $3D \qquad \frac{1}{\sqrt{2\pi}}$
- **D. 4** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 4A
 - 4B (
 - 4C $\frac{1}{\sqrt{2\tau}}$
 - 4D $\frac{1}{2\pi}$
- **D. 5** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - $5A \frac{1}{\lambda t}$

- 5R λ
- 5C $e^{-\lambda}$
- **5D** $1-e^{-\lambda t}$
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $6A \qquad \frac{1}{2\pi}$
 - 6B
 - 6C $\frac{1}{\sqrt{2\pi}}$
 - **6D** 0
- **D. 7** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - 7A p^n
 - **7B** np(1-p)
 - 7C $\frac{n}{n}$
 - 7D ni
- D. 8 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 8A $\frac{5!}{90!}$
 - **8B** $\frac{5!}{90^5}$
 - 8C $\frac{5!}{\binom{90}{5}}$
 - **8D** $\frac{5!}{90.89.88.87.86}$
- **D. 9** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 9A 4
 - 9B $\frac{1}{2\pi}$
 - **9C** 2
 - 9D $\frac{1}{\sqrt{2\pi}}$
- D. 10 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

$$10A \qquad \left(\frac{1}{6}\right)^{10}$$

10B
$$1 - \left(\frac{5}{6}\right)^6$$

$$10C \quad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

10D
$$\binom{10}{4} \left(\frac{1}{6}\right)^1$$

D. 11 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

11A
$$np(1-p)$$

11B
$$\frac{t}{t}$$

11D
$$p^n$$

- **D. 12** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 12A Disgiunti
 - 12B Stocasticamente indipendenti
 - 12C Logicamente dipendenti
 - 12D Correlati positivamente
- D. 13 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

13A
$$\frac{3}{10}$$

13B
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

13C
$$\frac{1}{10^3}$$

13D
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

D. 14 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

14A
$$e^{-\lambda t}$$

$$14B \qquad \frac{1}{\lambda t}$$

14D
$$\frac{1}{\lambda}$$

D. 15 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmatrioi?

15A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15B
$$\frac{1}{6^2}$$

15C
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15D
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^9$$

16A
$$\binom{6}{3} \frac{1}{6^3}$$

16B
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

16C
$$\frac{15}{6^3}$$

16D
$$1 - \frac{20}{6^3}$$

D. 17 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

17A
$$\frac{1}{10^3}$$

$$17B \qquad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

$$17C \quad \frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

17D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

- **D. 1** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 1A Disgiunti
 - 1B Stocasticamente indipendenti
 - 1C Logicamente dipendenti
 - 1D Correlati positivamente
- D. 2 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

2A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

2B
$$\frac{1}{10^3}$$

$$2C \qquad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

$$2D \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

D. 3 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?

3A
$$\frac{1}{\sqrt{2\pi}}$$

$$3C \frac{1}{2\pi}$$

- **3D** 0
- **D. 4** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?

4A
$$e^{-\lambda}$$

4C
$$\frac{1}{\lambda}$$

4D
$$1 = e^{-\lambda t}$$

D. 5 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

5A
$$\frac{5!}{\binom{90}{5}}$$

5B
$$\frac{5!}{90!}$$

5C
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$

5D
$$\frac{5!}{90^5}$$

D. 6 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

6A
$$\left(\frac{1}{6}\right)^{10}$$

6B
$$\binom{10}{4} \left(\frac{1}{6}\right)^{10}$$

6C
$$1-\left(\frac{5}{6}\right)^6$$

6D
$$\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$$

D. 7 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

7A
$$\frac{3}{10}$$

7B
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

7C
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

7D
$$\frac{1}{10^3}$$

D. 8 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

8B
$$\frac{1}{\sqrt{2\tau}}$$

8C
$$\frac{1}{\sqrt{\pi}}$$

D. 9 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

9B
$$\frac{t}{t}$$

9D
$$np(1-p)$$

D. 10 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?

$$10B \qquad \frac{1}{\sqrt{2\pi}}$$

10C
$$\frac{1}{2\pi}$$

D. 11 Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?

11A
$$\frac{1}{2\pi}$$

11C
$$\frac{1}{\sqrt{2\pi}}$$

D. 12 Nella distribuzione del numero di successi su *n* prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di

$$p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$$
, qual è la media del numero di successi su n prove?

