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Abstract

A mathematical model, based on a statistical system approach, has been implemented and
tested on the basis of a four-year-long experimental data set, with the aim of analyzing the
performance and clinical outcome of an existing medical ward, and predicting the effects that
possible readjustments and/or interventions on the structure may produce on it. The dynamics
of the system is assumed to be connected to a variable called atmosphere that refers about the
perceived social and organizational climate, as well as the comfort and ease realized in the ward.
In this context, the atmosphere is intuitively related to the “quality” that is (or is perceived as
being) offered by the service, as it affects the ability to satisfy the patients’ needs, to provide a
livable environment for patients and medical staff, and to guarantee more efficient performances
and a more complete professional development. Identifying variables, parameters and events
that control the atmosphere is therefore of the deepest importance from a social and health-care
point of view. The proposed interdisciplinary approach, referring to paradigms of physical and
mathematical models integrated with theories and methods typical of social sciences, has chances
of gaining the attention of the scientific community in both fields, and higher possibilities of
obtaining appreciation and generalization.

1 Introduction

Over the past decade there has been an increasing interest in mathematical models that describe
and analyze complex structures and processes such as interacting systems of human beings. It
is not infrequent that mathematical theories that are well-known in some research areas strongly
contribute to the creation of new methods and perspectives even in fields remote to those that
motivated their introduction. This is the case of so-called generalized kinetic models, which proved
to represent a fruitful predictive and descriptive tool not only in describing events of plasma physics,
but also in the area of social sciences and even in highly organized human structures. Generalized
kinetic models transfer the methodology developed for systems of a great number of interacting
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particles (such as Boltzmann and Vlasov equations, with direct interactions among the particles or
mean field terms and external forces [1]) to various other fields of research, such as traffic dynamics
(see, for instance, [2, 3, 4, 5]), cellular dynamics (see, among others, [6, 7, 8, 9, 10]), social and
population dynamics [11, 12, 13, 14, 15, 16] and biological systems in general [17, 18, 19, 20].
Various models of the classical mathematical kinetic theory have been investigated and generalized
in several contexts, [21, 22, 23]. The interested reader can find thorough reviews of the theory and
applications of generalized kinetic models in the monographs [24, 25, 26, 27].

Motivation. In Ref. [30], on the lines of the investigations started in [28, 29], the authors propose
a further extension of generalized kinetic theory to obtain the (statistical) description of the time
evolution of a global variable - “atmosphere” - related to the quality of a complex system such as a
medical ward. The work was originally motivated by the analysis of experimental data collected for
almost 10 years in an acute psychiatric in-patient care unit (SPDC, located in San Pietro Vernotico,
Brindisi - Italy) under the direct responsibility of one of the authors (A.V. Serio, MD), in the frame-
work of a regional research project for monitoring and improving the quality of psychiatric wards.
The ward has been considered as a closed system containing two populations: patients and staff
(medical and nursing). The dynamics, and the mutual relations among the individuals, have been
modelled as dependent at various degrees on the occurring (or perceived as occurring) atmosphere,
and on the effects produced on each individual by the performance/behavior of all the others. The
experimental data collected over the years are both quantitative and qualitative and include: 1.
monitoring a global variable called Ward Atmosphere (or also “therapeutic atmosphere”); 2. pres-
ence and status of medical and nursing staff (on three shifts per day); 3. critical or sentinel events
(such as episodes of aggressiveness or violence, accidents, restraints, escapes, etc); 4. internal and
external events both of positive and negative nature (such as visits by mental health community
teams or relatives, social activities, leaves; uneasy admissions, such as patients on involuntary
admission or at their first hospitalization); 5. ordinary flux data (daily admissions/discharges of
patients).

The concept of climate or atmosphere is well-known in the specialized medical and sociological
literature since the 1950s. According to the World Health Organization [31], the most important
single factor in the efficacy of the treatment given in a mental hospital appears to be an intangible
element which can only be described as its atmosphere; and, in attempting to describe some of the
influences which go to the creation of this atmosphere, the type of relationship between people that
are found within it is of utmost relevance.

Climate can be thought of both as organizational and psychological nature. Organizational
climate is a relatively stable feature that is experienced by the members of a given structure [32],
possibly generated by the interactions among the members [33, 34], and influencing their behavior.
Psychosocial climate of in-patient units proved to be related to both patient satisfaction and clinical
outcome [35]. Moreover, the working conditions of the entire staff are related to patient satisfaction
and patients’ perceptions of the treatment environment [36, 37]. As a matter of facts, patients’
perception of ward atmosphere is a clinically meaningful measure that appears to be a strong
predictor of satisfaction, as well as a valid indicator of quality of care [38, 39, 40], and is tightly
correlated to the values of the ward atmosphere as carefully measured by the staff.

As it is clearly understood, the problem of attributing the most conceivable value at each instant
of time to the climate is a difficult and questionable matter. One of the most commonly used
Social Climate Scales is the Ward Atmosphere Scale (WAS), an extensively researched instrument
in clinical settings [41, 42]. However the WAS assesses the climate of an hospital-based psychiatric
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treatment as a continuation of a set of data localized in time: it assumes that they remain constant
for a relatively long period of time, typically some months. It is the authors’ opinion that in this
way the peculiar property of the atmosphere, namely its stemming from a dynamic process of
actions and of individual and collective decisions in a continuous stream of exchanges, may only
scarcely be achieved, and that a series of answers to a single questionnaire may provide just one
timed information: the WAS seems to capture only static aspects of the atmosphere.

On the contrary, in the present study the atmosphere has been considered as a dynamical
variable, directly dependent on the individual perceptions of all the surrounding (environment and
other actors) and hence able to refer about the functioning and organization of the structure with a
remarkable amount of data and acceptable adherence also on relatively short time scales as hereafter
clarified. Indeed, the atmosphere has been evaluated by the staff 3 times a day (more precisely,
near the end of each shift) since Jan 11, 2001, and filed according to a color code presented in
Table 1. The table summarizes the criteria according to which the atmosphere has been evaluated,
and the fact that the evaluation takes into account the state of both patients and operators.

In order to allow numerical and statistical investigations on the collected data, the color code has
been (somewhat questionably) converted into the ordered set of five positive integers {2, 4, 6, 8, 10},
and hence on an equal-interval (ordinal Likert) scale, with 2 corresponding to green and 10 corre-
sponding to red.

� green: everything is fine in the ward and there are no negative emotions in the staff.

� blue: the behavior of one or more patients makes the staff feel uneasy.

� yellow: the ward feels crowded, or there are patients in a more acute state, or behaving
somewhat violently. The staff feels worried.

� orange: the ward feels very crowded and one or more patients in critical conditions become
problematic or aggressive, requiring some exceptional intervention. The staff feels on alert
(fearful, powerless, etc.).

� red: it becomes necessary to restrain one or more patients, or to call for external help. The
staff cannot withdraw.

Table 1: The color code for the Ward Atmosphere

Whether individual Likert items can be considered as interval-level data, or whether they should
be considered merely ordered-categorical data is a subject of disagreement. Such items could be
regarded only as ordinal data, because, especially when using only five levels, one cannot assume
that all pairs of adjacent levels are perceived as equidistant. On the other hand, to treat it merely
as an ordered set without specifying a distance would lose information. This issue will be further
discussed in Sec. 4, when dealing with the statistical significance of the model at study.

