ATTENZIONE
- La durata della prova è di 2.30 ore.
- Non è consentito uscire dall'aula durante la prova.
- E' vietato consultare libri e appunti di fisica.
- E' vietato tenere telefoni cellulari o strumenti mediatici equivalenti accesi e l'uso di calcolatrici programmabili.
- Tenete il testo del compito se consegnate dopo 1 ora e mezzo dall'inizio della prova.
- Per essere ammessi alla prova orale occorre aver svolto bene almeno due esercizi del compito.

ESERCIZIO 1
Un furgone di massa $M=2 \times 10^3$ kg percorre una strada rettilinea in salita a velocità $v = 50$ km/h costante. Il motore eroga una potenza costante $W = 7 \times 10^4$ W. La strada forma un angolo $\alpha = 6^\circ$ rispetto all'orizzontale. Calcolare il modulo della forza di resistenza dell'aria che agisce sul furgone.

ESERCIZIO 2
Un corpo di massa $m=50$ kg si trova sospeso a $h=10$ m dal suolo mediante una fune di massa trascurabile e inestensibile, che passa intorno ad una carrucola di raggio $R=15$ cm. Ad un certo istante la fune viene lasciata libera ed il corpo comincia a cadere. Tenendo presente che la fune fa ruotare la carrucola, determinare la velocità con cui il corpo arriva a terra. Momento di inerzia della carrucola rispetto ad un asse che passa per il suo centro: $I=0.45$ kg m2.

ESERCIZIO 3
Un corpo di massa $m=0.1$ kg si muove lungo una guida rettilinea orizzontale scabrous. Ad un certo istante urta una seconda massa $M=0.3$ kg, ferma sulla stessa guida. L'urto è perfettamente elastico. La velocità di m all'istante dell'urto è $v=4$ m/s. Calcolare: a) la velocità di m subito dopo l'urto; b) la distanza percorsa da M prima di fermarsi, sapendo che il coefficiente d'attrito dinamico tra la guida e ciascuno dei due corpi è $\mu_f=0.34$.

ESERCIZIO 4
Una mole di un gas perfetto monoatomico compie il ciclo rappresentato in figura. La trasformazione AB è un'espansione adiabatica irreversibile; BC è una compressione isoterma reversibile; CA è una trasformazione isocora reversibile, durante la quale la temperatura assoluta del gas raddoppia. Se il rendimento del ciclo è $\eta = 0.27$, calcolare la variazione dell'entropia dell'ambiente in ogni ciclo.
Sapienza Università di Roma
Facoltà di Ingegneria Civile ed Industriale
Corso di Laurea in Ingegneria Chimica
A.A. 2013/2014 – Appello straordinario di Fisica 1 del 17 aprile 2014
Soluzione degli esercizi

ESERCIZIO 1
\[\mathbf{F}_{\text{tot}} = M\mathbf{g} + \mathbf{A} + \mathbf{R}_n + \mathbf{F}_{\text{motore}} = 0 \quad \Rightarrow \quad \mathbf{A} = -\mathbf{F}_{\text{motore}} - M\mathbf{g}\sin\alpha \]
\[F_{\text{motore}} = \frac{W}{v} = 5940 \, N \quad \Rightarrow \quad A = 2990 \, N \]

ESERCIZIO 2
Il corpo cade e, di conseguenza, la carrucola ruota. Conservazione dell'energia meccanica:
\[mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \quad \Rightarrow \quad v = 11.8 \, m/s \]

ESERCIZIO 3
Urti elastico centrale:
\[\begin{align*}
 & mv = mv' + MV' \\
 & \frac{1}{2}mv^2 = \frac{1}{2}mv'^2 + \frac{1}{2}MV'^2 \\
 \end{align*} \]
\[\begin{align*}
 & m(v - v') = MV' \\
 & m(v - v')(v + v') = MV'^2 \\
 \end{align*} \]
\[\begin{align*}
 & v + v' = V' \\
 & m(v - v') = M(v + v') \\
 \end{align*} \]

Tratto percorso da \(M \) prima di fermarsi:
\[\frac{1}{2}MV'^2 = \mu_g Mg d \quad d = 0.6 \, m \]

ESERCIZIO 4
\(\Delta S_{\text{universo}} \) è quella delle sorgenti che scambiano calore con il gas durante il ciclo, cioè lungo le trasformazioni isoterma BC ed isocora CA. Essendo trasformazioni reversibili, \(\Delta S_{\text{universo}} = -\Delta S_{\text{gas}} \)

isoterma BC:
\[\Delta S = \int_B^C \frac{\delta Q}{T} = \int_B^C \frac{\delta L}{T} = \int_B^C \frac{p \, dV}{T} = nR \ln \frac{V_C}{V_B} \]
isocora CA:
\[\Delta S = \int_C^A \frac{\delta Q}{T} = \int_C^A \frac{n c_v \, dT}{T} = n c_v \ln \frac{T_A}{T_C} = n c_v \ln 2 \]

\[\eta = 1 + \frac{Q_{\text{ciclo}}}{Q_{\text{assorbito}}} = 1 + \frac{nR T_C \ln(V_C/V_B)}{n c_v (T_A - T_C)} \]
\[\ln \frac{V_C}{V_B} = \frac{3}{2} (\eta - 1) \quad \Rightarrow \quad \Delta S_{\text{gas BCA}} = \frac{3}{2} R (\eta - 1 + \ln 2) = -0.46 \, J/K = -\Delta S_{\text{universo}} \]

essendo: \(n = 1 \) mol e; \(c_v = \frac{3}{2} R \); \(T_A - T_C = T_C \)