Department of Basic and Applied Sciences for Engineering Sapienza University of Rome

February, 19 2021



# Analysis and decomposition of frequency modulated multicomponent signals

PhD Thesis in Mathematical Models for Engineering, Electromagnetics and Nanoscience

**Curriculum Mathematics** 

XXXIII Cycle

#### Michela Tartaglione

Advisor: Prof. Vittoria Bruni

michela.tartaglione@uniroma1.it

## Frequency modulated signals everywhere



#### Frequency modulated signals everywhere



## Decomposition of FM signals/IFs separation



#### Pure tones vs FM signals



### **Time-Frequency Analysis**



# Decomposition of FM signals/IFs separation



#### Motivations



Time

#### Motivations



# Problem



#### Proposal



<u>enhancement</u>

# Spectrogram **model** in TF domain

Two non-parametric approaches proposed

Energy transform-based method for IFs curves separation

**Definition.** The Short-Time Fourier Transform (STFT) of a function  $f \in L^2(\mathbb{R})$ , with respect to a real and symmetric analysis window  $g \in L^2(\mathbb{R})$ , is

$$S_f^g(u,\xi) = \int_{-\infty}^{+\infty} f(t)g(t-u)e^{-i\xi t} dt, \,\forall \, (u,\xi) \in \mathbb{R} \times \mathbb{R}^+.$$

Spectrogram is defined as STFT squared modulus, i.e.  $P(u,\xi) = |S_f^g(u,\xi)|^2$ .

**Definition.** The Short-Time Fourier Transform (STFT) of a function  $f \in L^2(\mathbb{R})$ , with respect to a real and symmetric analysis window  $g \in L^2(\mathbb{R})$ , is  $S_f^g(u,\xi) = \int_{-\infty}^{+\infty} f(t)g(t-u)e^{-i\xi t} dt, \forall (u,\xi) \in \mathbb{R} \times \mathbb{R}^+.$ Spectrogram is defined as STFT squared modulus, i.e.  $P(u,\xi) = |S_f^g(u,\xi)|^2$ .

**Definition.** The Short-Time Fourier Transform (STFT) of a function  $f \in L^2(\mathbb{R})$ , with respect to a real and symmetric analysis window  $g \in L^2(\mathbb{R})$ , is  $S_f^g(u,\xi) = \int_{-\infty}^{+\infty} f(t)g(t-u)e^{-i\xi t} dt, \forall (u,\xi) \in \mathbb{R} \times \mathbb{R}^+.$ Spectrogram is defined as STFT squared modulus, i.e.  $P(u,\xi) = |S_f^g(u,\xi)|^2$ .

**Proposition 1.** Let  $f(t) = a_1(t) \cos \phi_1(t) + a_2(t) \cos \phi_2(t)$  be a two-components signal and let us set  $\hat{g}_k = \hat{g}(s(\xi - \phi'_k(u)))$ , where g is the analysis window with length s > 0, and  $\hat{g}$  denotes its Fourier Transform;  $a_k = a_k(u)$  and  $\phi_k = \phi_k(u)$ , k = 1, 2,  $\Delta \phi = \phi_1 - \phi_2$ , and (\*)' denotes the time derivative of (\*). Then, the spectrogram  $P(u, \xi)$  satisfies the following evolution law

$$\frac{\partial P(u,\xi)}{\partial u} + \phi_1'' \frac{\partial P(u,\xi)}{\partial \xi} - \frac{s}{2} a_1 a_1' \hat{g}_1^2 - \frac{s}{2} \left[ a_2 a_2' \hat{g}_2^2 + \hat{g}_1 \hat{g}_2 (a_1' a_2 + a_2' a_1) \cos \Delta \phi \right] + \frac{s}{2} a_1 a_2 \hat{g}_1 \hat{g}_2 \Delta \phi' \sin \Delta \phi + \frac{s^2}{2} \Delta \phi'' \hat{g}_2' \left[ a_2 \hat{g}_2^2 - a_1 a_2 \hat{g}_1 \cos \Delta \phi \right] = 0.$$
(1)

**Definition.** The Short-Time Fourier Transform (STFT) of a function  $f \in L^2(\mathbb{R})$ , with respect to a real and symmetric analysis window  $g \in L^2(\mathbb{R})$ , is  $S_f^g(u,\xi) = \int_{-\infty}^{+\infty} f(t)g(t-u)e^{-i\xi t} dt, \forall (u,\xi) \in \mathbb{R} \times \mathbb{R}^+.$ Spectrogram is defined as STFT squared modulus, i.e.  $P(u,\xi) = |S_f^g(u,\xi)|^2$ .