Methodology. The proposed model is of statistical nature: it is based on the time evolution
equations for the population distributions over a “microscopic” state regarded as a random variable,
which in the literature on generalized kinetic models is referred to as “activity”. Evolution is driven
both by the interactions among the system actors, i.e., patients and staff, and by various external
and internal events. Obviously, the activity variable takes on different meaning when referred to
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individuals of different populations. In the case of patients, activity is related to their mentally
disturbed behavior; for staff, it is related to the stress they are subject to in performing their
tasks. Due to the peculiar kind of observed data, the statistical description of the two populations,
patients and staff, has been assumed to be correctly acquired by discretizing their activities into
two sets of five real values; correspondingly, two sets of five probabilities refer about the percentage
of actors that at any instant of time are expected to be found in each of the five discrete states
that correspond to the color code in Table 1. The reason to prefer this “kinetic” description to a
microscopic, individual, deterministic one where each single actor determines and evolves according
to his own activity value is twofold. On one hand it is clear that such a microscopic dynamics can
hardly be specified; on the other hand, in our approach individual interactions among the actors
represent isolated though important events that can be singled out and differently treated with
respect to the other kind of events that drive the dynamics, i.e. the global ones. A strictly
“macroscopic”, averaged, continuous model of the ward is, however, unjustifiable not only because
of the small number of actors under exam, but also since in this case the model would acquire
a totally phenomenological nature. Therefore, we developed a “mesoscopic” picture that takes
advantage of a probability density function to account for the uncertainty due to the reactions of
individuals both to what they perceive of the surrounding social climate, and to the effects of single
(pairwise) interactions with the other individuals of the system. As such, this picture proves to be
able to refer about averaged measurable quantities, such as the ward atmosphere seen as a weighted
moment, though subject to and driven by individual direct behaviors.

Under these assumptions, the mathematical model reduces to a sequence of correlated initial
value problems for a system of 10 coupled, nonlinear, nonlocal ordinary differential equations for
the probability variables. The equations depend on a set of physical parameters that describe, at
such mesoscopic scale, the nature and frequency of the direct interactions among the actors, as
well as the effect of external positive or negative events, work-load, and social terms (which specify
how the individuals are affected by the overall ward state). Aim of the analysis is to make use of
the history data set, and single out and characterize those physical parameters that control the
dynamics. The ultimate goal is to predict, on a short-time scale, the possible outbreak of a crisis,
and, on a long-time scale, the effects that specific planned or un-planned readjustments of the
structure may produce on it and on patients and staff in terms of stress and satisfaction. To this
aim, numerical simulations have been performed to provide the system evolution due to different
initial and external conditions, both when these were the truly observed ones, and hence the results
comparable with the collected data, and when they were merely simulated to analyze the single
parameters influence on the system dynamics. The outputs of the numerical simulations will be
discussed in the following and eventually compared with the actual data. At present, our principal
goal has been the tuning of model parameters so as to best fit the experimental data. In the future,
the model will be used as a predictive tool to help understanding which parameters/events most
deeply influence the quality of the structure, and which adjustments, on different time scales, may
help improving the ward performance.

The paper is organized as follows. In Sec. 2 we describe the mathematical model, by adapting
the one proposed in [30] to the specific case under exam. In Sec. 3 we discuss the fine-tuning of
the model parameters, and illustrate the output of the numerical simulations performed to solve
the initial value problem. In Sec. 4 we compare the output of the numerical simulations with the
experimental data and briefly discuss the statistical significance of the model. Sec. 5 is devoted to
some concluding remarks.
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2 Description of the specific model

To some extent, the general mathematical aspects of the model that will be discussed in what
follows have already been presented in [30], which the interested reader is referred to. In the present
article we explicitly and minutely adapt that general construction to the specific case under exam.
Therefore, for clarity reasons and easiness of exposition, here we shall use the terminology and
properties that better describe this case, leaving all the possible generalizations to an easy guess.
On the other hand, we all the same describe some parameter, or whole term in the equations, even
when on the state of the facts it proved to be either useless, or at least less relevant than others.

As mentioned in the Introduction, the model involves, on one hand, a statistical picture about a
set of (macroscopic) variables that may be related to the quality of the system; on the other hand,
as is typical of generalized kinetic models, an individual picture about a (microscopic) variable,
which is referred to as activity of the actors. Evolution equations are then obtained to describe the
dynamics of the probability functions over the activities of each population.

The system consists of two different populations, P1 and P2: population P1 is composed by
N1(t) patients; population P2 by N2(t) operators (staff members, i.e. nurses, medical doctors, so-
cial workers). As we will clarify later, the system is closed during each evolution interval; moreover,
unlike other generalized kinetic models, here obviously no changes of populations are allowed. In-
dividuals of the same population are identical, and only addressed to by the state variable denoting
their activity: u1 describes the psychotic behavior1 of the patients; u2 characterizes the stress level
of the operators.

The system description requires a probability density function per each actor population over
the corresponding state variable. On the lines of Table 1, in the present model each state variable
ui is assumed to vary on a finite discrete set of values Di containing just five elements

u1 ∈ D1 := {u1,1, u1,2, . . . , u1,5} , u2 ∈ D2 := {u2,1, u2,2, . . . , u2,5} , (2.1)

the value ui,h referring about the status (stress/psychotic behavior) felt by Pi-actors at level h.
Therefore, each of the two densities reduces to five time-dependent probabilities. It is worth
mentioning that as it happens for the atmosphere also the activity variable lacks of any a pri-
ori justifiable metric; the most notable consequence of this fact is that no interaction distance is
between the individuals is available. In what follows, the activities are represented by the values
D1 = D2 = {.1, .3, .5, .7, .9}. Correspondingly, the sought for probability functions reduce to ten
functions of time:

fi,h(t) : [0, T ] ⊂ R 7→ fi,h(t) ∈ [0, 1], i = 1, 2, h = 1, . . . , 5 (2.2)

5
∑

h=1

fi,h(t) = 1 ∀t ∈ [0, T ] . (2.3)

The value fi,h(t) represents the expected probability that a measurement (at time t) about the
activity of all Pi-actors produces value ui,h. The choice of 5 discrete states per population is
the result of a balance between accuracy of the description, adherence to the physical model and
feasibility of the analysis of the numerical simulations.

The evolution of the probability functions is defined along a sequence of unequal, adjacent time
intervals. As a matter of fact, the intrinsic dynamics of the ward is based on three shifts per day,

1For the sake of precision, we specify that here and in the following we use the expression “psychotic” behavior

to briefly denote any altered or mentally disturbed behavior, without necessarily referring to the specific mental

disturbance.
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the first two are of length τ2 = 7 hours, the night shift lasts τ1 = 10 hours. Let M be the total
number of days under exam (in our case, M = 1428), m = 1, . . . ,M the ordinal of the m-th day
Im, and n = 1, . . . , 3M the ordinal of the n-th shift In (note that these last ones are related only
to the staff and not to the patient population, as we shall clarify below). Time is considered a
continuous real variable defined on

[0, T ] = [0 =: t0, t1) ∪ [t1, t2) ∪ · · · ∪ [t3M−2, t3M−1) ∪ [t3M−1, t3M := T ], (2.4)

tn :=

{

tn−1 + τ1 if n = 3m,
tn−1 + τ2 otherwise,

m = 1, 2, ...,M ∈ N,
n = 1, 2, . . . , 3M ,

(2.5)

In := [tn−1, tn) , Im := [t3(m−1), t3m) . (2.6)

The system is assumed to be completely specified by its state at each of the instants tn−1, n =
1, 2, . . . , 3M . Discontinuous changes in the composition of population P2 are allowed at each of
these instants; conversely, population P1 is assumed to undergo discontinuous changes only at
instants t3m−2 when patients are registered as discharged or admitted. At instants t3(m−1) specific
events may initiate or terminate; at each tn−1 staff personnel turns over. The dynamics is therefore
determined by a chain of 3M correlated initial value problems: given (according to the data, to
the preceding dynamics, and partly guessed) the initial conditions, i.e., the values fi,h(tn−1), the
model produces the time evolution fi,h(·) : t 7→ [tn−1, tn). Functions f2,h(t) are allowed to have 1st

kind discontinuities at points tn−1; functions f1,h(t) only at points t3m−2, m = 1, ..,M ; functions
Ni : t ∈ [0, T ] → Ni(t) ∈ N, denoting the number of actors of population Pi, are stepwise constant
for t− τ2 ∈ Im and right continuous. No other discontinuities are allowed.