12B
$$np(1-p)$$

12C
$$\frac{n}{\mu}$$

12D
$$p'$$

D. 13 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

13A
$$\frac{1}{6^2}$$

13B
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

13C
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

13D
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

D. 14 Nella distribuzione del numero di successi al tempo *t* del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?

14A
$$\frac{1}{\lambda}$$

14B
$$\lambda t$$

14C
$$e^{-\lambda t}$$

$$14D \qquad \frac{1}{\lambda t}$$

è la **D. 15** Qual probabilità di ottenere somma maggiore di 3 nel lancio di tre dadi simmetrici

15A
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15B
$$\frac{15}{6^3}$$

15C
$$1 - \frac{20}{6^3}$$

15D
$$\binom{6}{3} \frac{1}{6^3}$$

D. 16 Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?

16A
$$\lambda t$$

16B
$$\frac{1}{\lambda}$$

16C
$$e^{-\lambda}$$

16D
$$\frac{1}{\lambda t}$$

17A
$$\binom{13}{3} \frac{1}{3^{13}}$$

17B
$$1 - \left(\frac{2}{3}\right)^{13}$$

17C
$$\frac{1}{3^{13}}$$

17D
$$\frac{1}{\binom{13}{3}}$$

- **D. 1** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 1A $e^{-\lambda}$
 - 1B
 - 1C $\frac{1}{\lambda}$
 - **1D** λε
- **D. 2** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **2A** np(1-p)
 - $2B \frac{n}{l}$
 - 2C p
 - **2D** np
- D. 3 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?
 - 3A $\frac{1}{6^2}$
 - **3B** $1 \left(\frac{5}{6}\right)^{10} \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$
 - $3C \quad \binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^2$
 - **3D** $\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$
- **D. 4** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 4A $1-e^{-\lambda}$
 - **4B** $e^{-\lambda t}$
 - **4C** λ*t*
 - **4D** $\frac{1}{\lambda t}$
- **D. 5** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - $5A p^n$
 - **5B** *np*
 - $5C \frac{n}{p}$

- **5D** np(1-p)
- D. 6 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **6A** $\left(\frac{1}{6}\right)^{10}$
 - **6B** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **6C** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **6D** $1-\left(\frac{5}{6}\right)^6$
- **D. 7** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - **7A** $e^{-\lambda t}$
 - $7B \quad \frac{1}{2}$
 - **7C** λ*t*
 - **7D** $\frac{1}{\lambda t}$
- **D. 8** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 8A
 - **8B** 0
 - 8C $\frac{1}{\sqrt{2\pi}}$
 - 8D $\frac{1}{2\pi}$
- **D. 9** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $9A \qquad \frac{1}{2\pi}$
 - $9B \qquad \frac{1}{\sqrt{2\pi}}$
 - 9C
 - 9D
- **D. 10** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 10A
 - 10B 2
 - $10C \quad \frac{1}{\sqrt{2\pi}}$

10D
$$\frac{1}{2\pi}$$

- D. 11 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - 11A $\frac{5!}{90!}$
 - 11B $\frac{5!}{\binom{90}{5}}$
 - 11C $\frac{5!}{90^5}$
 - 11D $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
- **D. 12** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 12A Disgiunti
 - 12B Correlati positivamente
 - 12C Logicamente dipendenti
 - 12D Stocasticamente indipendenti
- D. 13 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - 13A $\frac{1}{10^3}$
 - **13B** $\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - 13C $\frac{3}{10}$
 - **13D** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
- **D. 14** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

- $14A \qquad \frac{1}{\sqrt{2\pi}}$
- $14B \qquad \frac{1}{\sqrt{\pi}}$
- 14C
- 14D (
- D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?
 - **15A** $1 \frac{20}{6^3}$
 - **15B** $3!\frac{1}{6}\left(\frac{5}{6}\right)^2$
 - **15C** $\binom{6}{3} \frac{1}{6^3}$
 - 15D $\frac{15}{6^3}$
- D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - $16A \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **16B** $\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$
 - **16C** $\frac{1}{10^3}$
 - **16D** $\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
- **D. 17** Supponendo che nel gioco del calcio ogni squadra abbia probabilità $\frac{1}{3}$ di pareggiare, e che i risultati delle partite siano stocasticamente indipendenti, qual è la probabilità che in 13 partite si ottengano 5 pareggi?
 - 17A $\binom{13}{3} \frac{1}{3^{13}}$
 - **17B** $\frac{1}{\binom{13}{3}}$
 - **17C** $1 \left(\frac{2}{3}\right)^{13}$
 - 17D $\frac{1}{3^{13}}$

