Dipendenza dell'Energia libera dalla T e P

$$G = H - TS$$

essendo H = U + PV

$$G = U + PV - TS$$

Una variazione infinitesima di una o più variabili che definiscono lo stato del sistema determina una variazione di G

$$dG = dU + PdV + VdP - TdS - SdT$$

Per il I° principio della termodinamica U = Q - LPer il II° principio della termodinamica dQ = TdS

$$dU = dQ - dL$$

$$dU = TdS - PdV$$

quindi dU - TdS + PdV = 0

$$dG = VdP - SdT$$

A T costante si ha:

$$dG = V dP$$

Questa è la base per dedurre l'espressione dell'energia libera molare di una qualunque specie chimica ad una determinata temperatura

Miscele di gas ideali

$$dG = V dP$$
 a $T = cost$

$$\begin{split} dG &= \frac{RT}{P} \ dP \\ \int_{\text{Cond.Standard}}^{\text{Cond.Operative}} dG &= \int_{P^{\circ}}^{P} \frac{RT}{P} \ dP \end{split}$$

$$\overline{G}_{operative}$$
 - $\overline{G}_{standard}^{o}$ = RT ln $\frac{P}{P^{\circ}}$

$$\overline{G}_{operative} = \overline{G}_{standard}^{o} + RT \ln \frac{P}{P^{o}}$$

= energia libera molare standard alla temperatura T

 $\overline{G}_{standard}^{\circ}$ P° è il valore della pressione nelle condizioni standard (1atm)

Per una miscela di gas ideali l'energia libera molare di ciascun componente è:

$$\overline{G}_i = \overline{G}_i^o + RT \ln P_i$$

Nell'argomento del logaritmo compare nominalmente la pressione parziale dell'*i-esimo* componente la quale, però, è da intendersi come valore adimensionale perché risultato del rapporto tra pressioni.

Soluzioni ideali (C<10-3 F)

Consideriamo una soluzione ideale in equilibrio con il suo vapore (ideale anch'esso)

$$G_i^{vap} = G_i^{liq}$$

$$\overline{G}_i = \overline{G}_i^o + RT \ln P_i$$

Per una soluzione ideale è valida la legge di Raoult

$$\overline{G}_i = \overline{G}_i^o + RT \ln P_i^o x_i$$

Dove P_i° è la pressione di vapore del componente i-

$$\begin{split} \overline{G}_{i} &= \overline{G}_{i}^{o} + RT \ln P_{i}^{o} + RT \ln x_{i} \\ \overline{G}_{i} &= \overline{G}_{i}^{o^{*}} + RT \ln x_{i} \end{split}$$

esimo allo stato puro

$$G_i - G_i + RI \text{ in } X_i$$

 $\overline{G}_{i}^{o^*}$ = Energia libera molare standard del componente "i" allo stato puro (infatti $x_i = 1$; $\overline{G}_{i} = \overline{G}_{i}^{o^*}$

Essendoci proporzionalità tra x_i , m_i , M_i

$$\overline{G}_i = \overline{G}_i^{o^{*'}} + RT \ln m_i$$

$$\overline{G}_i = \overline{G}_i^{o^{**}} + RT \ln m_i$$
 $\overline{G}_i = \overline{G}_i^{o^{***}} + RT \ln C_i$

 $\overline{\mathrm{G}}_{\mathrm{i}}^{\,\mathrm{o}^{\star}}$

rappresentano l'energia libera molare standard del soluto

in una soluzione che ha m_i o $C_i = 1$ $\overline{G}_{i}^{o^{*"}}$

Lo stato standard per un soluto in soluzione è rappresentato da una soluzione a concentrazione unitaria

Soluzioni reali

Per le soluzioni reali il problema si affronta molto semplicemente introducendo il concetto di "attività" $a = f \cdot C$

$$\overline{G}_i = \overline{G}_i^0 + RT \ln a_i$$

$$\overline{G}_i = \overline{G}_i^0 + RT \ln f + RT \ln C_i$$

Se si fa in modo che il coefficiente di attività sia costante (questo si ottiene lavorando con una soluzione a **forza ionica tamponata**, il che significa che nella soluzione è presente un elettrolita indifferente in grande concentrazione in modo che le variazioni della concentrazione C_i non provocano la variazione della forza ionica) allora ci si riporta ad una espressione simile a quella già vista:

$$\overline{G}_i = \overline{G}_i^0 + RT \ln C_i$$

Liquidi e solidi puri

$$dG = V dP$$
 a $T = cost$

Per i solidi e i liquidi (fasi icomprimibili) il volume è indipendente dalla pressione

$$\int_{G^{\circ}}^{G} dG = V \int_{1}^{P} dP \qquad \overline{G} = \overline{G}^{\circ} + \overline{V}(P-1)$$