At the macroscopic level, the system is described by conveniently chosen mean variables such
as

Ui(t) = Ni(t)
5
∑

h=1

ui,h fi,h(t) , i = 1, 2 . (2.7)

In conclusion, as far as the model equations are concerned, they can shortly be set as:

d

dt
fi =

10
∑

k=1

αi,k fk +
10
∑

h,k=1

βh,k fhfk , i = 1, . . . , 10, (2.8)

where the coefficient matrix α explicitly depends both on time and on appropriate ensemble means,
and the matrix β has the structure of a “conservative” matrix, dependent on time as well. In this
coincise way, however, the physical meaning of the various terms in the equations is very difficult
to pursue and justify if only at a phenomenological level. Therefore we follow the lines of a
kinetic picture and, as already mentioned, to describe the various terms of the evolution equations
we maintain the same terminology that is by now usual in the literature of generalized kinetic
modelling. Although not necessary when dealing with a system of ordinary differential equations,
all the same we feel that this correspondence clarifies the meaning and the source of each term to
be constructed. In this sense, the evolution equations about functions f := (fi,h) are mass balance

equations in the state space. Specifically, the variation rate of each function fi,h is the sum of
its direct variation with respect to time plus a flow term due to external actions and to internal
actions of global nature; and the variation rate equals the balance between a gain term and a loss

term, both referred to the specified probability function and due to internal interactions. Hence,
the evolution equations may also be written in the form:

d

dt
fi,h + Φi,h[f ] = Bi,h[f ] i = 1, 2 , h = 1, . . . , 5 (2.9)
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where Φi,h[f ] has the meaning of a global or externally driven flow change and Bi,h[f ] refers about
the balance of the internal direct interactions (of pairwise type) among the actors of the system.

In the following section we minutely describe how the mean field term Φi,h[f ] and the interaction
term Bi,h[f ] are modelled in the specific case study. In particular, to help the reader realize the
proper order of magnitude of the various parameters involved in the numerical reconstruction of the
experimental data, in Sec. 3 we specify the actual value of each coefficient used in the computations.

2.1 Modelling the field terms Φi,h[f ]

In describing the field terms Φi,h, that represent the effect of external and ensemble actions on the
total dynamics, we refer to a hydrodynamic picture, and consider the present model as the discrete
version of a “parent” continuous one, as described in Ref.[30]. If in Eq. (2.9) the only term that
depends on interactions is the Bi,h, and if the latter depends on interactions only, then the term
Φi,h can be thought of as a flow. With this in mind, let subscript i address the population of actors
being described: patients (i = 1) or staff (i = 2), let subscript h run over the possible state indices:
h = 1, . . . , 5, and let

Ki,h[f ] : [0, T ] → R , i = 1, 2, h = 2, . . . , 5

denote the functions that describe the convective speeds, or social drifts, experienced by individuals
of population Pi between (adjacent) states h − 1 and h. The terms Φi,h are set as follows. The
states are thought of as elementary cells (contiguously) aligned according to the natural ordering, so
that Ki,h > 0 means that members of population Pi are (for various reasons that will be explained
below) subject to a drift towards the next higher valued cell, namely those that are in state h− 1
are pushed to state h, and the reverse if Ki,h < 0. Let Φ−

i,h represent the algebraic flow from h− 1
to h (loosely speaking, the mass per unit time that enters the elementary cell h from cell h − 1),
then Φ+

i,h := Φ−
i,h+1 is the mass leaving cell h towards cell h+ 1, for h = 2, . . . 4. For completeness,

let us also denote by Φ−
i,5 the external inflow to cell 1 and by Φ+

i,5 =: Φ−
i,6 the external outflow from

cell 5, both of which are assumed to be zero at each instant of time. Then we have:

Φi,h[f ] = Φ−
i,h+1[f ]− Φ−

i,h[f ] , (2.10)

and

Φ−
i,h[f ] =

{

Ki,h[f ] fi,h−1 if Ki,h > 0
Ki,h[f ] fi,h otherwise

, Φ−
i,1 = Φ−

i,6 = 0 .

We assume that the drifts do not depend directly on the activity variable, i.e. that functions
Ki,h =: Ki do not vary with index h, and we set

Φi,h =











Ki (fi,h − fi,h−1) if Ki > 0 ,

Ki (fi,h+1 − fi,h) if Ki < 0 ,

0 if Ki = 0 ,

(2.11)

or, shortly,
Φi,h = |Ki| (fi,h − fi,j) , with j = h− sgn(Ki) .

In other words, again following the lines of generalized kinetic theory, we assume that individuals
undergo an internal dynamics together with a social one, and that interactions only affects the
individual state variable u and with sharp changes on it, whereas the social field determines the
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rate of change of the activity by a flow term that may be seen as an average:
∫

P(t;u∗) f(t, u∗) du∗

over the whole ensemble. The specific form of functions Ki[f ](t) that are used in the following is:

Ki[f ](t) =
[

β1 ∆U(t) + β2 ∆C(t)− pi CC(t)− ri EEi(t) + vi

]

cn(t) , (2.12)

where βi, pi, ri, vi, for i = 1, 2, are appropriate real parameters (discussed in Sec. 3), and where
the function cn(t) ≥ 0 is properly set to account for the reduction of the dynamics at night (see
Eq. (2.4)) as follows:

cn(t) =

{

c̃n if t ∈ [t3m−1, t3m) , m = 1, . . . ,M
1 otherwise ,

(2.13)

where c̃n = 0.4. The meaning of the various terms in Eq. (2.12) (all of collective nature) is
specified below, and the actual values that have been attributed to the corresponding parameters
are discussed in Sec. 3.

Mean activity. The function

∆U(t) := α(U1 − U c
1) + (1− α)(U2 − U c

2) , U c
i := Ni(t)wi

5
∑

k=1

ui,k (2.14)

refers on how mean values Ui of the activities [see Eq. (2.7)] influence the evolution of the system.
In particular, Ui acts on functions Ki with a positive (resp. negative) term depending on whether
the sign of Ui − U c

i is positive (resp. negative). The critical values U c
i have been defined in terms

of two real, nonnegative weights w1, w2.

Climate field. The function

∆C := γ(C1 − Cc
1) + (1− γ)(C2 − Cc

2) , Ci :=
∑

k≥kc
i

fi,k(t) (2.15)

directly accounts for the possible occurrence of a large fraction of the population being in highly
negative states, specifically accounted by the threshold levels kci , and (real) parameters Cc

i .

The remaining terms in Eq. (2.12) are peculiar of our system in that they depend on the
occurrence of certain events that are recorded as data, and listed in Table 2 according to their
nature, i.e. positive external events, negative external events, and sentinel events.