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 1A (
 - 1B $\frac{1}{2\pi}$
 - 1C
 - 1D $\frac{1}{\sqrt{2\pi}}$
- D. 2 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - $\mathbf{2A} \qquad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **2B** $\frac{5!}{\binom{90}{5}}$
 - **2C** $\frac{5!}{90!}$
 - **2D** $\frac{5!}{90^5}$
- **D. 3** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 3A $\frac{1}{\sqrt{2\tau}}$
 - **3B** 0
 - **3**C
 - $3D \qquad \frac{1}{2\pi}$
- **D. 4** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 4A Correlati positivamente
 - 4B Logicamente dipendenti
 - 4C Stocasticamente indipendenti
 - 4D Disgiunti
- D. 5 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?

5A
$$\left(\frac{1}{6}\right)^{16}$$

- **5B** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
- **5C** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
- **5D** $1 \left(\frac{5}{6}\right)^6$
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $6A \qquad \frac{1}{\sqrt{2\pi}}$
 - $\mathbf{6B} \qquad \frac{1}{2\pi}$
 - **6C** 4
 - **6D** 2
- **D. 7** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - 7A $e^{-\lambda t}$
 - 7B $\frac{1}{\lambda}$
 - 7C $\frac{1}{2}$
 - **7D** λ
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t^2 .
 - 8A $\frac{1}{\lambda t}$
 - **8B** λ*t*
 - 8C $\frac{1}{\lambda}$
 - 8D $e^{-\lambda}$
- **D. 9** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 9Α λ
 - 9B $\frac{1}{\lambda}$
 - $9C e^{-\lambda t}$
 - **9D** $1 e^{-\lambda t}$

D. 10 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

10A
$$\frac{1}{10^3}$$

10B
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

10C
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

10D
$$\frac{3}{10}$$

D. 11 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{n} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?

11B
$$p^n$$

11C
$$np(1-p)$$

11D
$$\frac{n}{p}$$

D. 12 Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_n^n = \binom{n}{n} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?

12A
$$np(1-p)$$

12B
$$\frac{n}{p}$$

12D
$$p^n$$

D. 13 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

$$13B \qquad \frac{1}{\sqrt{\pi}}$$

13C
$$\frac{1}{\sqrt{2\pi}}$$

D. 14 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?

14A
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14B
$$1 - \left(\frac{5}{6}\right)^{10} - \binom{10}{1} \frac{1}{6} \left(\frac{5}{6}\right)^{9}$$

14C
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\frac{1}{6^2}$$

D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?

15A
$$\frac{15}{6^3}$$

15B
$$\binom{6}{3} \frac{1}{6^3}$$

15C
$$3!\frac{1}{6}\left(\frac{5}{6}\right)^2$$

15D
$$1 - \frac{20}{6^3}$$

D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?

16A
$$\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$$

16B
$$\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$$

16C
$$\frac{1}{10^3}$$

16D
$$\frac{10}{40} \frac{9}{39} \frac{8}{38}$$

17A
$$1 - \left(\frac{2}{3}\right)^{13}$$

17B
$$\frac{1}{\binom{13}{3}}$$

17C
$$\binom{13}{3} \frac{1}{3^{13}}$$

17D
$$\frac{1}{3^{13}}$$

- - **1A** $1 \left(\frac{2}{3}\right)^{13}$
 - **1B** $\frac{1}{\binom{13}{3}}$
 - **1C** $\binom{13}{3} \frac{1}{3^{13}}$
 - **1D** $\frac{1}{3^{13}}$
- D. 2 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - **2A** $\frac{1}{10^3}$
 - **2B** $\frac{3}{10}$
 - $\mathbf{2C} \quad \binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **2D** $\left(\frac{7}{10}\right)^2 \frac{3}{10}$
- **D. 3** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - **3A** 0
 - $3B \qquad \frac{1}{2\pi}$
 - **3C** 1
 - $3D \qquad \frac{1}{\sqrt{2\pi}}$
- D. 4 Qual è la probabilità di almeno due 5 nel lancio di 10 dadi simmetrici?
 - **4A** $\frac{1}{6^2}$
 - $\mathbf{4B} \qquad \binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)$
 - $4C \qquad \binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)$
 - **4D** $1 \left(\frac{5}{6}\right)^{10} \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^{9}$