**Proposition 1.** Let  $f(t) = a_1(t) \cos \phi_1(t) + a_2(t) \cos \phi_2(t)$  be a two-components signal and let us set  $\hat{g}_k = \hat{g}(s(\xi - \phi'_k(u)))$ , where g is the analysis window with length s > 0, and  $\hat{g}$  denotes its Fourier Transform;  $a_k = a_k(u)$  and  $\phi_k = \phi_k(u)$ , k = 1, 2,  $\Delta \phi = \phi_1 - \phi_2$ , and (\*)' denotes the time derivative of (\*). Then, the spectrogram  $P(u, \xi)$  satisfies the following evolution law

$$\frac{\partial P(u,\xi)}{\partial u} + \phi_1'' \frac{\partial P(u,\xi)}{\partial \xi} - \frac{s}{2} a_1 a_1' \hat{g}_1^2 - \frac{s}{2} \left[ a_2 a_2' \hat{g}_2^2 + \hat{g}_1 \hat{g}_2 (a_1' a_2 + a_2' a_1) \cos \Delta \phi \right] + \frac{s}{2} a_1 a_2 \hat{g}_1 \hat{g}_2 \Delta \phi' \sin \Delta \phi + \frac{s^2}{2} \Delta \phi'' \hat{g}_2' \left[ a_2 \hat{g}_2^2 - a_1 a_2 \hat{g}_1 \cos \Delta \phi \right] = 0.$$
(1)

**Proposition 2.** The spectrogram  $P(u,\xi)$  of a monocomponent signal  $f(t) = a(t) \cos \phi(t)$  satisfies the following advection equation

$$\frac{\partial P(u,\xi)}{\partial u} + \phi''(u)\frac{\partial P(u,\xi)}{\partial \xi} - \frac{2a'(u)}{a(u)}P(u,\xi) = 0 \quad \forall u \in supp\{f\},\tag{2}$$

whose characteristic curves are

$$\mathcal{C}_{c,\phi} : \xi(u) = \phi'(u) + c,$$

with  $c = \xi_0 - \phi'(u_0)$  and  $(u_0, \xi_0)$  is a point in the TF plane.

**Proposition 2.** The spectrogram  $P(u,\xi)$  of a monocomponent signal  $f(t) = a(t) \cos \phi(t)$  satisfies the following advection equation

$$\frac{\partial P(u,\xi)}{\partial u} + \phi''(u)\frac{\partial P(u,\xi)}{\partial \xi} - \frac{2a'(u)}{a(u)}P(u,\xi) = 0 \quad \forall u \in supp\{f\},\tag{2}$$

whose characteristic curves are

$$\mathcal{C}_{c,\phi} : \xi(u) = \phi'(u) + c,$$

with  $c = \xi_0 - \phi'(u_0)$  and  $(u_0, \xi_0)$  is a point in the TF plane.







**Proposition 2.** The spectrogram  $P(u,\xi)$  of a monocomponent signal  $f(t) = a(t) \cos \phi(t)$  satisfies the following advection equation

$$\frac{\partial P(u,\xi)}{\partial u} + \phi''(u)\frac{\partial P(u,\xi)}{\partial \xi} - \frac{2a'(u)}{a(u)}P(u,\xi) = 0 \quad \forall u \in supp\{f\},$$
(2)  
hose characteristic curves are  
$$\mathcal{C}_{c,\phi} : \xi(u) = \phi'(u) + c,$$
ith  $c = \xi_0 - \phi'(u_0)$  and  $(u_0,\xi_0)$  is a point in the TF plane.



W

W

**Proposition 2.** The spectrogram  $P(u,\xi)$  of a monocomponent signal  $f(t) = a(t) \cos \phi(t)$  satisfies the following advection equation

$$\frac{\partial P(u,\xi)}{\partial u} + \phi''(u)\frac{\partial P(u,\xi)}{\partial \xi} - \frac{2a'(u)}{a(u)}\mathcal{P}(u,\xi) = 0 \quad \forall u \in supp\{f\},$$
(2)

whose characteristic curves are

$$\mathcal{C}_{c,\phi} : \xi(u) = \phi'(u) + c$$

with  $c = \xi_0 - \phi'(u_0)$  and  $(u_0, \xi_0)$  is a point in the TF plane.