External events. External events affect the system through the stepwise constant, real valued,
global function EEi(t):

EEi(t) =
M
∑

m=1

∑

q∈Q

eqνq(t) + e
(m)
0 δi,2 . (2.16)

Each event is identified by a real value eq selected in a finite set E := {eq1 , eq2 , . . . , eqE}, eq ∈ R,
and q ∈ Q := {q1, q2, . . . , qE} ⊂ N, that collects all the possible, positive and negative, external
events. The effects of an external event start at the beginning of an evolution interval Im :=
[t3(m−1), t3m) and last for that interval only; the E-tuple of functions (νq1 , νq2 , . . . , νqE ) has values

ν
(m)
q ∈ {0, 1, 2, . . .}, q ∈ Q, which specify the number ν

(m)
q of occurrences of q-th event in interval

Im, i.e. νq(t) = ν
(m)
q for t ∈ Im, m = 1, 2, . . . ,M , and, in the case of positive events, the values
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eq are reduced by a half during the night shifts, see Table 2). In addition, and only in the case
of population 2 (the staff), a further term is added (δi,2 = 1 if i = 2, and zero otherwise) whose

strength e
(m)
0 accounts for the duty overload on the ward operators, not only because negative

events increase the need of attending to the patients, but also because new admissions, discharge,
and overcrowding generate an extra duty. In fact, the workload of the operators is directly affected
by the admissions/discharges of the day, and usually patients are admitted either at the end of the
morning shift, or at the very beginning of the afternoon shift. This motivates the following logics
that has been considered in order to compute the workload for the day:

e
(m)
0 = − ǫ0

8
∑

q=5
eq ν

(m)
q

N2(t3m−3) +N2(t3m−2) +N2(t3m−1)
− ǫ0

10
∑

q=9
eq ν

(m)
q

N2(t3m−3) +N2(t3m−2)
(2.17)

for the morning shift, and

e
(m)
0 = − ǫ0

8
∑

q=5
eq ν

(m)
q

N2(t3m−3) +N2(t3m−2) +N2(t3m−1)
(2.18)

for the afternoon and night shifts. In the above equations, ǫ0 is an overall reduction coefficient
(ǫ0 = 0.5) in regard of the high professionalism of operators.

Sentinel events. Finally, and similarly to external events, sentinel events act on the social drift
by means of the stepwise constant, real valued, global function CC(t):

CC(t) =
M
∑

m=1

∑

c∈C

ecνc(t) +
3M−1
∑

n=1
ecc δ

(n)
cc (t) . (2.19)

Each event is identified by a real value ec selected in a finite set {ec1 , ec2 , . . . , ecC}, ec ∈ R, and
c ∈ C := {c1, c2, . . . , cC}, that specifies the sentinel events, all of negative nature (ec < 0), that
happen inside the system. As for external events, the effects of a sentinel event start at the beginning
of an evolution interval Im := [t3(m−1), t3m) and last for that interval only; the E-tuple of functions

(νc1 , νc2 , . . . , νqC ) has values ν
(m)
c ∈ {0, 1, 2, . . .}, c ∈ C, to testify the occurrence of c-th event, in

that νc(t) = ν
(m)
c for t ∈ Im and m = 1, 2, . . . ,M .

The second term of function CC(t) is more subtle. It testifies the occurrence of facts of relevant
stress/disorder observed inside the system. Specifically, a critical regime for the system is triggered if
either a sentinel event occurs, or if it happens that ∆Ui := (Ui−U

c
i ) > 0 or that ∆Ci := (Ci−C

c
i ) > 0

for either i = 1 or i = 2. As long as a critical regime persists, the function CC(t) is added with
a weight ecc median with respect to those of the sentinel events. This reflects the experimental
observation that during a crisis certain actions are undertaken by the operators (patients can be
sedated, or restrained, external help is sought for, etc.) in order to re-establish “equilibrium”. Let
nc be the ordinal of the sub-interval Inc

:= [tnc−1, tnc
) (the shift) that saw the critical regime begin.

Starting from Inc
a whole period of time opens, addressed to as a critical period:

Jc := Inc
∪ Inc+1 ∪ · · · ∪ Inℓ

. (2.20)

The duration of the critical period is specified by the integer nℓ = ns + dn, where ns corresponds
to the first interval Ins

in which the said events disappear and the thresholds again respected, and
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dn is a delay that depends on the strength of the phenomenon. Experimental observations suggest
that the delay dn must be increased by one unit per each further shift wherein the thresholds are
not yet respected, and starts decreasing only after the ns-th shift. In summary, a critical period Jc

starts on Inc
, triggered either by a sentinel event, or by ∆Ui > 0, or by ∆Ci > 0, and lasts for at

least nℓ − ns shifts; with reference to Eq. (2.19), we have
{

δ
(n)
cc (t) = 1 if t ∈ Ic ,

δ
(n)
cc (t) = 0 otherwise ;

and ecc =
1

3

4
∑

c=2
ec . (2.21)

As described in the following, initial conditions are also influenced by a critical regime (cf. Sec. 2.3).

The specific set of external and sentinel events that has been considered, and the corresponding
weights, are given in Table 2, where ǫb is an overall normalizing coefficient (ǫb = 0.7), and ǫp = 1
for the day shifts and ǫp = 0.5 at night. All the other specific values adopted in the numerical
simulations for the parameters introduced above are given in Sec. 3.

Table 2: External and sentinel events

Positive external events

Visits, social activities, leaves e1 = ǫp
Sentinel events

Restraint e2 = −6

Accident e3 = −4

Aggressiveness e4 = −2

Negative external events

Admission of a patient on involuntary treatment e5 = −6ǫb
Admission of a patient at first hospitalization e6 = −5ǫb
Admission of a patient from out of county e7 = −4ǫb
Admission of a patient from outside catchment area e8 = −3ǫb
Generic admission e9 = −2ǫb
Generic discharge e10 = −1

2.2 Modelling individual interactions

Direct interactions are events that, on account of the possible singleton, or double sets of actors i.e.
“candidate” and “field” ones, refer to output values of the state of the “test” actor. Interactions
are identified by a set of probabilities about the state changes, and by a set of rates about their oc-
currence. Namely, again with subscripts i, j referring to patients or staff (i, j = 1 or 2 respectively),
and h, l, k running over the state indices, we have

Bi,h =

(

5
∑

l=1

ηi,l [ψh;i,l − δh,l] fi,l +
2
∑

j=1

5
∑

k=1

5
∑

l=1

ηi,l,j,k [ψh;i,l,j,k − δh,l] fi,lfj,k

)

cn(t) cc(t) , (2.22)

where cn(t) is described in Eq. (2.13), and coefficient cc(t) is similarly defined to account for the fact
that during a critical regime any kind of direct interaction on the evolution is drastically reduced,
here by a factor c̃c = 0.6. The other functions that appear in Eq. (2.22) are hereafter specified.
They are to be interpreted as interaction probabilities and interaction rates, and consist of the
following functions which depend on the time not only explicitly but also through expectations
over the densities f ; moreover, parametrical dependence on the activity values themselves may
also occur.
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• ηi,l[f ] : [0, T ] → [0,∞) rate of the events wherein an individual of population Pi in the state
ui,l autonomously reflects about modifying his state.

• ηi,l,j,k[f ] : [0, T ] → [0,∞) rate of the events wherein an individual of population Pi in the
state ui,l interacts with an individual of population Pj in the state uj,k.

