Esame di Geometria BAER Appello del 19/1/2021 testo A

Cognome e Nome	Firma
COSHOIIIC C I TOIIIC	1111100 1111111111111111111111111111111

L'esame consiste di 4 domande, e ha la durata di 2 ore e 30 minuti. Per le prime due domande bisogna scrivere solo il risultato nello spazio sottostante. Per le ultime due domande è richiesto anche il procedimento, da scrivere in bella copia su un foglio separato. Attenzione: le risposte non sufficientemente motivate, o quelle che contengono solo conti senza spiegazioni, non saranno valutate. La brutta copia non è da consegnare. Segnare in basso sul retro del foglio eventuali date nelle quali per VALIDI MOTIVI non si è disponibili per sostenere l'esame orale.

Esercizio 1.

(Scrivere solo i risultati). Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo con matrice canonica

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

- (a) Si trovi una base del nucleo e una dell'immagine di f. (3 punti)
- (b) Si trovi una matrice diagonale D e una matrice M tale che $M^tAM = D$ (4 punti).

Esercizio 2.

(Scrivere solo i risultati). Si consideri l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}, \qquad f \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \qquad f \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- (a) Si scriva la matrice canonica di f. (4 punti)
- (b) Se esiste, trovi l'inversa di f (motivare la non esistenza, o, se l'inversa esiste ma non si riesce a calcolarla, dire perchè esiste dà un punto). (3 punti)

Esercizio 3.

(Svolgimento in bella copia). Sia V = Mat(2) lo spazio delle matrici due per due a coefficienti reali, posto

$$B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

consideriamo i sottospazi

$$E = \{X \in V | BX = XB\}$$

$$F = \{X \in V | BX = -XB\}$$

- (a) Si trovino le dimensioni e basi di E e di F. (2 punti)
- (b) Si trovino le dimensioni e basi di $E \cap F$ e E + F. (2 punti)
- (c) Si trovi, se possibile, un esempio di una matrice non nulla C e di una matrice non nulla X tale che si abbia sia CX = XC e CX = -XC. La matrice C può essere invertibile? Spiegare perchè. (4 punti)

Esercizio 4.

(Svolgimento in bella copia). Si consideri il piano $\pi: x+2y-z+2=0$ e le rette

$$r_1: \begin{cases} 2x+y+z+1=0 \\ x+y+2z-1=0 \end{cases}$$
 $r_2: \begin{cases} x-y+z+2=0 \\ 3y-2z=0 \end{cases}$

- (a) Si trovino equazioni cartesiane della retta r, contenuta in π e perpendicolare ed incidente a r_1 . (4 punti)
- (b) Si determini la posizione reciproca di r_1 e r_2 e si trovi l'equazione del piano parallelo a r_2 contenente r_1 (2 punti)
- (c) Si trovi la proiezione ortogonale di r_2 sul piano $\pi': x + y + z = 0$ (2 punti)