0.06

0.05

0.01

0

100

**Definition 1**[Separability condition] Two modes with IFs  $\phi'_1(u)$  and  $\phi'_2(u)$  are separated at time location u if

 $|\phi_1'(u) - \phi_2'(u)| \ge \Delta\omega,$ 

where  $\Delta \omega$  denotes the analysis window frequency bandwidth.



0.06

0.05

Spectrogram section 0.03

0.01

0

100

**Definition 1**[Separability condition] Two modes with IFs  $\phi'_1(u)$  and  $\phi'_2(u)$  are separated at time location u if

 $|\phi_1'(u) - \phi_2'(u)| \ge \Delta\omega,$ 

where  $\Delta \omega$  denotes the analysis window frequency bandwidth.

**Definition 2** [Weakened separability condition] Two modes with IFs  $\phi'_1(u)$  and  $\phi'_2(u)$  are separated at time location u if there exists at least one curve in  $\mathcal{C}_{c_1,\phi_1}$ , i.e.,  $\xi_1(u) = \phi'_1(u) + c_1$ , such that

$$|\xi_1(u) - \phi_2'(u)| \ge \Delta\omega;$$

or viceversa.



**Definition 1**[Separability condition] Two modes with IFs  $\phi'_1(u)$  and  $\phi'_2(u)$  are separated at time location u if

 $|\phi_1'(u) - \phi_2'(u)| \ge \Delta \omega,$ 

where  $\Delta \omega$  denotes the analysis window frequency bandwidth.

**Definition 2** [Weakened separability condition] Two modes with IFs  $\phi'_1(u)$  and  $\phi'_2(u)$  are separated at time location u if there exists at least one curve in  $\mathcal{C}_{c_1,\phi_1}$ , i.e.,  $\xi_1(u) = \phi'_1(u) + c_1$ , such that

$$|\xi_1(u) - \phi_2'(u)| \ge \Delta \omega;$$

or viceversa.









#### Proposal

# Spectrogram **model** in TF domain

#### Iterative reassignment for IFs curves resolution

enhancement

Two non-parametric approaches proposed

Energy transform-based method for <u>IFs curves separation</u>



#### **Classical reassignment**



$$\hat{u}_f(u,\xi) = u + \Re\left(\frac{S_f^{tg}(u,\xi)}{S_f^g(u,\xi)}\right)$$
$$\hat{\xi}_f(u,\xi) = \xi - \Im\left(\frac{S_f^{g'}(u,\xi)}{S_f^g(u,\xi)}\right)$$

#### **Proposed reassignment**

**Proposition 2.** The spectrogram  $P(u,\xi)$  of a monocomponent signal  $f(t) = a(t) \cos \phi(t)$  satisfies the following advection equation



**Classical reassignment** 



$$\frac{\partial P(u,\xi)}{\partial \xi} = 0 \qquad \qquad \text{Newton-like} \\ \text{method} \\$$

$$\hat{u}_f(u,\xi) = u + \Re\left(\frac{S_f^{tg}(u,\xi)}{S_f^g(u,\xi)}\right)$$
$$\hat{\xi}_f(u,\xi) = \xi - \Im\left(\frac{S_f^{g'}(u,\xi)}{S_f^g(u,\xi)}\right)$$

## $\xi_{k+1} = \xi_k \pm \Delta_k(P(u,\xi_k),g), \ k \ge 0, \text{ fixed } u$

the shift  $\Delta_k$  is determined from the data



**Proposition 3.** Let us consider  $f(t) = a \cos \phi(t)$  and its normalized spectrogram  $p(u,\xi) = \frac{\sqrt{P(u,\xi)}}{\frac{\sqrt{s}}{2}a_i\hat{g}(0)}$ . In addition, let us consider  $\xi_0$  s.t.  $\hat{g}''(\xi_0 - \xi_R) < 0$ , with  $\xi_R := \phi'(u)$ , and let define  $\varphi(\xi) = \xi + sign(p_{\xi}(\xi))\sqrt{\frac{1-p(\xi)}{|\hat{g}''(0)|}}$  and the sequence