• ψh;i,l[f ] : [0, T ] → [0, 1] probability that the state of an individual of population Pi changes
from ui,l to ui,h because of an event wherein he autonomously reflects about modifying his
initial state.

• ψh;i,l,j,k[f ] : [0, T ] → [0, 1] probability that the state of a test individual of population Pi is ui,h
at the end of an event wherein he is the candidate individual in the state ui,l and interacts
with a field individual of population Pj in the state uj,k.

For the sake of clarity and simplicity, in what follows we use the notation of a (corresponding)
continuous model to describe frequencies and interaction probabilities, and refer about interaction
rates and probability density distributions as functions of (activity) variables ui defined on a real
interval D. In the numerical simulations, these functions have been straightforwardly (although
drastically) discretized by keeping in mind that the allowed values for activities are specified by
the discrete sets Di defined in Eq. (2.1). Therefore ηi(x), ηi,j(x, y) are here described instead of
ηi,h, ηi,h,j,k, and, respectively, ψi(u;x), ψi,j(u;x, y) instead of ψh;i,l, ψh;i,l,j,k. Moreover, probabilities
are assumed to be normalized Gaussians with respect to the (outgoing) state variable u of the test
individual, and implicit functions of the states of the other interacting individuals: the former state
x of the same actor for ψi(u;x), the candidate state x and field state y for ψi,j(u;x, y). For instance:

ψ (u;µ(x, y), σ(x, y)) = exp
[

−(u− µ)2/2σ2
]

/

∫

D

exp
[

−(u− µ)2/2σ2
]

du , (2.23)

in this way only functions µ = µ(x, y) and σ = σ(x, y) are left to be defined. The advantage of
this approach instead of straightforwardly defining a game matrix is twofold. Firstly, the physical
interpretation of the expectation µ and deviation σ is a clear although possibly non simple matter.
Describing and motivating these two quantities, as well as adapting their description to the various
possible interactions, is feasible also for non mathematicians, who’s input may hence give valuable
and helpful suggestions. Secondly, probability ψ is significant in the whole range D, this implying
that substantial changes of states remain possible even though improbable.

Self-interaction frequency. In modelling self-interactions we adopted the point of view that
the insight capabilities of patients with mental disorders are somewhat compromised. Nonetheless,
it is reasonable to assume that a tendency exists in these patients aimed at autonomously exerting
a certain level of self-control, in their own and other’s interest. On the contrary, operators are
constantly urged to exert self-control, and even more so when the situation is about to degenerate.
Based on these considerations, self-interaction frequencies have been assumed to have the form:

η1(x) = eo1 , eo1 ≥ 0.0 , (2.24a)

η2(x) = eo3 + eo2 x, eo2, eo3 ≥ 0.0 . (2.24b)

The adopted values of the frequency parameters are given in Sec. 3.
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Self-interaction probability. The model for this probability is meant to describe a natural
homeostatic tendency of the system to readjust itself on a time scale that, as far as patients are
concerned, is comparable with the one that corresponds to their average stay in the structure (which
is around 2 weeks). Assuming that the probabilities are described by

ψ(u;µ(x), σ(x)) = exp
[

−(u− µ(x)))2/2σ2(x)
]

/

∫

D

exp
[

−(u− µ(x))2/2σ2(x)
]

du , (2.25)

we modelled the expected values µ = µi(x) and deviations σ = σi(x) per each population as follows:

µi(x) = mi x , 0.0 ≤ mi ≤ 1.0 , (2.26a)

σi(x) = σi , 0.0 < σi ≪ 1.0 . (2.26b)

As before, the adopted values for m1,m2, σ1, σ2 are specified in Sec. 3.

Pairwise interaction frequency. Pairwise interaction frequencies ηi,j(x, y) refer about the rates
of interactions between (different) individuals of the same or of different populations; for the specific
physical problem at hand, we set for i, j = 1, 2:

ηi,j(x, y) = ezi,j + ei,j (1− x2)(1− y2), ezi,j , ei,j ≥ 0.0 . (2.27)

This assumption is meant to express the fact that the interactions among patients and operators
have a base frequency ezi,j , which is possibly modulated by a term that depends on the state
variables in such a way that the number of interactions decreases when the state variable increases,
i.e. when it refers to actors in more negative states. Simulation values are given is Sec. 3; however
it is appropriate anticipating here that those values are direct consequences of the normal life and
daily procedures inside the ward, which effectively specifies their ranges.
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Figure 1: Illustrative ηi,j(x, y) = 0.2 + 0.9 (1− x2)(1− y2).

We point out that all interaction rates necessarily depend on time: their values at night are
drastically lower than their morning and afternoon ones, which motivates the overall factor cn(t)
in Eq. (2.22)

Pairwise interaction probability. As mentioned in Eq. (2.23), we assume normalized Gaussian
distributions with expectations µ = µi,j(x, y) and deviations σ = σi,j(x, y) specified below.
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For the interaction between two patients, the assumption is a simple altruistic model:

µ1,1(x, y) = (1−m3)x+m3y ,
0.0 ≤ m3 ≤ 1.0 ,
σ1,1 =: σ3 ≪ 1.0 .

(2.28a)
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Figure 2: Illustrative µ1,1 with m3 = 0.9 (left) and m3 = 0.2 (right).

Mean value µ aims at pointing out the expected state of the test actor after the interaction.
Therefore, when it refers about an interaction of a patient with an operator, it has to account for
the therapeutical value of the interaction. The experimental observation that the improvement is
usually found to be more dramatic the more negative the initial condition of the patient, and at
the same time that it depends on the stress level of the operator, is expressed by:

µ1,2(x, y) = x−m4 x
2(1− y) ,

0.0 ≤ m4 < 1.0 ,
σ1,2 =: σ4 ≪ 1.0 .

(2.28b)
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Figure 3: Illustrative µ1,2 with m4 = 0.9 (left) and m4 = 0.2 (right).

In modelling the effect of operator-patient interactions on the operators, one obviously assumes
that the operators are professionals, whose state is not altered by the interaction unless the patient
is in critical conditions:

µ2,1(x, y) =

{

x if y ≥ 0.5 ,
m5 x otherwise ,

0.0 ≤ m5 < 1.0 ,
σ2,1 =: σ5 ≪ 1.0 .

(2.28c)

Finally, again taking into account the high professionalism of the operators, the interaction
between two operators has been modelled as follows:

µ2,2(x, y) = (1− m̃) x+ m̃ y , m̃ =

{

m6 x
∗ if x ≤ x∗ := 0.3 ,

m6 x otherwise
(2.28d)
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Figure 4: Illustrative µ2,1 with m5 = 0.9 (left) and m5 = 0.2 (right).

0.0 ≤ m6 ≤ 1.0, σ2,2 =: σ6 > 1.0 .
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Figure 5: Illustrative µ2,2 with m6 = 0.9 (left) and m6 = 0.2 (right).

The specific values adopted in the simulations are given in Sec. 3.

2.3 Modelling initial conditions

As explained above, the dynamics of the system develops, on a stepwise basis, over a sequence of
consecutive time intervals In = [tn−1, tn), n = 1, .., 3M ∈ N. At each tn staff turns over, and at
each instant t3m−2, m = 1, 2, . . . ,M , patients are registered as discharged or admitted. In order
to determine the time evolution of the solutions fi,h(·) : t 7→ In of the ODE system (2.9) one has
to specify the necessary initial conditions, i.e. the values fi,h(tn−1) for all n = 1, . . . , 3M . The
assumptions on initial conditions are as follows.

