ANALISI I	(h	2)	12	CFII
ANALISTI	11.	<i>4</i>)	14	Cr U

TEMA/A

ANALISI I (h. 2) I Mod. \square II Mod. \square

Cognome e nome (in stampatello)

Appello del 3 Febbraio 2011

Barrare la casella corrispondente all'esame di competenza.

Coloro che sostengono l'esame del Mod. I devono svolgere gli esercizi E1/E2/E3/D1, coloro che sostengono l'esame del Mod. II devono svolgere gli esercizi E4/E5/E6/D2, coloro che sostengono l'esame da CFU 12 oppure CFU 5+5 devono svolgere gli esercizi E3/E6/D2 ed un esercizio a scelta tra E2 ed E5.

E1. Stabilire se la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} \frac{|2x - 3|(e^{-2x} - 1)}{x} & \text{se } x < 0; \\ \sqrt[3]{x - 6} & \text{se } x \ge 0; \end{cases}$$

è continua in x=0 ed in caso negativo, classificare il tipo di discontinuità.

E2. Determinare le soluzioni $z \in \mathbb{C}$ dell'equazione

$$(|e^{iz-3i}|-1)(8z^3+1)=0.$$

E3. Calcolare

$$\lim_{n \to +\infty} (3n^3 + 2) \left[\sin \frac{1}{n} - \frac{1}{n} \right].$$

D1. Si considerino le successioni di numeri reali $\{a_n\}$ e $\{b_n\}$. Sapendo che $a_n \to 0^+$ e $-2 \le b_n \le 2$, stabilire, giustificando la risposta, quali tra le seguenti affermazioni sono vere:

1)
$$\lim_{n \to +\infty} \frac{|b_n|}{a_n} = +\infty; \qquad 2) \quad \lim_{n \to +\infty} a_n b_n^2 = 0; \qquad 3) \quad \sum_{n=1}^{+\infty} a_n^2 |b_n| \text{ converge }.$$

Fornire un controesempio per ogni affermazione errata.

$$\lim_{(x,y)\to(1,0)} \frac{3e^{y^2} - 3}{\sqrt{x^2 + y^2 - 2x + 1}}.$$

$$\int_0^1 \frac{\left[\log(1+x)\right]^{2\alpha^2-2}}{(\sinh x)^{\alpha^2+5}} \, dx \, .$$

converge.

E6. Determinare l'integrale generale dell'equazione differenziale

$$y'(x) + x (1 + 2e^{x^2}) \cos^2 y(x) = 0,$$

e la soluzione del problema di Cauchy con condizione iniziale $y(0) = \pi/2$.

D2. Sia f una funzione assegnata differenziabile in \mathbb{R}^2 . Stabilire, giustificando la risposta, quali tra le seguenti affermazioni sono corrette e fornire un controesempio per quelle false:

- a) $\nabla f(0,0) = (0,0) \implies (0,0)$ è estremante per f;
- b) se (3,5) è punto di sella \Longrightarrow $\nabla f(3,5) = (0,0)$;
- c) $\nabla f(1,7) = (2,4) \implies \text{il piano } 2x + 4y 2z = 0$ è parallelo al piano tangente al grafico di f nel punto (1,7);
- d) se $f(0,0) \neq 0$, f non è continua nell'origine.

Spazio riservato alla commissione	E1.	E2.	E3.	D1.	
	E4.	E5.	E6.	D2.	totale

ANALISI I	(h	2)	12 CEII	П
ANALISII	(n.	Z)	12 CF U	

TEMA/B

ANALISI I (h. 2) I Mod. \square II Mod. \square

Cognome e nome (in stampatello)

Appello del 3 Febbraio 2011

Barrare la casella corrispondente all'esame di competenza.

Coloro che sostengono l'esame del Mod. I **devono svolgere** gli esercizi E1/E2/E3/D1, coloro che sostengono l'esame del Mod. II **devono svolgere** gli esercizi E4/E5/E6/D2, coloro che sostengono l'esame da CFU 12 oppure CFU 5+5 **devono svolgere** gli esercizi E3/E6/D2 ed un esercizio a scelta tra E2 ed E5.

E1. Stabilire se la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} -\frac{3\log(1+3x)}{x} & \text{se } x > 0; \\ |x-11| + \sqrt[3]{(x^3+2x)^2 + 8} & \text{se } x \le 0. \end{cases}$$

è continua in x = 0 ed in caso negativo, classificare il tipo di discontinuità.

