ANALISI MATEMATICA 1 - ING. AEROSPAZIALE

10/03/2025

Prof.ssa M.R. Lancia - Prof. Fabio Giordano

Testo A

Cognome	 Nome	• • • • • • • • • • • • • • • • • • • •	•••••	
Matricola	Anno	di corso		

Risolvere per esteso i seguenti esercizi, motivando adeguatamente i procedimenti seguiti e mettendo in evidenza ogni risposta.

1) Calcolare l'area della regione piana sottesa dalla curva

$$y = \sin x \ln(1 + \cos x)$$

relativamente all'intervallo $\left[\frac{4\pi}{3}, \frac{5\pi}{3}\right]$.

2) Data la funzione

$$F(x) = \int_{-1}^{x} \frac{1 - e^{t+1}}{(t-2)(1 - e^t)\sqrt{t+2}} dt$$

determinare l'insieme di definizione e l'insieme di derivabilità di F. Determinare gli intervalli di monotonia e gli eventuali punti di massimo e minimo relativi di F nel suo insieme di definizione.

3) Studiare al variare di $x \in \mathbb{R}$ il carattere della serie

$$\sum_{k=0}^{+\infty} \frac{\sin^2(2x)}{(1+x^4)^k}.$$

4) Dare la definizione di serie convergente, divergente, indeterminata. Enunciare e dimostrare la condizione necessaria di convergenza delle serie. Fornire esempi e controesempi.