- **D. 5** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - 5A
 - 5B (
 - 5C $\frac{1}{\sqrt{\pi}}$
 - 5D $\frac{1}{\sqrt{2\pi}}$
- D. 6 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - **6A** $\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **6B** $\frac{5!}{\binom{90}{5}}$
 - **6C** $\frac{5!}{90!}$
 - **6D** $\frac{5!}{905}$
- **D. 7** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - 7A p'
 - **7B** $\frac{n}{n}$
 - 7C n
 - **7D** np(1-p)
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 8A $\frac{1}{\lambda t}$
 - **8B** λ*i*
 - **8C** $1 e^{-}$
 - 8D $e^{-\lambda}$
- **D. 9** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 9A
 - 9B 2
 - 9C $\frac{1}{\sqrt{2\pi}}$

9D
$$\frac{1}{2\pi}$$

- **D. 10** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - **10A** 0
 - $10B \qquad \frac{1}{\sqrt{2\pi}}$
 - 10C
 - 10D $\frac{1}{2\pi}$
- **D. 11** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - 11A $\frac{n}{t}$
 - **11B** *np*
 - **11C** np(1-p)
 - 11D p^n
- D. 12 Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - $12A \qquad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - 12B $\binom{10}{4} \left(\frac{1}{6}\right)^1$
 - **12C** $1 \left(\frac{5}{6}\right)^{6}$
 - **12D** $\left(\frac{1}{6}\right)^1$
- **D. 13** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}, p(B) = \frac{13}{52}, p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 13A Stocasticamente indipendenti
 - 13B Correlati positivamente
 - 13C Disgiunti
 - 13D Logicamente dipendenti

- **D. 14** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - 14A $\frac{1}{\lambda}$
 - 14B λt
 - 14C $\frac{1}{\lambda}$
 - 14D $e^{-\lambda}$
- **D. 15** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - **15A** λ
 - 15B $e^{-\lambda}$
 - 15C $\frac{1}{\lambda t}$
 - 15D $\frac{1}{\lambda}$
- **D. 16** Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?
 - **16A** $1-\frac{20}{6^3}$
 - **16B** $\binom{6}{3} \frac{1}{6^3}$
 - 16C $\frac{15}{6^3}$
 - **16D** $3!\frac{1}{6}\left(\frac{5}{6}\right)^2$
- D. 17 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - 17A $\frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **17B** $\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - 17C $\frac{1}{10^3}$
 - 17D $\frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$

Università degli Studi di Roma "La Sapienza"

21 Aprile 2007

SSIS del Lazio

Linguaggio dell'incertezza 2

Codice Compito: 57A58C59D60E - Numero d'Ordine 69

LEGENDA: per monete o dadi simmetrici si intende che la probabilità è uguale per ogni faccia. Nel caso dei dadi le 6 facce sono contrassegnate dai valori: 0,1,2,3,4,5.

- **D. 1** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - $1A \qquad \frac{1}{2\pi}$
 - **1B** 0
 - 1C
 - $1D \qquad \frac{1}{\sqrt{2\pi}}$
- D. 2 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - $2A \quad \frac{10}{40} \frac{9}{39} \frac{8}{38} \cdot 3!$
 - **2B** $\frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - $2C \qquad \binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **2D** $\frac{1}{10^3}$
- **D. 3** Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **3A** $\binom{10}{4} \left(\frac{1}{6}\right)^{10}$
 - **3B** $1-\left(\frac{5}{6}\right)^6$
 - $3C \quad \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **3D** $\left(\frac{1}{6}\right)^{1}$
- **D. 4** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - 4A $e^{-\lambda}$
 - **4B** $\frac{1}{\lambda t}$
 - 4C $\frac{1}{\lambda}$
 - **4D** λ
- **D. 5** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - $5A \frac{1}{\lambda t}$

- **5B** λ
- **5**C $\frac{1}{2}$
- 5D $e^{-\lambda}$
- **D. 6** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - 6A
 - $\mathbf{6B} \qquad \frac{1}{2\pi}$
 - 6C $\frac{1}{\sqrt{2\pi}}$
 - **6D** 0
- **D. 7** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - $7A p^n$
 - **7B** np(1-p)
 - 7C $\frac{n}{2}$
 - **7D** *np*
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - 8A λt
 - **8B** $1-e^{-\lambda t}$
 - 8C $e^{-\lambda t}$
 - **8D** $\frac{1}{\lambda t}$
- **D. 9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_h^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - **9A** *p*
 - 9B $\frac{n}{n}$
 - **9C** np(1-p)
 - **9D** *np*
- **D. 10** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - $10A \qquad \frac{1}{\sqrt{2\pi}}$
 - 10B