$$\xi_{k+1} = \xi_k + \alpha \, sign(p_{\xi}(\xi_k)) \sqrt{\frac{p(\varphi(\xi_k)) - p(\xi_k)}{|\hat{g}''(0)|}}, \quad k \ge 0, \tag{3}$$

with  $\alpha \in (0, 2\sqrt{1 - \varphi'^2(\tau)}), \tau \in (\xi_0, \varphi(\xi_0))$ . Then the sequence  $\{\xi_k\}_k$  converges to the ridge point  $\xi_R$ . Moreover, if  $\alpha = \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)^{-\frac{1}{2}}$  the convergence is at least quadratic.

**Proposition 3.** Let us consider  $f(t) = a \cos \phi(t)$  and its normalized spectrogram  $p(u,\xi) = \frac{\sqrt{P(u,\xi)}}{\frac{\sqrt{s}}{2}a_i\hat{g}(0)}$ . In addition, let us consider  $\xi_0$  s.t.  $\hat{g}''(\xi_0 - \xi_R) < 0$ , with  $\xi_R := \phi'(u)$ , and let define  $\varphi(\xi) = \xi + sign(p_{\xi}(\xi))\sqrt{\frac{1-p(\xi)}{|\hat{g}''(0)|}}$  and the sequence

$$\xi_{k+1} = \xi_k + \alpha \operatorname{sign}(p_{\xi}(\xi_k)) \sqrt{\frac{p(\varphi(\xi_k)) - p(\xi_k)}{|\hat{g}''(0)|}}, \quad k \ge 0,$$
(3)  
with  $\alpha \in (0, 2\sqrt{1 - \varphi'^2(\tau)}), \tau \in (\xi_0, \varphi(\xi_0)).$  Then the sequence  $\{\xi_k\}_k$  converges to the ridge point  $\xi_R$ .  
Moreover, if  $\alpha = \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)^{-\frac{1}{2}}$  the convergence is at least quadratic.

Newton-like method with «fixed tangent»

**Proposition 3.** Let us consider  $f(t) = a \cos \phi(t)$  and its normalized spectrogram  $p(u,\xi) = \frac{\sqrt{P(u,\xi)}}{\frac{\sqrt{s}}{2}a_i\hat{g}(0)}$ . In addition, let us consider  $\xi_0$  s.t.  $\hat{g}''(\xi_0 - \xi_R) < 0$ , with  $\xi_R := \phi'(u)$ , and let define  $\varphi(\xi) = \xi + sign(p_{\xi}(\xi))\sqrt{\frac{1-p(\xi)}{|\hat{g}''(0)|}}$  and the sequence

$$\xi_{k+1} = \xi_k + \alpha \, sign(p_{\xi}(\xi_k)) \sqrt{\frac{p(\varphi(\xi_k)) - p(\xi_k)}{|\hat{g}''(0)|}}, \quad k \ge 0, \tag{3}$$

with  $\alpha \in (0, 2\sqrt{1 - \varphi'^2(\tau)}), \tau \in (\xi_0, \varphi(\xi_0))$ . Then the sequence  $\{\xi_k\}_k$  converges to the ridge point  $\xi_R$ . Moreover, if  $\alpha = \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)^{-\frac{1}{2}}$  the convergence is at least quadratic.

**Convergence interval** 

**Proposition 3.** Let us consider  $f(t) = a \cos \phi(t)$  and its normalized spectrogram  $p(u,\xi) = \frac{\sqrt{P(u,\xi)}}{\frac{\sqrt{s}}{2}a_i\hat{g}(0)}$ . In addition, let us consider  $\xi_0$  s.t.  $\hat{g}''(\xi_0 - \xi_R) < 0$ , with  $\xi_R := \phi'(u)$ , and let define  $\varphi(\xi) = \xi + sign(p_{\xi}(\xi))\sqrt{\frac{1-p(\xi)}{|\hat{g}''(0)|}}$  and the sequence

$$\xi_{k+1} = \xi_k + \alpha \, sign(p_{\xi}(\xi_k)) \sqrt{\frac{p(\varphi(\xi_k)) - p(\xi_k)}{|\hat{g}''(0)|}}, \quad k \ge 0, \tag{3}$$

with  $\alpha \in (0, 2\sqrt{1 - \varphi'^2(\tau)}), \tau \in (\xi_0, \varphi(\xi_0))$ . Then the sequence  $\{\xi_k\}_k$  converges to the ridge point  $\xi_R$ . Moreover, if  $\alpha = \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)^{-\frac{1}{2}}$  the convergence is at least quadratic.