E2. Determinare le soluzioni $z \in \mathbb{C}$ dell'equazione

$$(|e^{z-3}| - 1)(z^3 - 8) = 0.$$

E3. Calcolare

$$\lim_{n \to +\infty} (n^2 + 5n) \left[\log \left(1 + \frac{1}{2n} \right) - \frac{1}{2n} \right].$$

D1. Si considerino le successioni di numeri reali $\{a_n\}$ e $\{b_n\}$. Sapendo che $-5 \le a_n \le 5$ e $b_n \to +\infty$, stabilire, giustificando la risposta, quali tra le seguenti affermazioni sono vere:

1)
$$\lim_{n \to +\infty} b_n |a_n| = +\infty;$$
 2) $\lim_{n \to +\infty} \frac{a_n}{b_n} = 0;$ 3) $\sum_{n=1}^{+\infty} \frac{|a_n|}{b_n^2}$ converge.

Fornire un controesempio per ogni affermazione errata.

$$\lim_{(x,y)\to(0,1)} = \frac{\log(1+2x^2)}{\sqrt{x^2+y^2-2y+1}}.$$

$$\int_{1}^{+\infty} \frac{\sinh\left(\frac{1}{x^{\alpha^{2}+8}}\right)}{\log\left(1+\frac{1}{x^{2\alpha^{2}+6}}\right)} dx.$$

converge.

E6. Determinare l'integrale generale dell'equazione differenziale

$$y'(x) - \frac{\log(2+x) + 2}{2+x} \sqrt{y(x) - 1} = 0,$$

e la soluzione del problema di Cauchy con condizione iniziale y(0)=1 .

 ${f D2.}$ Sia f una funzione assegnata differenziabile in ${\Bbb R}^2$. Stabilire, giustificando la risposta, quali tra le seguenti affermazioni sono corrette e fornire un controesempio per quelle false:

- a) $\nabla f(0,0) = (0,0) \implies (0,0)$ è punto critico per f;
- b) se $\nabla f(3,5) = (0,0) \implies (3,5)$ è punto di sella per f;
- c) $f(x,y) \rightarrow f(1,7)$ per $(x,y) \rightarrow (1,7)$;
- d) se $f(0,0) = 0 \implies \frac{\partial f}{\partial v}(0,0) = 0$ per ogni direzione $v \in \mathbb{R}^2$.

Spazio riservato alla commissione	E1	E2.	E3	D1.	totalo	
	E4.	E 3. \square	E0.	D2.	totale	

ANALISI I	(h. 2)) 12 CFU
111111111111111111111111111111111111111	(11. 4	, 12 01 0

ANALISI I (h. 2) I Mod. □ II Mod. □

Appello del 3 Febbraio 2011

TEMA/C

Cognome e nome (in stampatello)

Barrare la casella corrispondente all'esame di competenza.

Coloro che sostengono l'esame del Mod. I **devono svolgere** gli esercizi E1/E2/E3/D1, coloro che sostengono l'esame del Mod. II **devono svolgere** gli esercizi E4/E5/E6/D2, coloro che sostengono l'esame da CFU 12 oppure CFU 5+5 **devono svolgere** gli esercizi E3/E6/D2 ed un esercizio a scelta tra E2 ed E5.

E1. Stabilire se la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} -\frac{|x-3|\log(1+4x)}{2x} & \text{se } x > 0; \\ |x-7| + \sqrt[5]{(x^2+3x)^4 + 1} & \text{se } x \le 0; \end{cases}$$

è continua in x = 0 ed in caso negativo, classificare il tipo di discontinuità.

E2. Determinare le soluzioni $z \in \mathbb{C}$ dell'equazione

$$(|e^{2z-4}| - 1)(z^3 + 8) = 0.$$

E3. Calcolare

$$\lim_{n \to +\infty} (2n^2 + 4n) \left[\sqrt{1 + \frac{1}{n}} - 1 - \frac{1}{2n} \right] .$$

D1. Si considerino le successioni di numeri reali $\{a_n\}$ e $\{b_n\}$. Sapendo che $-5 \le a_n \le 5$ e $b_n \to +\infty$, stabilire, giustificando la risposta, quali tra le seguenti affermazioni sono vere:

1)
$$\lim_{n \to +\infty} b_n |a_n| = +\infty$$
; 2) $\sum_{n=1}^{+\infty} \frac{|a_n|}{b_n^2}$ converge; 3) $\lim_{n \to +\infty} \frac{a_n}{b_n} = 0$.

Fornire un controesempio per ogni affermazione errata.

$$\lim_{(x,y)\to(0,2)} \frac{\log(1+x^3/7)}{x^2+y^2-4y+4}.$$

$$\int_{1}^{+\infty} \frac{\left[\log\left(1+\frac{1}{x}\right)\right]^{2\alpha^{2}-6}}{\left(\sinh\frac{1}{x}\right)^{\alpha^{2}+8}} dx.$$

converge.