Concerning the patients, admissions and dismissals happen during the morning shift of the
day. Therefore the values f1,h(t3m−2) need to be defined, depending on those that pertain to the

newly admitted actors and to those that already are inside the structure. Denoting by g
(m)
1,h the

distribution of the actors admitted in the morning shift I3m−2 = [t3(m−1), t3m−2) of the mth day
Im = [t3(m−1), t3m), we set

f1,h(t3m−2) =
1

N
(m)
1

[

N
(+,m)
1 g

(m)
1,h +

(

N
(m−1)
1 −N

(−,m)
1

)

f1,h(t
(−)
3m−2)

]

(2.29)

14



where: N
(m)
1 denotes the number of patients that are eventually inside the structure on inter-

val Im; N
(+,m)
1 and N

(−,m)
1 are the numbers of patients respectively admitted or discharged on

interval I3m−2; f1,h(t
(−)
3m−2) denotes the distribution at the end of that same interval, namely:

limǫ→0+ f1,h(t3m−2− ǫ). Eq. (2.29) is motivated by the fact that the N
(−,m)
1 patients that leave the

system during I3m−2 are assumed randomly extracted from those having distribution f1,h(t
(−)
3m−2),

while the remaining ones are in number of
(

N
(m−1)
1 −N

(−,m)
1

)

, and are similarly distributed.

Clearly we have: N
(m)
1 = N

(m−1)
1 −N

(−,m)
1 +N

(+,m)
1 , and hence Eq. (2.29) may also be written as

f1,h(t3m−2) =
N

(+,m)
1

N
(m)
1

g
(m)
1,h +

(

1−
N

(+,m)
1

N
(m)
1

)

f1,h(t
(−)
3m−2).

Further, the distribution of the N
(+,m)
1 individuals entering the system is specified by the maps

g
(m)
1,h ; these are again assumed, according to Eq. (2.23), with a deviation of σ = 0.2 and with various
possible expectations: µ̂1 = −0.1, µ̂2 = 0.1, µ̂3 = 0.5, µ̂4 = 0.8, µ̂5 = 1.1, depending on the
circumstances. On due account of the fact that patients that are newly admitted are certainly in
a slightly negative state, in this model it is assumed that their distribution is roughly centered at
µ̂2 = 0.1, unless the evolution interval Im is affected by a sentinel event (see Table 1), in which
case this value is correspondingly higher. With the same notation as in Eq. (2.17) and [x] denoting

the integer part of x, in this case the distribution g
(m)
1,h is centered at µ̂ℓ with ℓ given by

ℓ =











8
∑

q=5
|eq| ν

(m)
q

2N
(+,m)
1











.

On the other hand, as far as operators are concerned, a complete staff turn over occurs at each
shift In = [tn−1, tn), n = 1, 2, . . . , 3M − 1; hence, again unless the period Im is affected by some
sentinel event, we similarly guess that at each time: t3m−3, t3m−2, t3m−1 the new personnel enters
with a distribution centered at µ̂1. Otherwise, if a sentinel event occurs on Im, on all the three
shifts In for n = 3m− 2, 3m− 1, 3m, we set the expectations µ̂ℓ of the distributions f2,h(tn−1)
with ℓ given by

ℓ = 1 +











4
∑

q=2
|eq| ν

(n)
q

2N2(tn−1)











.

The levels ℓ of expectations µ̂ℓ of both patients and staff distributions are raised (up to satura-
tion) of one level if a critical regime is in act, and of two levels when this regime begins.

Finally, we conclude this section by presenting the complete input data matrix of our model.
The matrix consists of M = 1428 rows, each relative to one day of the observation period. Using
the notation introduced in Eqs. (2.16), (2.19) and (2.29), the m-th row, m = 1, . . . ,M contains the
following 16 integers:

N
(m)
1 , N

(−,m)
1 , N

(+,m)
1 , N2(t3m−3) , N2(t3m−2) , N2(t3m−1) , ν

(m)
1 , ν

(m)
2 , . . . , ν

(m)
10 .
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3 Numerical simulations

A numerical code has been implemented to set up and solve the chain of initial value problems for
the system of ODEs (2.9), either when the input/initial value data are read from the historic series,
or when they are randomly simulated via Monte Carlo processes.

In this section we discuss the fine-tuning of the (many) parameters of the model. A case period
of 21 days, from May 27, 2001 to June 15, 2001, has been accurately selected, based on prototypical
functioning of the medical service and of data collection procedures. The length of the case period
has been suggested by the fact that the average stay of patients inside the structure is about 2 weeks,
and by the fact that the number of autonomous evolution intervals in this period is acceptably high
(3 shifts per turn, 3 turns per day, 21 days).

Analyzing a large number of numerical simulations, we have been able to identify those parame-
ters whose variations the model is most sensitive to, and choose their optimal values, in comparison
with those that, conversely, produce less important effects and can possibly be ignored. Obviously,
the assumption that these values should be valid over extended periods of time, such as several
months or even years, is questionable. Since the selected case period contains all kinds of signifi-
cant events that characterize the system dynamics over the whole period of data collection (from
Feb 1, 2001 to Dec 31, 2004), in this paper we present the results of the simulations over this
extended period using the set of parameters tuned on the case period only. As a matter of fact,
within the extended period several phases have been identified in the system, when the medical
service exhibited distinct functioning patterns. These, in principle, might require different sets of
parameter values, or at least a more specific and detailed analysis. However, it turns out that the
observed phases can be put in correspondence with overall organizational changes in the service,
and are evident only on a very long time scale. These issues will be briefly discussed in Sec. 4, and
a thorough investigation is postponed to a future work.

Here it is more important to point out that, unlike mechanical models where the scales are
dictated by clearly identifiable physical parameters, such as masses, lengths etc, in the system
under study there are no obvious scales neither for time nor for the activity variable (actually, too
many for the first one and none for the latter). As well, no a priori structures or physical laws
or conserved quantities are available that might indicate any kind of (microscopic, deterministic)
dynamics or expected behavior. Therefore, the first important numerical simulations have been
devoted to establish the order of magnitude of all the model parameters. Regardless of whether
the latter are intrinsically of real or of integer type, or whether these properties were only assumed
in developing the model, all the same they are to be considered as absolute, rather than rescalable
or symbolic, quantities.

Once this task was accomplished, and the parameters which the model is more sensitive to
were identified, then the response of the model to their variations within the established ranges has
been analyzed. Different groups of relevant parameters have been contrasted and compared in the
numerical simulations. In the following, we list the relevant parameters, the corresponding ranges
of values where they have been varied, and the optimal choices found in connection with the afore
mentioned case period.

Social parameters. To begin with, the various parameters used to construct the phenomenolog-
ical social (mean field) function are recalled; per each of them, the interval that has been explored,
and the final value that proved to be the best choice in that interval (hence used in the simulations)
is referred.
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• α defines the balance between patients and staff, respectively, on the mean activity (cf.
Eq. (2.14)); we have α = 0.5 ∈ [0.0, 1.0].

• β1, β2 weight the mean activity and climate field on the social drift (cf. Eq. (2.12); β1 larger
than β2 makes the drift depend more heavily on the activity than on the fraction of populations
in highly negative states, and vice-versa; we have β1 = 1.0 ∈ [0.0, 3.0], β2 = 2.0 ∈ [0.0, 3.0].