10D

D. 11 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?

11A
$$\frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$$
11B $\frac{5!}{90!}$
11C $\frac{5!}{400}$

$$11D \quad \frac{5!}{}$$

- **D. 12** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo un carta di cuori, AB = estraggo un Asso di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 12A Correlati positivamente
 - 12B Stocasticamente indipendenti
 - 12C Disgiunti
 - 12D Logicamente dipendenti
- D. 13 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).

13A
$$\frac{3}{10}$$

13B
$$\left(\frac{7}{10}\right)^2 \frac{3}{10}$$

13C
$$\binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$$

13D
$$\frac{1}{10^3}$$

D. 14 A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?

14C
$$\frac{1}{\sqrt{2\pi}}$$

$$14D \qquad \frac{1}{\sqrt{\pi}}$$

D. 15 Qual è la probabilità di **almeno due** 5 nel lancio di 10

15A
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^{\frac{1}{2}}$$

15B
$$\frac{1}{6^2}$$

15C
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

15D
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right)\frac{1}{6}\left(\frac{5}{6}\right)^9$$

D. 16 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0,1,2,3,4,5]?

16A
$$\frac{15}{6^3}$$

16B
$$3!\frac{1}{6}\left(\frac{5}{6}\right)$$

16C
$$1-\frac{20}{6^3}$$

16D
$$\binom{6}{3} \frac{1}{6^3}$$

17A
$$\frac{1}{3^{13}}$$

17B
$$\frac{1}{\binom{13}{3}}$$

17C
$$\binom{13}{3} \frac{1}{3^{13}}$$

17D
$$1 - \left(\frac{2}{3}\right)^{13}$$

- **D. 1** Qual è la probabilità di ottenere quattro volte il numero 5 nel lancio di 10 dadi simmetrici?
 - **1A** $\binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6$
 - **1B** $\binom{10}{4} \left(\frac{1}{6}\right)^{\frac{1}{6}}$
 - $1C \qquad 1 \left(\frac{5}{6}\right)^{6}$
 - **1D** $\left(\frac{1}{6}\right)^{10}$
- D. 2 Nel gioco del Lotto ci sono 90 numeri da cui ne vengono estratti 5, uno alla volta e senza reimbussolamento, cioè senza rimettere i numeri estratti nell'urna. Qual è la probabilità di ottenere i seguenti valori: 1, 2, 3, 4, 5 in un ordine qualsiasi, cioè qual è la probabilità di fare cinquina giocando sull'uscita dei numeri indicati?
 - $\mathbf{2A} \qquad \frac{5!}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}$
 - **2B** $\frac{5!}{90!}$
 - 2C $\frac{5!}{90!}$
 - **2D** $\frac{5!}{\binom{90}{5}}$
- **D. 3** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t} (\lambda t)^h}{h!}$, qual è la varianza del numero di successi al tempo t?
 - $3A \lambda t$
 - $3B \frac{1}{\lambda}$
 - 3C $\frac{1}{\lambda}$
 - 3D $e^{-\lambda i}$
- D. 4 In un'urna ci sono 10 palline equiprobabili di cui 3 sono bianche e 7 sono nere. Si estraggono dall'urna delle palline senza reimbussolamento, cioé senza rimetterle nell'urna. Qual è la probabilità che la terza pallina sia bianca? (Attenzione! Non si conosce l'esito delle prime due estrazioni).
 - $4A \qquad \binom{3}{1} \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **4B** $\frac{1}{10^3}$
 - $4C \qquad \left(\frac{7}{10}\right)^2 \frac{3}{10}$
 - **4D** $\frac{3}{10}$