In generale il \overline{V} volume molare di un liquido e/o di un solido è piccolo (per es. l'acqua ha un volume molare di 0.018 l) quindi se la pressione non è molto grande si trascura il $\overline{V}(P-1)$ rispetto a \overline{G}° (1J = 9.87*10-3 lit*atm)

$$\overline{G} = \overline{G}^{o}$$

Esprimendo l'energia libera molare nella forma: $\overline{G} = \overline{G}^0 + RT \ln a$

Essendo G = G° per i solidi e i liquidi puri l'attività "a" è unitaria

Miscele di gas reali

Supponiamo, per esempio, di utilizzare come equazione di stato per i gas reali l'equazione approssimata di Van der Waals che per una mole di gas è: $\left(P + \frac{a}{V^2}\right)\left(V - b\right) = RT$

$$PV - bP + \frac{a}{V} - \frac{ab}{V^2} = RT$$

$$PV = RT + bP - \frac{a}{V} + \frac{ab}{V^2}$$

$$V = \frac{RT}{P} + b - \frac{a}{PV} + \frac{ab}{PV^2}$$
 Moltiplico e divido l'ultimo membro per P
$$V = \frac{RT}{P} + b - \frac{a}{PV} + \frac{ab}{P^2V^2} P$$

Ponendo nei due ultimi termini approssimativamente PV≅RT

$$V = \frac{RT}{P} + b - \frac{a}{RT} + \frac{ab}{R^2 T^2} P$$

Essendo
$$(dG)_T = VdP$$
 $(dG)_T = RT \frac{dP}{P} + b dP - \frac{a}{RT} dP + \frac{ab}{R^2 T^2} P dP$ Integrando dalla pressione P=1 alla pressione P

$$G_T = G_T^o + RT \ln P + b (P - 1) - \frac{a}{RT} (P - 1) + \frac{ab}{2R^2T^2} (P^2 - 1)$$

$$G_T = G_T^o + RT \ln P + \left(b - \frac{a}{RT}\right)(P - 1) + \frac{ab}{2R^2T^2}(P^2 - 1)$$

Miscele di gas reali

Per una mole di gas ideale si ha che PV = RT quindi a T costante dG = V dP

$$dG = \frac{RT}{P}dP \qquad \qquad dG = RTd\ln P$$

A questo punto si dovrebbe inserire l'espressione della pressione ricavata dall'equazione di stato dei gas reali; per semplificare il problema si introduce il concetto di *fugacità di un gas* che indica la differenza tra il valore della pressione del gas reale rispetto a quello che sarebbe se il gas avesse un comportamento ideale

$$dG = RTd \ln \gamma$$
 dove γ è la fugacità

Condizioni operative

$$\int_{\text{Condizioni standard}} dG = RT \int_{\gamma}^{\gamma} d \ln \gamma \qquad \overline{G}_{operative} = \overline{G}_{standard}^{0} + RT \ln \frac{\gamma}{\gamma}$$

$$\frac{\gamma}{\gamma^{\circ}} = a$$

Il rapporto adimensionale tra la fugacità nello stato di volta in volta considerato e la fugacità nello stato standard e designato col nome di **attivit**à del gas in quello stato

$$\overline{G}_{operative} = \overline{G}_{standard}^0 + RT \ln \frac{\gamma}{\gamma^\circ} \qquad \text{equivale alla forma:} \qquad \overline{G}_{operative} = \overline{G}_{standard}^0 + RT \ln a$$

Se si vuole che la relazione $dG = RTd \ln \gamma$ abbia validità generale

Deve in particolare essere applicabile anche ai gas perfetti per i quali vale la relazione già vista:

$$(dG_T) = \frac{RT}{P}dP = RTd \ln P$$

Allora se il gas considerato è un gas perfetto, integrando fra due stati definiti 1 e 2 si trova:

$$G_2 - G_1 = RT \ln \frac{P_2}{P_1}$$

$$G_2 - G_1 = RT \ln \frac{\gamma_2}{\gamma_1}$$

$$RT \ln \frac{P_2}{P_1} = RT \ln \frac{\gamma_2}{\gamma_1}$$

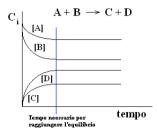
$$\xrightarrow{\text{ossia}} \frac{P_2}{P_1} = \frac{\gamma_2}{\gamma_1}$$

