Fondamenti di Mat	data				
Cognome:	Nome:	Firma:			

Per ogni domanda, una sola delle quattro affermazioni è corretta. Scrivere <u>in stampatello maiuscolo</u> la propria scelta nella corrispondente casella in basso. Per annullare una risposta, cancellarla e scrivere nella casella sottostante la nuova scelta. Per superare la prova è necessario rispondere correttamente ad almeno 12 domande.

- 1. L'equazione $e^{2x-1} \ge 0$ è a verificata per $2x-1 \ge 0$; b sempre verificata; c verificata per $2x \ge 1 + \log 0$; d impossibile.
- 2. L'espressione $\log[(x+1)^4]$, per $x \neq -1$, è pari a $\boxed{a} \log^4(x+1)$ per x < -1; $\boxed{b} 4\log(x+1)$ per $x \neq -1$; $\boxed{c} \log^4(x+1)$ per $x \neq -1$; $\boxed{d} 4\log(-x-1)$ per x < -1.
- 3. L'espressione $x^{3/5}$ è a strettamente positiva per x > 0; b definita solo per x > 0; c definita solo per $x \geq 0$; d non negativa su tutto IR.
- 4. Sia $x \in (-\pi/8, \pi/8)$. L'espressione $(\cos 2x) \cdot (\cos 4x)$ a è sempre positiva; b non è definita per $x = -\pi/9$; c coincide con $\cos 8x$; d coincide con $\cos^2 8x$.
- 5. L'espressione $\sqrt[3]{8x^6 + x^3}$ è uguale a $a = 2x\sqrt[3]{x^3 + 1/8}$; $a = 2x\sqrt[3]{x^3 + 1/8}$; $a = 2x\sqrt[3]{x^2 + 1/8}$; $a = 2x\sqrt[3]{x^3 + 1/2}$; $a = 2x\sqrt[3]{x^3 + 1/8}$; $a = 2x\sqrt[3]{x^3 + 1/8}$
- 6. L'espressione $|x^2|+2$ coincide con $\boxed{a}-x^2+2$ per x<0; \boxed{b} x^2+2 se e solo se x>0; \boxed{c} x^2+2 per ogni $x\in IR$; \boxed{d} x^2+2 se e solo se $x\geq0$.
- 7. L'espressione $\log(2x^4) + \log x^2$, per $x \neq 0$, vale $\boxed{a} \log(2x^4 + x^2)$; $\boxed{b} 3 \log(\sqrt[3]{2}x^2)$; $\boxed{c} 6 \log(2x)$; $\boxed{d} 4 \log(2x) + 2 \log x$.
- 8. Per $x \in \mathbb{R}$, la disequazione $|x^2 + 9| \le 0$ a è impossibile; b è sempre verificata; c ha come soluzione $x = \pm \sqrt{-9}$; d ha come soluzione $x = \pm 3$.
- 9. La disequazione (x-3)(x-1) < 0 a ha come soluzioni x < 1 e x < 3; b ha come soluzioni 1 < x < 3; c ha come soluzioni x > 1 o x < 3; d ha come soluzioni x < 1 e x > 3.
- 10. La disequazione $\left(\frac{1}{2}\right)^{x/2} \le 1$ è a verificata per $x \le 0$; b sempre verificata; c verificata per $x \ge 0$; d impossibile.
- 11. L'espressione $\frac{2xe^{x+1}+x^2e^{x+2}}{2xe}$ è pari a \boxed{a} $e^{x+1}\left(1+\frac{x}{2}e^x\right);$ \boxed{b} $e\left(1+\frac{x}{2}e^x\right);$ \boxed{c} $e^x\left(1+\frac{x}{2}e\right);$ \boxed{d} $e+\frac{x}{2}e^2.$
- 12. L'espressione $\frac{\sin x}{\sin 2x}$ vale \boxed{a} $\frac{\sin 1}{\sin 2}$; \boxed{b} $\sin \frac{1}{2}$; \boxed{c} $2\cos x$; \boxed{d} $(2\cos x)^{-1}$.
- 13. L'insieme delle soluzioni della disequazione $e^{x^2+1} > 1$ è a $(-\infty,0)$; b \mathbb{R} ; c $(0,+\infty)$; d $\mathbb{R} \setminus \{0\}$.
- 14. Il numero $\begin{pmatrix} \frac{5}{6} \\ \frac{6}{6} \end{pmatrix}$ è uguale a $\boxed{a} \quad \frac{5}{6} \cdot 6 = 5; \quad \boxed{b} \quad \frac{6}{5} \cdot \frac{1}{6} = \frac{1}{5}; \quad \boxed{c} \quad \frac{5}{6} \cdot \frac{1}{6} = \frac{5}{36}; \quad \boxed{d} \quad \frac{6}{5} \cdot 6 = \frac{36}{5}.$
- 15. Il numero $(6 \cdot 7^{-1})$ è uguale a $\boxed{a} 6 \cdot 7; \boxed{b} \frac{6}{7}; \boxed{c} \frac{6}{7}; \boxed{d} \frac{1}{6} \cdot 7.$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15