E6. Determinare l'integrale generale dell'equazione differenziale

$$y'(x) + \frac{\log(x-3) - 5}{x-3}\sqrt{2 - y(x)} = 0,$$

e la soluzione del problema di Cauchy con condizione iniziale y(5)=2 .

D2. Sia f una funzione assegnata differenziabile in \mathbb{R}^2 . Stabilire, giustificando la risposta, quali tra le seguenti affermazioni sono corrette e fornire un controesempio per quelle false:

- a) se $f(0,0) = 0 \implies \frac{\partial f}{\partial v}(0,0) = 0$ per ogni direzione $v \in \mathbb{R}^2$;
- $b) \quad \nabla f(0,0) = (0,0) \quad \Longrightarrow \quad (0,0) \ \ \text{è punto critico per } f;$
- $c) \quad f(x,y) \to f(1,7) \quad \text{per} \quad (x,y) \to (1,7)\,;$
- $d) \quad \text{se } \nabla f(3,5) = (0,0) \quad \Longrightarrow \quad (3,5) \ \text{\`e punto di sella per } f.$

Spazio riservato alla commissione	E1.	E2.	E3.	D1.	Г	
	E4.	E5.	E6.	D2.	totale	

ANALISI I	(h.	2)	12	CFU
TITITIDI	(TT •	4)	14	\circ

TEMA/D

ANALISI I (h. 2) I Mod. \square II Mod. \square

Cognome e nome (in stampatello)

Appello del 3 febbraio 2011

Barrare la casella corrispondente all'esame di competenza.

Coloro che sostengono l'esame del Mod. I **devono svolgere** gli esercizi E1/E2/E3/D1, coloro che sostengono l'esame del Mod. II **devono svolgere** gli esercizi E4/E5/E6/D2, coloro che sostengono l'esame da CFU 12 oppure CFU 5+5 **devono svolgere** gli esercizi E3/E6/D2 ed un esercizio a scelta tra E2 ed E5.

E1. Stabilire se la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} \frac{|2x - 4|(e^{-2x} - 1)}{2x} & \text{se } x < 0; \\ \sqrt[5]{x - 4} & \text{se } x \ge 0; \end{cases}$$

è continua in x=0 ed in caso negativo, classificare il tipo di discontinuità.

E2. Determinare le soluzioni $z \in \mathbb{C}$ dell'equazione

$$(|e^{(z-4)/i}| - 1)(8z^3 - 1) = 0.$$

E3. Calcolare

$$\lim_{n \to +\infty} (4n^3 + 1) \left[\arctan \frac{1}{n} - \frac{1}{n} \right].$$

D1. Si considerino le successioni di numeri reali $\{a_n\}$ e $\{b_n\}$. Sapendo che $a_n \to 0^+$ e $-2 \le b_n \le 2$, stabilire, giustificando la risposta, quali tra le seguenti affermazioni sono vere:

1)
$$\lim_{n \to +\infty} a_n b_n^2 = 0$$
; 2) $\lim_{n \to +\infty} \frac{|b_n|}{a_n} = +\infty$; 3) $\sum_{n=1}^{+\infty} a_n^2 |b_n|$ converge.

Fornire un controesempio per ogni affermazione errata.

$$\lim_{(x,y)\to(2,0)} \frac{4e^{2y^3} - 4}{x^2 + y^2 - 4x + 4}.$$

$$\int_0^1 \frac{\sinh\left(x^{\alpha^2+5}\right)}{\left[\log(1+x^{2\alpha^2+2})\right]} dx.$$

converge.

E6. Determinare l'integrale generale dell'equazione differenziale

$$y'(x) - x^2 (1 + 3e^{x^3}) \sin^2 y(x) = 0$$

e la soluzione del problema di Cauchy con condizione iniziale y(0) = 0 .

D2. Sia f una funzione assegnata differenziabile in \mathbb{R}^2 . Stabilire, giustificando la risposta, quali tra le seguenti affermazioni sono corrette e fornire un controesempio per quelle false:

- a) se $f(0,0) \neq 0$, f non è continua nell'origine;
- b) $\nabla f(0,0) = (0,0) \implies (0,0)$ è estremante per f;
- c) se (3,5) è punto di sella $\Longrightarrow \nabla f(3,5) = (0,0)$;
- d) $\nabla f(1,7) = (2,4)$ \Longrightarrow il piano 2x + 4y 2z = 0 è parallelo al piano tangente al grafico di f nel punto (1,7).

Spazio riservato	E1.	E2.	E3.	D1	
alla commissione	21.	22.	29.	21.	
	E4.	E5.	E6.	D2.	totale