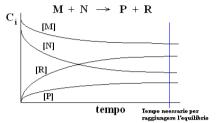
Dunque per un gas perfetto fugacità e pressione sono fra loro direttamente proporzionali

$$\gamma = \mathbf{cost} \cdot \mathbf{P}$$

$$\lim_{P\to 0}\frac{\gamma}{P}=1$$

Andamento delle concentrazioni delle specie chimiche di una reazione con il grado di avanzamento.





Reazione veloce

Reazione Lenta

Reazioni chimiche come processo di avanzamento verso lo stato di equilibrio Variazione di G nel progressivo avanzamento fino all'equilibrio

$$aA + bB + cC... \rightarrow lL + mM + nN...$$

$$(dG)_{T,P} = \sum_{i} G_{i} dn_{i}$$
 In cui dn_{i} è positivo per i prodotti e negativo per i reagenti

$$\left(dG\right)_{T,P}=-\overline{G}_{A}dn_{A}-\overline{G}_{B}dn_{B}-\ldots+\overline{G}_{L}dn_{L}+\overline{G}_{M}dn_{M}+\ldots$$

Le variazioni dei numeri di moli dei diversi componenti dn_i non sono indipendenti ma legate alla stechiometria della reazione:

$$-dn_A:-dn_B:...+dn_L:+dn_M:...=a:b:...1:m:...$$

$$-\frac{dn_A}{a} = -\frac{dn_B}{b} = -\frac{dn_C}{c} \dots = \frac{dn_L}{l} = \frac{dn_M}{m} = \frac{dn_N}{n} = d\xi$$

Istante per istante, durante l'avanzamento della reazione, il rapporto fra la variazione del numero di moli e il coefficiente stechiometrico delle varie specie chimiche è per tutti uguale

$$dn_i = v_i d\xi$$

v_i rappresenta il coefficiente stechiometrico; (+) per i prodotti e (-) per i reagenti

La composizione del sistema è definita ad ogni istante dal parametro ξ (grado di avanzamento)

$$\mathbf{dn_i} = \mathbf{v_i} \, \mathbf{d} \boldsymbol{\xi}$$

$$\int_{n_i^0}^{n_i} dn_i = v_i \int_0^{\xi} d\xi$$

n_i° = sono le moli iniziali quando il grado di avanzamento $\xi = 0$

 n_i = sono le moli quando il grado di avanzamento assume il valore ξ

$$n_i - n_i^o = v_i \xi$$

ovvero

$$n_i = n_i^0 + v_i \xi$$

Quindi ricordando che il coefficiente v_i è positivo per i prodotti e negativo per i reagenti, possiamo scrivere:

Per i reagenti

$$n_A = n_A^0 - a\xi$$

$$n_A = n_A^0 - a\xi$$
 $n_B = n_B^0 - b\xi$
$$n_L = n_L^0 + l\xi$$
 $n_M = n_M^0 + m\xi$

etc.

$$n_L = n_L^0 + l \xi$$

$$n_M = n_M^0 + m$$

etc.

Tornando alla reazione e al
$$(\Delta G)_{TP}$$

$$aA + bB + cC... \rightarrow lL + mM + nN...$$

$$(dG)_{T,P} = \sum_{i} G_{i} dn_{i}$$

$$(dG)_{T,P} = \overline{G}_A dn_A + \overline{G}_B dn_B + \dots + \overline{G}_L dn_L + \overline{G}_M dn_M + \dots$$

Introducendo a
$$dn_i = v_i d\xi$$

$$(dG)_{T,P} = (l \overline{G}_L d\xi + m \overline{G}_M d\xi + ...) - (a \overline{G}_A d\xi + b \overline{G}_B d\xi + ...)$$

$$(dG)_{T,P} = \left[\left(l \, \overline{G}_L + m \, \overline{G}_M + \ldots \right) - \left(a \, \overline{G}_A + b \, \overline{G}_B + \ldots \right) \right] d\xi$$

$$\left(\frac{dG}{d\xi}\right)_{T,P} = \left[\left(l\overline{G}_L + m\overline{G}_M + ...\right) - \left(a\overline{G}_A + b\overline{G}_B + ...\right)\right] = (\Delta G)_{T,P}$$