Fast convergence

**Proposition 3.** Let us consider  $f(t) = a \cos \phi(t)$  and its normalized spectrogram  $p(u,\xi) = \frac{\sqrt{P(u,\xi)}}{\frac{\sqrt{s}}{2}a_i\hat{g}(0)}$ . In addition, let us consider  $\xi_0$  s.t.  $\hat{g}''(\xi_0 - \xi_R) < 0$ , with  $\xi_R := \phi'(u)$ , and let define  $\varphi(\xi) = \xi + sign(p_{\xi}(\xi))\sqrt{\frac{1-p(\xi)}{|\hat{g}''(0)|}}$  and the sequence

$$\xi_{k+1} = \xi_k + \alpha \, sign(p_{\xi}(\xi_k)) \sqrt{\frac{p(\varphi(\xi_k)) - p(\xi_k)}{|\hat{g}''(0)|}}, \quad k \ge 0,$$
(3)

with  $\alpha \in (0, 2\sqrt{1 - \varphi'^2(\tau)}), \tau \in (\xi_0, \varphi(\xi_0))$ . Then the sequence  $\{\xi_k\}_k$  converges to the ridge point  $\xi_R$ . Moreover, if  $\alpha = \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)^{-\frac{1}{2}}$  the convergence is at least quadratic.

#### **APPLICATION to MULTICOMPONENT signals?**

By involving the characteristic curves such that <u>WSC</u> is met, interference effects are negligible and the problem reduces to the monocomponent case.

**Problem**: if the modes cross in the TF plane, there exists a region where after one iteration the WSC is no more satisfied.

**Proposition 3.** Let us consider  $f(t) = a \cos \phi(t)$  and its normalized spectrogram  $p(u,\xi) = \frac{\sqrt{P(u,\xi)}}{\frac{\sqrt{s}}{2}a_i\hat{g}(0)}$ . In addition, let us consider  $\xi_0$  s.t.  $\hat{g}''(\xi_0 - \xi_R) < 0$ , with  $\xi_R := \phi'(u)$ , and let define  $\varphi(\xi) = \xi + sign(p_{\xi}(\xi))\sqrt{\frac{1-p(\xi)}{|\hat{g}''(0)|}}$  and the sequence

$$\xi_{k+1} = \xi_k + \alpha \, sign(p_{\xi}(\xi_k)) \sqrt{\frac{p(\varphi(\xi_k)) - p(\xi_k)}{|\hat{g}''(0)|}}, \quad k \ge 0, \tag{3}$$

with  $\alpha \in (0, 2\sqrt{1 - \varphi'^2(\tau)}), \tau \in (\xi_0, \varphi(\xi_0))$ . Then the sequence  $\{\xi_k\}_k$  converges to the ridge point  $\xi_R$ . Moreover, if  $\alpha = \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)^{-\frac{1}{2}}$  the convergence is at least quadratic.

#### **APPLICATION to MULTICOMPONENT signals?**

By involving the characteristic curves such that <u>WSC</u> is met, interference effects are negligible and the problem reduces to the monocomponent case.

**Problem**: if the modes cross in the TF plane, there exists a region where after one iteration the WSC is no more satisfied.

Solution: Convergence properties are exploited for detecting this region.

