SOLUZIONI COMPITO del 7/06/2012 ANALISI MATEMATICA I - 10 CFU ENERGETICA

TEMA A

Esercizio 1

Osserviamo, innanzitutto, che la serie proposta è a termini positivi. Utilizzando lo sviluppo di Mc Laurin al primo ordine per la funzione $t \mapsto \log(1+t)$, con $t = \sin\frac{1}{n}$, e per la funzione $t \mapsto \sin t$, con t = 1/n, otteniamo

$$n^{\alpha} \log \left(1 + \sin \frac{1}{n}\right) = n^{\alpha} \sin \left(\frac{1}{n}\right) \sim n^{\alpha} \frac{1}{n} = \frac{1}{n^{1-\alpha}}.$$

Pertanto, per il criterio del confronto asintotico con la serie armonica generalizzata, avremo che la serie proposta converge se e solo se $1-\alpha>1$, ovvero per $\alpha<0$. Per $\alpha\geq0$, la serie proposta diverge a $+\infty$.

Esercizio 2

Utilizzando il teorema di riduzione degli integrali doppi, si ottiene

$$\iint_{E} e^{x} (2y+x) \, dy \, dx = \int_{0}^{1} \int_{0}^{x} e^{x} (2y+x) \, dy \, dx = \int_{0}^{1} e^{x} \left(\int_{0}^{x} (2y+x) \, dy \right) \, dx = \int_{0}^{1} e^{x} (y^{2}+xy) \Big|_{0}^{x} \, dx$$

$$= \int_{0}^{1} e^{x} (x^{2}+x^{2}) \, dx = 2x^{2} e^{x} \Big|_{0}^{1} - 4 \int_{0}^{1} x e^{x} \, dx$$

$$= 2e - 4x e^{x} \Big|_{0}^{1} + 4 \int_{0}^{1} e^{x} \, dx = 2e - 4e + 4e^{x} \Big|_{0}^{1} = 2e - 4e + 4e - 4 = 2e - 4.$$

Esercizio 3

L'equazione differenziale proposta è un'equazione lineare del secondo ordine a coefficienti costanti e omogenea, la cui equazione caratteristica è data da $\lambda^2 + 2\alpha\lambda + 3 = 0$. Otteniamo, pertanto,

$$\lambda = -\alpha \pm \sqrt{\alpha^2 - 3} = \begin{cases} \text{due soluzioni reali distinte per} & \alpha < -\sqrt{3} \text{ e } \alpha > \sqrt{3}; \\ \text{due soluzioni reali coincidenti per} & \alpha = \pm \sqrt{3}; \\ \text{due soluzioni complesse coniugate per} & -\sqrt{3} < \alpha < \sqrt{3}. \end{cases}$$

• Caso $\alpha < -\sqrt{3}$ e $\alpha > \sqrt{3}$ L'integrale generale dell'equazione differenziale è

$$y(x) = C_1 \exp[-(\alpha + \sqrt{\alpha^2 - 3})x] + C_2 \exp[-(\alpha - \sqrt{\alpha^2 - 3})x].$$

• Caso $\alpha = \pm \sqrt{3}$ L'integrale generale dell'equazione differenziale è

$$y(x) = C_1 e^{\sqrt{3}x} + C_2 x e^{\sqrt{3}x}$$
 (rispett. $y(x) = C_1 e^{-\sqrt{3}x} + C_2 x e^{-\sqrt{3}x}$).

• Caso $-\sqrt{3} < \alpha < \sqrt{3}$ L'integrale generale dell'equazione differenziale è

$$y(x) = e^{-\alpha x} \left\{ C_1 \cos[(\sqrt{3 - \alpha^2})x] + C_2 \sin[(\sqrt{3 - \alpha^2})x] \right\}.$$

Esercizio 4

Studiamo, innanzitutto, gli estremanti della funzione f, utilizzando il Teorema di Fermat nell'intervallo $(0,\pi)$:

$$f'(x) = 1 - 2\cos x \begin{cases} > 0 & \text{se } \cos x < 1/2 \Longleftrightarrow \pi/3 < x < \pi; \\ = 0 & \text{se } \cos x = 1/2 \Longleftrightarrow x = \pi/3; \\ < 0 & \text{se } \cos x > 1/2 \Longleftrightarrow 0 < x < \pi/3. \end{cases}$$

Quindi x=0 e $x=\pi$ sono punti di massimo relativo, mentre $x=\pi/3$ è punto di minimo relativo e assoluto. Calcolando f(0)=0 ed $f(\pi)=\pi$, otteniamo anche che $x=\pi$ è punto di massimo assoluto. Inoltre, poiché $f(\pi/3)=\pi/3-\sqrt{3}$, si ha anche che $f(x)+\sqrt{3}>0$ in tutto l'intervallo $[0,\pi]$, quindi la funzione g(x) coincide con la funzione $f(x)+\sqrt{3}$ nell'intervallo considerato. Pertanto, x=0 è punto di massimo relativo per g, $x=\pi$ è punto di massimo assoluto per g e $x=\pi/3$ è punto di minimo assoluto per g.

Esercizio 5

a) L'affermazione è falsa, basta considerare, ad esempio, la funzione

$$f(x) = \begin{cases} |x| & \text{se } -1 \le x \le 1, \\ 1/x^2 & \text{se } x < -1 \text{ e } x > 1. \end{cases}$$

Essa è limitata su tutto \mathbb{R} , f(x) = |x| per $x \to 0$, ma

$$\sum_{n=1}^{+\infty} f(n) = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$
 che è una serie convergente.

- b) L'affermazione è vera, poiché per ipotesi la serie è a termini non negativi ed $f(1/n) \sim 1/n$; quindi, per il criterio del confronto asintotico, otteniamo che la serie proposta è convergente, in quanto $f^2(1/n) \sim 1/n^2$, che è il termine generale di una serie armonica generalizzata di esponente maggiore di 1.
- c) L'affermazione è vera, poiché per ipotesi la serie è a termini non negativi ed $f(1-\cos(1/n)) \sim 1 \cos(1/n) \sim 1/2n^2$; quindi, per il criterio del confronto asintotico, otteniamo che la serie proposta è convergente, in quanto il suo termine generale è asintotico a quello di una serie armonica generalizzata di esponente maggiore di 1.
- d) L'affermazione è falsa, basta considerare, ad esempio, $f(x) = |\arctan x|$ che è positiva e limitata su tutto \mathbb{R} ed, inoltre, $f(x) \sim |x|$ per $x \to 0$. Tuttavia

$$\sum_{n=1}^{+\infty} \frac{f(n)}{n^2} = \sum_{n=1}^{+\infty} \frac{\arctan n}{n^2} \quad \text{e} \quad \frac{\arctan n}{n^2} \leq \frac{\pi}{2n^2} \quad \text{che \`e il termine generale di una serie convergente.}$$