• γ defines the balance between patients and staff, respectively, on the climate field (cf. Eq.
(2.12)); we have γ = 0.5 ∈ [0.0, 1.0].

• p1, p2 weight the sentinel events field on the social drift respectively for patients and operators;
we have p1 = 1.0 ∈ [−1.5, 3.0] and p2 = 0.0 ∈ [−1.5, 3.0].

• r1, r2 weight the external events field on the social drift respectively for patients and operators;
we have r1 = 1.0 ∈ [0.5, 1.0] and r2 = 0.6 ∈ [0.5, 1.0].

• v1, v2 are constant shifts for the social drift; we have v1 = v2 = 0.0 ∈ [−3.0, 6.0].

• w1, w2 define the reference thresholds on the mean activities (cf. Eq. (2.14)); we have w1 =
0.4 ∈ [0.0, 1.0] and w2 = 0.2 ∈ [0.0, 1.0].

• Cc
1, C

c
2 are threshold values for the population fractions C1 and C2 in the climate field (cf.

Eq. (2.15)); we have Cc
1 = 0.7 ∈ [0.4, 0.8] and Cc

2 = 0.7 ∈ [0.4, 0.8].

• kc1, k
c
2 are threshold levels for patients/operators respectively, to define population fractions

C1 and C2 in Eq. (2.15); we have kc1 = 4 ∈ [3, 6] and kc2 = 4 ∈ [3, 6].

• ǫb weights negative external events with respect to positive and sentinel ones (cf. Table 2);
we have ǫb = 0.7 ∈ [0.0, 1.0].

Interaction frequency parameters. As already mentioned, the parameters that control the
interaction frequencies in (2.24) and (2.27) play a fundamental role in the simulations. It has
been estimated that, due to routine sanitary procedures, patients and operators interact among
themselves roughly between 5 and 9 times a day; therefore ultimately we set: ez1,1 = ez2,2 = 5.0,
and e1,1 = e2,2 = 4.0. Interaction frequencies among operators and patients are slightly larger, on
the average between 6 and 11 times a day; however, in these ranges of values the corresponding
variations observed in the numerical simulations seemed to be negligible, and hence we set ez1,2 =
5.0, and e1,2 = 4.0 as well. Obviously interaction frequencies are symmetric, i.e. ez1,2 = ez2,1,
and e1,2 = e2,1. For all of them the variation range has been [2.0, 6.0]. We have

eo1 = 2.0 , eo2 = 2.0 , eo3 = 2.0 ,
ez1,1 = 5.0 , ez1,2 = 5.0 , ez2,2 = 5.0 ,
e1,1 = 4.0 , e1,2 = 4.0 , e2,2 = 4.0 .

Interaction probability parameters. Interaction probability distributions have been modelled
in terms of normalized Gaussian distributions, with expectations µj and µi,j and deviations σj and
σi,j [cf. (2.26) and (2.28)]. All deviations have been chosen to be constant, i.e., independent of the
state variables, and eventually all set equal to 0.2. The parameters controlling the expectations
µi,j have been varied in the range [0.0, 1.0], and then chosen as follows:

m1 = 1.0 , m2 = 0.5 , m3 = 0.5 ,
m4 = 0.8 , m5 = 0.8 , m6 = 0.2 .
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Figure 6: Illustrative graphic output from the numerical simulations for the probability functions.

In Fig. 6 we show a typical graphic output produced by the simulation. The plots show the
probability functions for patients (top half of the plot) and staff (bottom half) relative to the period
Sept 13, 2001 – Oct 10, 2001. The colors used in the graphs are the same as those used for the Ward
Atmosphere and explained in Table 1. The simulation shows critical regimes (the appearance of
orange/red peaks), which indeed have a direct correspondence with what has been observed in the
hospital in the period of time under consideration (cf. Fig. 8). In particular, one can observe how
the first crisis, around the 2nd and 3rd day, is mostly due to patients, while the following ones on
days 8th and 28th show both patients and staff in highly negative states. In fact, a large number of
sentinel and negative external events has been recorded during each of the aforementioned critical
periods. On the other hand, the rapidly varying behavior of the operator probability functions
shows the effects of their work during each shift, whether it is a depletion due to high workload or
an improvement due to professional gratification. Moreover, the different initial conditions accounts
for their reaction on entering in a perturbed situation.

4 Comparison with experimental data and statistical significance

In order to compare the predictions of the model with the experimental data, it is necessary to
convert the output of the numerical simulations, i.e., the 10 probability functions for patients and
staff, into a single sequence of integer values in the set {2, 4, 6, 8, 10} that represent the estimate
for the ward atmosphere on each shift.

After several attempts, we managed to identify two indicators whose discretizations may be
reasonably compared with the experimental data for the atmosphere. Specifically, we considered:

U = αU1 + (1− α)U2 , U c = αU c
1 + (1− α)U c

2 , (4.1)

where Ui are defined in (2.7) and the thresholds U c
i are specified in (2.14), and we introduced the

rescaled variable
R = U/U c . (4.2)

Based on the variables U and R, we propose two different estimates for the ward atmosphere. The
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first estimate, based on the variable U , is given by:

U∗ = 2 if 0.0 ≤ U < 1.7
U∗ = 4 if 1.7 ≤ U < 2.5
U∗ = 6 if 2.5 ≤ U < 5.0
U∗ = 8 if 5.0 ≤ U < 6.0
U∗ = 10 if U ≥ 6.0 .

(4.3a)

The second estimate, based on the variable R, is set to:

R∗ = 2 if 0.0 ≤ R < 0.4
R∗ = 4 if 0.4 ≤ R < 0.6
R∗ = 6 if 0.6 ≤ R < 0.8
R∗ = 8 if 0.8 ≤ R < 0.9
R∗ = 10 if R ≥ 0.9 .

(4.3b)

In an attempt of enhancing the accuracy of the description, all intervals for the estimates have then
been split into two, thus producing two new estimates:

bU = 2 if 0.0 ≤ U < 1.7 , bR = 2 if 0.00 ≤ R < 0.40 ,
bU = 3 if 1.7 ≤ U < 2.0 , bR = 3 if 0.40 ≤ R < 0.45 ,
bU = 4 if 2.0 ≤ U < 2.5 , bR = 4 if 0.45 ≤ R < 0.50 ,
bU = 5 if 2.5 ≤ U < 3.0 , bR = 5 if 0.50 ≤ R < 0.60 ,
bU = 6 if 3.0 ≤ U < 4.0 , bR = 6 if 0.60 ≤ R < 0.70 ,
bU = 7 if 4.0 ≤ U < 5.0 , bR = 7 if 0.70 ≤ R < 0.80 ,
bU = 8 if 5.0 ≤ U < 6.0 , bR = 8 if 0.80 ≤ R < 0.90 ,
bU = 9 if 6.0 ≤ U < 7.0 , bR = 9 if 0.90 ≤ R < 0.95 ,
bU = 10 if U ≥ 7.0 , bR = 10 if R ≥ 0.95 .

(4.3c)

A similar logics has been applied to the experimental data, for which a linear interpolation has
been used to provide intermediate values for the atmosphere within each shift.

The threshold values for the discretizations specified above have been chosen after a number of
attempts, as those that appeared to provide good approximations to the experimental values for
the atmosphere.

It is clear that the quantitative results of these comparisons are severely biased by the choice
of the thresholds in definitions (4.3) and that only a careful a posteriori test may provide the best
choice for their values. All the same, if one is mainly interested in a qualitative estimate, then
small differences in such choices do not play a significant role. In the following figures we show a
sample of the the comparisons for two typical periods.