Relaxed method

$$\xi_{k+1} = \xi_k + sign(p_{\xi}(\xi_0)) \left(1 - \frac{1}{\sqrt{2}}\right) \sqrt{\frac{1 - p(\xi_0)}{|\hat{g}''(0)|}}, \quad k = 1, 2.$$
(4)

**Proposition 3.** Let us consider  $f(t) = a \cos \phi(t)$  and its normalized spectrogram  $p(u,\xi) = \frac{\sqrt{P(u,\xi)}}{\frac{\sqrt{s}}{2}a_i\hat{g}(0)}$ . In addition, let us consider  $\xi_0$  s.t.  $\hat{g}''(\xi_0 - \xi_R) < 0$ , with  $\xi_R := \phi'(u)$ , and let define  $\varphi(\xi) = \xi + sign(p_{\xi}(\xi))\sqrt{\frac{1-p(\xi)}{|\hat{g}''(0)|}}$  and the sequence

$$\xi_{k+1} = \xi_k + \alpha \, sign(p_{\xi}(\xi_k)) \sqrt{\frac{p(\varphi(\xi_k)) - p(\xi_k)}{|\hat{g}''(0)|}}, \quad k \ge 0, \tag{3}$$

with  $\alpha \in (0, 2\sqrt{1 - \varphi'^2(\tau)}), \tau \in (\xi_0, \varphi(\xi_0))$ . Then the sequence  $\{\xi_k\}_k$  converges to the ridge point  $\xi_R$ . Moreover, if  $\alpha = \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)^{-\frac{1}{2}}$  the convergence is at least quadratic.

#### **Further details**:

[3] Bruni, V., Tartaglione, M., Vitulano, D., *A Fast and Robust Spectrogram Reassignment Method*, Mathematics, 7(4), 358, **2019** 

[4] Bruni, V., Tartaglione, M., Vitulano, D., *An iterative approach for spectrogram reassignment of frequency modulated multicomponent signals,* Mathematics and Computers in Simulation, **2019**.



# <u>benefits</u>: computational effort (convergence reached in 2-3 iterations, only 1 STFT required), robustness to interference

#### issues: limited to constant amplitude signals.

[4] Bruni, V., Tartaglione, M., Vitulano, D., An iterative approach for spectrogram reassignment of frequency modulated multicomponent signals, Mathematics and Computers in Simulation, **2019** 



#### Iterative reassignment for IFs curves resolution enhancement

# Spectrogram **model** in TF domain

Two non-parametric approaches proposed

Energy transform-based method for IFs curves separation

# Radon-Spectrogram Distribution

**Definition.** Given a function  $F(x, y) \in C^{\infty}(\mathbb{R}^2; \mathbb{R})$ , compactly supported or rapidly decreasing to zero, its Radon Transform (RT) is defined as

$$R_F(r,\theta) = \int_{\mathbb{R}} F(x,y) \,\delta(r - x\cos\theta - y\sin\theta) dx \,dy \,, \quad (r,\theta) \in \mathbb{R} \times [0,\pi)$$

#### Radon-Spectrogram Distribution

**Definition.** Given a function  $F(x, y) \in C^{\infty}(\mathbb{R}^2; \mathbb{R})$ , compactly supported or rapidly decreasing to zero, its Radon Transform (RT) is defined as

$$R_F(r,\theta) = \int_{\mathbb{R}} F(x,y) \,\delta(r - x\cos\theta - y\sin\theta) dx \,dy \,, \quad (r,\theta) \in \mathbb{R} \times [0,\pi)$$



#### **Radon-Spectrogram Distribution**

**Definition.** Given a function  $F(x, y) \in C^{\infty}(\mathbb{R}^2; \mathbb{R})$ , compactly supported or rapidly decreasing to zero, its Radon Transform (RT) is defined as

$$R_F(r,\theta) = \int_{\mathbb{R}} F(x,y) \,\delta(r - x\cos\theta - y\sin\theta) dx \,dy \,, \quad (r,\theta) \in \mathbb{R} \times [0,\pi)$$



# Why Radon-Spectrogram?



110 150 200 251 300 250 400 Time 21 40 60 80 100 Ø

#### Why Radon-Spectrogram?



Spectrogram



Radon Spectrogram









**Proposition.** Let  $f(t) = a \cos \phi(t)$  be a constant amplitude FM signal satisfying one of the following assumptions: (i)  $\phi'''(t) = 0$  or  $\phi''(t) = 0, \forall t$ ;

(ii)  $0 < |\phi''(t)| < L_1, |\phi'''(t)| \ge L_2 > 0$  and the spectrogram  $P(u,\xi)$  is computed with a compactly supported analysis window g whose bandwidth satisfies  $\Delta \omega \le \frac{1+L_1^2}{L_2}$ .