Nel progressivo avanzamento della reazione dG varia continuamente al variare della composizione del sistema. La reazione procede spontaneamente per come è stata scritta fin quando dG < 0

$$\left(\frac{dG}{d\xi}\right)_{T,P} = \left[\left(l\ \overline{G}_L + m\ \overline{G}_M + \ldots\right) - \left(a\ \overline{G}_A + b\ \overline{G}_B + \ldots\right)\right] = \left(\Delta G\right)_{T,P}$$

Energia libera di reazione

Se tutti i componenti sono nel loro stato standard

$$\left[\left(l\overrightarrow{G}_{L}^{o}+m\overrightarrow{G}_{M}^{o}+...\right)-\left(a\overrightarrow{G}_{A}^{o}+b\overrightarrow{G}_{B}^{o}+...\right)\right]=\left(\Delta G^{o}\right)_{T,P}$$

Energia libera standard di reazione

$$\left(\frac{dG}{d\xi}\right)_{T,P} = \left[\left(l\overline{G}_L + m\overline{G}_M + ...\right) - \left(a\overline{G}_A + b\overline{G}_B + ...\right)\right] = \left(\Delta G\right)_{T,P}$$

L'equilibrio chimico si raggiunge quando la funzione G assume il valore minimo rispetto all'avanzamento della reazione; matematicamente questo significa

$$\left(\frac{dG}{d\xi}\right)_{T,P} = (\Delta G)_{T,P} = 0$$

$$\left[\left(l\ \overline{G}_L + m\ \overline{G}_M + \ldots\right) - \left(a\ \overline{G}_A + b\ \overline{G}_B + \ldots\right)\right] = 0$$

L'energie libere molari dei singoli componenti nella forma più generale è:

$$\overline{G}_i = \overline{G}_i^o + RT \ln a_i$$

$$\left(\Delta G\right)_{T,P} = \left[\left(l\overline{G}_L^o + lRT\ln a_L + m\overline{G}_M^o + mRT\ln a_M + \ldots\right) - \left(a\overline{G}_A^o + aRT\ln a_A + b\overline{G}_B^o + bRT\ln a_B + \ldots\right)\right]$$

$$\left(\Delta G\right)_{T,P} = \left[\left(l\overline{G}_{L}^{o} + m\overline{G}_{M}^{o} + \dots - a\overline{G}_{A}^{o} - b\overline{G}_{B}^{o} - \dots\right) + RT\left(\ln a_{L}^{l} + \ln a_{M}^{m} + \dots - \ln a_{A}^{a} - \ln a_{B}^{b} - \dots\right)\right]$$

$$\left(\Delta G\right)_{T,P} = \sum_{i} v_{i} \overline{G}_{i}^{o} + RT \left(\ln a_{L}^{l} + \ln a_{M}^{m} + \dots - \ln a_{A}^{a} - \ln a_{B}^{b} - \dots\right)$$

$$(\Delta G)_{T,P} = (\Delta G^{\circ})_{T,P} + RT \ln \frac{a_L^l \cdot a_M^m \cdot ...}{a_A^a \cdot a_B^b \cdot ...}$$
 Isoterma di reazione di Van't Hoff

All'equilibrio
$$(\Delta G)_{T,P} = 0$$
 quindi: $(\Delta G^{\circ})_{T,P} = -RT \ln \frac{a_L^{i} \cdot a_M^{m} \cdot ...}{a_A^{a} \cdot a_B^{b} \cdot ...}$

$$\frac{a_L^l \cdot a_M^m \cdot \dots}{a_A^a \cdot a_B^b \cdot \dots} = K$$

Legge dell'equilibrio chimico o Legge dell'azione di massa

Esercizio

Per reazione di 1 mol di HCl e 0.5 mol di O₂ secondo la reazione:

$$4 \text{ HCl} + \text{O}_2 \leftrightarrow 2 \text{Cl}_2 + 2 \text{ H}_2\text{O}$$

A 400 °C e P = 1 atm, all'equilibrio sono presenti 0.39 mol di Cl_2 . Si calcoli il K_{P} della reazione.