As a matter of fact, a qualitative comparison between the estimates and the experimental values
for the atmosphere is easier and more informative if one looks directly at the “continuous” variables
U,R, instead of using the discretizations introduced above. The comparison for the two periods
indicated above is shown in Fig. 9.

On the other hand, in order to investigate the statistical significance of the model and to obtain
a quantitative comparison, some global indicator has to be identified. To this aim, we first compute
some straightforward mean square deviations between experimental and estimated values for the
atmosphere. More specifically, the entire period of the analysis (Feb 1, 2001 - Dec 31, 2004) has
been divided into 51 periods of 28 days each. Then, we denote by vj , j = 1, . . . , N the experimental
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Figure 7: Comparison among experimental and estimated atmospheres for the period May 24 -
Jun 20, 2001 (corresponding to 672 hours on the x-axis). Top: Experimental (red), R∗ (black), U∗

(green). Bottom: Experimental (red), bR (black), bU (green).
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Figure 8: Comparison among experimental and estimated atmospheres for the period Sept 13 -
Oct 10, 2001 (corresponding to 672 hours on the x-axis). Top: Experimental (red), R∗ (black), U∗

(green). Bottom: Experimental (red), bR (black), bU (green).
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Figure 9: Comparison among experimental and estimated atmospheres for the two periods May 24
- Jun 20, 2001 (top), and Sept 13 - October 10, 2001 (bottom), with Experimental (red), U (green),
10R (black).

value for the atmosphere at each hour j of the period, and by pj the simulated value, according
to one of the algorithms listed above for either U or R. Hence, N = 672 is the total number of
evaluations per each of the periods under consideration. We introduce square deviations:

Sd =
N
∑

j=1
(vj − pj)

2 , (4.4)
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Figure 10: Sd/N (top) and Sd/Sv (bottom), with U∗ (green), R∗ (black), bR (blue), bU (brown).

as well as the sums

Sv =
N
∑

j=1
v2j . (4.5)

The values of the deviations Sd/N and Sd/Sv are given by the polygonal lines in Figs. 10 and 11,
where each point corresponds to one of the aforementioned 51 periods.

An alternative and somehow more sophisticated attempt of statistical analysis has been per-
formed, in order to compare the experimental values for the atmosphere with the estimates from the
numerical simulations by means of indicators that are well-known in the specialized psychological
and social literature. In particular, the values of the Pearson and Spearman correlation coefficients
between the experimental data and two of the estimates above have been evaluated and given in
the following figures. As before, each point in Fig. 11 corresponds to one of the aforementioned 51
periods.

10 20 30 40 50
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 11: Spearman’s rho (top) and Pearson’s correlation coefficient (bottom) - Experimental Atm
vs U∗ (green), R∗ (black).

Unlike Fig. 10, in Fig. 11, obviously, the agreement is expected to be better the larger the values
of the correlation coefficients.
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Even though it is questionable whether one can use linear statistics to compare these data,
we observe that for most periods the ’small deviations’ and ’large correlation’ approaches tend to
agree.

Also, it should be pointed out that for most of the periods that we have analyzed, the val-
ues obtained for the correlation coefficients, from the point of view of psychosocial statistics, are
considered to indicate a remarkably good correlation among the data.

5 Concluding remarks

Even though we used generalized kinetic theories and the corresponding usual methodologies, our
system is significantly different from those typically dealt with in the kinetic framework, and in
particular from systems such as cells, or microorganisms. In fact, in our case: 1) the number of
individuals is quite small; 2) we do not use mechanical variables; 3) macro- and micro- ensembles can
be distinguished only by referring either to the type of effects (field or interactions) or to the type
of variables (mean or individual variables). As a matter of fact, the assumption that the system is
closed and that it consists of few individuals makes mechanical coordinates (position and velocity)
totally inadequate to the description: neither frequency of interactions nor probability outputs can
depend on the mechanics, i.e., on position and velocity of the individuals or of their interaction
locations. Similarly, the mean field itself cannot be expressed in mechanical terms: it does not make
sense to speak of short range or long range interactions, or of small or large scales. The only thing
that can meaningfully be described are pairwise interactions between individuals/actors or mean
field effects on each individual, and only in this sense the latter can be defined as “macroscopic
effects”.

Therefore, even methods and tools that have become standard in generalized kinetic theories
must be suitably adapted: our model can at most be considered as analogue to a generalized kinetic
model in which the populations are uniformly distributed both in space and with respect to the
velocity field.

Since we deal with fully developed individuals, the table of the games itself cannot be simple:
the factors that determine the behavior at the evolved human level are multiple and balance in a
complicated way. Quantities such as some of the variables in our system are already questionable
with respect to their same definition, and even more so if one aims at investigating and predicting
their quantitative aspect.

Moreover, on one hand the actors’ perceptions create effects that are clearly defined and identi-
fiable in the proper setting, and this happens without making use of any mechanical variable. On
the other hand, there is no a priori dynamical law among the actors that one can identify and adopt.
Therefore, the transition from a discrete (individual) to a continuous (social) setting poses obvious
difficulties that we feel cannot be solved by recurring to standard renormalization procedures or to
thermodynamic limits, and this also on account of the small number of individuals. At most, one
can look for and try to identify the series of rules that determine the effects of the single individual
over the social environment, and of the social environment on the single individual.

It is in this context that our work can be of interest: although with some difficulties and
uncertainties, in our opinion the present study showed, and can still show, that some of the predicted
or possible behaviors (in our language, “parameters” or “events”) are less relevant than others,
which on the contrary are crucial, and also that certain groups of effects/contributions can cancel
out, even though each of them cannot be separately neglected.
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The problem of measuring the atmosphere is a serious one: the fact that it consists of only 5
levels, which are neither uniquely specified nor objectively measurable, suggested that in some cases
the experimental datum was questionable, and even biased by factors external to the system. The
assumption that the system is closed, and that it depends on the environment only through the
annotations that compose the “historic series”, is actually a very strong one under these respects.
The fact that we are dealing with individuals and not with identical microorganisms generates an
unavoidable series of factors that make them non-identical. In fact, their memories and opinions
lead them to act in an autonomous and non repeatable way. Therefore, even without explicit
reasons that can justify unexpected behaviors, or on long time scales, the simulations may be
considered more reliable, or at least more reasonable, than certain experimental data, which have
then been marked as “errors”.

A quantitative description is made even harder by those events that in the historic series appear
as interactions with the external environment; indeed, these make any kind of asymptotic dynamics,
even if just stationary, almost impossible. Admissions and discharges themselves, which are clearly
an unavoidable aspect of the system, make the search for equilibria or asymptotic states almost
meaningless.

In conclusion, the above remarks allow one to justify, at least partially, the use of a statistical
model, i.e. a model that accounts for the uncertainty and indeterminacy intrinsic in the system.
What we attempted here is to motivate this uncertainty by specific individual arguments, by others
of a more social nature, and by letting the two aspects coexist and interact at an intermediate scale.

Given the intrinsic complexity of the system and of the research project, the results can be
considered satisfactory. We realize that criticisms may come both from the world of mathematical-
physical sciences and from that of medical, psychological and social ones. However, it is generally
agreed that the use of quantitative and exact methods in the framework of social phenomena is
more and more compelling. Moreover, interactions and communication between the two disciplines
are required in order to develop new mathematical methods and new physical variables, justifying
their definitions, interpretation and usage. This is precisely the gap that the present work has tried
to explore and fill in.
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