ANALISI MATEMATICA 2(6 crediti)

Ingegneria Civile **05/07/2010**

Prof.ssa M. Chiricotto - Prof.ssa M.R. Lancia - Prof.ssa E. Vacca

Testo A

Cognome	Nome
Matricola	

Risolvere per esteso i seguenti esercizi, motivando adeguatamente i procedimenti seguiti e mettendo in evidenza ogni risposta.

1) Sia $\alpha \in \mathbb{R}^+$. Data la funzione

$$f(x,y) = \frac{\log(1 + x^2 + y^2)}{(x^2 + y^2)^{\alpha}}$$

determinare il suo insieme di definizione, stabilire per quali $\alpha \in \mathbb{R}^+$ è prolungabile per continuità in (0,0). Indicata con \tilde{f} la sua prolungata, sia $\alpha \in (0,1)$, stabilire per quali direzioni \vec{r} ammette derivata direzionale in (0,0).

2) Dato il campo vettoriale

$$\mathbf{F} = \left(-e^{-x}\cos\left(\frac{\pi}{2} - y\right); e^{-x}\sin\left(\frac{\pi}{2} - y\right)\right)$$

stabilire se è conservativo. In caso affermativo determinare il potenziale U(x; y) tale che U(0; 0) = 0. Calcolare inoltre

$$\int_{+\partial D} \mathbf{rot}(\mathbf{F}) \cdot \mathbf{n} \ ds$$

dove D è il cerchio di centro l'origine e raggio 2.

3) Risolvere la seguente equazione differenziale

$$y'' - y' - 2y = 4e^{-2x} - 2.$$

Determinare inoltre le eventuali soluzioni che ammettono asintoto orizzontale per x che tende a $+\infty$.