- **D. 5** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la media?
 - 5A (
 - 5B 1
 - 5C $\frac{1}{\sqrt{2\pi}}$
 - $5D \qquad \frac{1}{2\pi}$
- **D. 6** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la probabilità di almeno un successo al tempo t?
 - $6A \qquad \frac{1}{\lambda t}$
 - **6B** λt
 - **6C** $1 e^{-\lambda t}$
 - **6D** $e^{-\lambda t}$
- **D. 7** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_n^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la media del numero di successi su n prove?
 - 7A $\frac{n}{n}$
 - 7B p'
 - 7C np
 - **7D** np(1-p)
- **D. 8** Nella distribuzione del numero di successi al tempo t del processo di Poisson, data da $p_h(t) = \frac{e^{-\lambda t}(\lambda t)^h}{h!}$, qual è la media del numero di successi al tempo t?
 - 8A λt
 - 8B $\frac{1}{\lambda t}$
 - $8C e^{-\lambda t}$
 - **8D** $\frac{1}{\lambda}$
- **D. 9** Nella distribuzione del numero di successi su n prove, del processo Bernoulliano, data da $p_n^n = \binom{n}{h} p^h (1-p)^{n-h}$, qual è la varianza del numero di successi su n prove?
 - **9A** np(1-p)
 - **9B** *p*
 - 9C $\frac{n}{n}$
 - **9D** np

- **D. 10** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, quanto vale la varianza?
 - $10A \qquad \frac{1}{2\pi}$
 - **10B** 0
 - 10C
 - $10D \qquad \frac{1}{\sqrt{2\pi}}$
- **D. 11** Nella distribuzione Normale di densità $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-4)^2}$, quanto vale il valore dell'ascissa intorno alla quale la distribuzione risulta simmetrica?
 - 11A $\frac{1}{\sqrt{2\pi}}$
 - 11B $\frac{1}{2\pi}$
 - **11C** 4
 - 11D 2
- **D. 12** Il mazzo delle carte francesi è composto da 52 carte di 4 semi: cuori, quadri, fiori e picche. Ogni seme è composto da 13 carte: Asso, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. La probabilità dei tre eventi: A = estraggo un Asso, B = estraggo una carta di cuori, AB = estraggo una Asso so di cuori, vale: $p(A) = \frac{4}{52}$, $p(B) = \frac{13}{52}$, $p(AB) = \frac{1}{52}$. Indicare come risultano i due eventi A e B.
 - 12A Disgiunti
 - 12B Logicamente dipendenti
 - 12C Correlati positivamente
 - 12D Stocasticamente indipendenti
- **D. 13** A quale valore tende la varianza della frequenza relativa del numero delle teste su *n* lanci di una moneta simmetrica, quando *n* tende all'infinito?
 - $13A \qquad \frac{1}{\sqrt{\pi}}$
 - **13B** 0
 - 13C 1
 - $13D \qquad \frac{1}{\sqrt{2\pi}}$
- **D. 14** Qual è la probabilità di **almeno due** 5 nel lancio di 10 dadi simmetrici?

14A
$$1 - \left(\frac{5}{6}\right)^{10} - \left(\frac{10}{1}\right) \frac{1}{6} \left(\frac{5}{6}\right)^9$$

14B
$$\binom{10}{2} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14C
$$\binom{3}{1} \frac{1}{6^2} \left(\frac{5}{6}\right)^8$$

14D
$$\frac{1}{6^2}$$

- D. 15 Qual è la probabilità di ottenere una somma maggiore di 3 nel lancio di tre dadi simmetrici [0, 1, 2, 3, 4, 5]?
 - **15A** $1 \frac{20}{6^3}$
 - 15B $\frac{15}{6^3}$
 - **15**C $3!\frac{1}{6}\left(\frac{5}{6}\right)^2$
 - **15D** $\binom{6}{3} \frac{1}{6^3}$
- D. 16 Il mazzo delle carte napoletane è formato da 40 carte di 4 semi: bastoni, spade, cuori e denari, 10 carte per ogni seme. Pescando 3 carte contemporaneamente, qual è la probabilità che tutte e 3 le carte siano di denari?
 - $16A \quad \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - **16B** $\binom{10}{3} \frac{10}{40} \frac{9}{39} \frac{8}{38}$
 - 16C $\frac{10}{40} \frac{9}{30} \frac{8}{38} \cdot 3!$
 - **16D** $\frac{1}{10^3}$
- **D. 17** Supponendo che nel gioco del calcio ogni squadra abbia probabilità $\frac{1}{3}$ di pareggiare, e che i risultati delle partite siano stocasticamente indipendenti, qual è la probabilità che in 13 partite si ottengano 5 pareggi?
 - 17A $\frac{1}{\binom{13}{3}}$
 - **17B** $\binom{13}{3} \frac{1}{3^{13}}$
 - 17C $\frac{1}{213}$
 - **17D** $1 \left(\frac{2}{3}\right)^{13}$