Then, the Radon Spectrogram of f(t) is

$$R(r,\theta) = \int_{0}^{+\infty} R(r,\theta,t) dt - \int_{0}^{+\infty} \frac{\phi'''(t) \sin^{2} \theta_{0}}{\cos(\theta - \theta_{0})} (r - t\cos\theta - \phi'(t)\sin\theta) R(r,\theta,t) dt, \ \forall \theta : |\theta - \theta_{0}| \in \left[0, \frac{\pi}{2}\right), \forall r \in \mathbb{R},$$
  
with  $\theta_{0} = \theta_{0}(t) = -\arctan\left(\frac{1}{\phi''(t)}\right),$   
$$R(r,\theta,t) = \frac{1}{2\pi\cos(\theta - \theta_{0})} \hat{g}\left(\frac{r - t\cos\theta - \phi'(t)\sin\theta}{\cos(\theta - \theta_{0})}\right).$$





Radon Spectrogram reaches its maximum along the IF curve mapped in the Radon Domain (up to an error depending on  $\phi'''(t), t \in supp\{f\}$ )



IF curves in TF domain can be recovered by inverting Radon Transform on Radon maxima

#### IFs separation



#### Some results



#### Some results



[5] Bruni, V., Tartaglione, M., Vitulano, D., *Instantaneous frequency modes separation via a Spectrogram-Radon based approach*. In 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 347-351, IEEE, **2019** 

[6] Bruni, V., Tartaglione, M., Vitulano, D., Radon spectrogram-based approach for automatic IFs separation, EURASIP Journal on Advances in Signal Proc., 2020

# Conclusions

- The problem of the decomposition / IFs separation of frequency modulated multicomponent signals with interfering modes has been presented
- A spectrogram TF evolution law and a model for Radon-Spectrogram have been proposed
- Advantages : non parametric approach; some limitations in state-of-the-art have been overcome
- Immediate developments: time-varying amplitudes

Bruni, V., Tartaglione, M., Vitulano, D., *A Signal Complexity-Based Approach for AM–FM Signal Modes Counting*. Mathematics, 8, MDPI, 2170, **2020** 

Bruni, V., Tartaglione, M., Vitulano, D., *A pde-Based Analysis of the Spectrogram Image for Instantaneous Frequency Estimation*. Mathematics, 9(3):247, **2021** 

Bruni, V., Tartaglione, M., Vitulano, D., *Automatic interference region detection and ridge curves recovery in AM-FM multicomponent signals*, **in preparation** 

• <u>Future perspectives</u>: real-world signals; addressing the open questions appeared

# Publications

[1] Bruni, V., Tartaglione, M., Vitulano, D., *On the time-frequency reassignment of interfering modes in multicomponent FM signals*. In 2018 26th European Signal Processing Conference (EUSIPCO), IEEE , pp. 722-726, **2018** 

[2] Bruni, V., Tartaglione, M., Vitulano, D., *An iterative spectrogram reassignment of frequency modulated multicomponent signals*. In 15th Meeting On Applied Scientific Computing And Tools (MASCOT), **2018** 

[3] Bruni, V., Tartaglione, M., Vitulano, D., A Fast and Robust Spectrogram Reassignment Method. Mathematics, 7(4), 358, 2019

[4] Bruni, V., Tartaglione, M., Vitulano, D., *An iterative approach for spectrogram reassignment of frequency modulated multicomponent signals*. Mathematics and Computers in Simulation, **2019** 

[5] Bruni, V., Tartaglione, M., Vitulano, D., *Instantaneous frequency modes separation via a Spectrogram-Radon based approach*. In 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 347-351, IEEE, **2019** 

[6] Bruni, V., Tartaglione, M., Vitulano, D., *Radon spectrogram-based approach for automatic IFs separation*. EURASIP Journal on Advances in Signal Processing, **2020** 

[7] Bruni, V., Tartaglione, M., Vitulano, D., A Signal Complexity-Based Approach for AM–FM Signal Modes Counting. Mathematics, 8, MDPI, 2170, **2020** 

[8] Bruni, V., Tartaglione, M., Vitulano D., *Coherence of PRNU weighted estimations for improved source camera identification*, Multimedia Tools and Applications, **2021** 

[9] Bruni, V., Tartaglione, M., Vitulano, D., A pde-Based Analysis of the Spectrogram Image for Instantaneous Frequency Estimation. Mathematics, 9(3):247, 2021