IX - Esercizi

Esercizio 1 . Verificare che i punti $A \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ e $C \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}$ appartengono al piano $\pi: 2x - 5y + z + 11 = 0$. Determinare equazioni cartesiane della retta r asse del segmento AC e giacente su π . Verificare che $B\begin{pmatrix} -1\\3\\6 \end{pmatrix}$ appartiene ad r e determinare D in modo che il quadrilatero ABCD sia un rombo. Calcolare l'area di tale rombo.

Esercizio 2 . Verificare che le rette

$$r: \begin{cases} x = t \\ y = -2t \\ z = -2t \end{cases} \text{ ed } s: \begin{cases} 2x - 2y + 3z - 4 = 0 \\ y - z - 2 = 0 \end{cases}$$

sono parallele e distinte. Determinare l'equazione del piano che le contiene.

Esercizio 3 . Verificare che le rette

$$r: \left\{ \begin{array}{ll} x - y &= 0 \\ x - z &= 0 \end{array} \right. \quad \text{ed} \quad s: \left\{ \begin{array}{ll} 2x + z - 1 &= 0 \\ y &= 0 \end{array} \right.$$

sono sghembe. Calcolare il coseno dell'angolo \hat{rs} con r orientata secondo le xcrescenti ed s orientata secondo le x decrescenti. Determinare le coordinate di un vettore \mathbf{n} che sia perpendicolare sia ad r che ad s. Determinare le equazioni cartesiane dei piani (paralleli tra loro) α e α' contenenti rispettivamente r ed s e perpendicolari ad n. Calcolare la distanza fra α e α' .

Esercizio 4 . Nello spazio sono dati il punto $P_0 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ la retta r :

$$\begin{cases} x + 2y - z + 1 = 0 \\ x - y + 2z + 2 = 0 \end{cases}$$

- $\begin{cases} x+2y-z+1=0\\ x-y+2z+2=0 \end{cases}$ (a) Determinare l'equazione cartesiana del piano α contenente P_0 ed r.
- (b) Scrivere equazioni parametriche e cartesiane della retta r' passante per P_0 e parallela ad r.

- (c) Determinare equazioni cartesiane della retta s passante per P_0 e che sia perpendicolare ed incidente ad r.
- (d) Detto $\rho \mathbf{v}$ un vettore direttore di r, determinare ρ in modo che il prodotto vettoriale $(\rho \mathbf{v}) \wedge \overrightarrow{OP_0}$ abbia lunghezza $5\sqrt{2}$ (O essendo l'origine delle coordinate).

Esercizio 5 . Nel piano è dato il punto $P_0\begin{pmatrix} 1\\1 \end{pmatrix}$. Scrivere l'equazione cartesiana della retta r passante per P_0 e di parametri direttori $\ell=2, m=-1$ e calcolare le coordinate dei punti A e B intersezioni di r con gli assi x ed y rispettivamente. Scrivere l'equazione cartesiana della retta s passante per l'origine O e perpendicolare ad r. Determinare su s il punto C di ascissa positiva e tale che il triangolo di vertici A, B, C abbia area 9. Scrivere l'equazione cartesiana della circonferenza circoscritta al triangolo ABC. Verificare infine che P_0 appartiene alla curva C di equazioni parametriche $\begin{cases} x = t^2 + 2t + 1 \\ y = t^2 - t + 1 \end{cases}$ e calcolare l'equazione cartesiana della retta tangente a C in P_0 .

Esercizio 6 . Sia $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ l'operatore rappresentato nella base canonica dalla matrice $A = \begin{pmatrix} 1 & -2 \\ -2 & -2 \end{pmatrix}$.

- (a) Determinare una base ortonormale di autovettori di T.
- (b) Verificare se la conica C: $x^2 4xy 2y^2 6 = 0$ è generale o degenere.
- (c) Determinare l'equazione canonica di \mathcal{C} .
- (d) Determinare le equazioni cartesiane degli eventuali assi di simmetria di \mathcal{C} .

Esercizio 7. Data la conica $C: 3x^2 + 10xy + 3y^2 + 4x - 4y - 2 + 0$:

- (a) verificare che \mathcal{C} è una conica generale;
- (b) determinare se \mathcal{C} è un'ellisse, iperbole o parabola;
- (c) determinare l'equazione canonica di \mathcal{C} (si consiglia di usare il metodo degli invarianti;
- (d) determinare un riferimento cartesiano $RC(O'; \mathbf{i'}, \mathbf{j'})$ in cui $\mathcal C$ abbia equazione canonica.