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Preface

These notes contain the lectures of a 20/25 hours course entitled “Homogenization Tech-
niques and Applications to Biological Tissues”, held in 2009/2010 for “Dottorato di Mo-
delli e Metodi Matematici per la Tecnologia e la Società” at Dipartimento Me.Mo.Mat.,
Facoltà di Ingegneria, “Sapienza Università di Roma”.
The aim of the authors is to present an introduction to homogenization techniques based
on the asymptotic expansions introduced by Bensoussan-Lions-Papanicolau, jointly with
an application to a particular physical problem.
The basic ideas of homogenization techniques are here presented with the purpose of giv-
ing to the students a solid knowledge in this field in order to make them able to apply
these techniques also in different contexts. To this aim, first we describe the usual homog-
enization procedure of the Dirichlet problem for a standard elliptic equation with periodic
coefficients; afterwards we apply these ideas to study a physical problem, relevant both
from the mathematical point of view as well as for the applications. More precisely, we
present an application of homogenization techniques to study the behavior of a biologi-
cal tissue subjected to an electrical current flux. Indeed, it is well known that electrical
potentials are crucial for imaging techniques in medical diagnosis, in order to investigate
the physical properties of biological tissues.
The model which we present here is described by means of a system of elliptic equations
whose solutions are coupled because of the interface conditions, since they have to satisfy
the property of flux-continuity and a transmission condition of dynamic type. From the
mathematical point of view, the presence of these interface conditions is a non standard
problem both for the study of the well-posedness as well as for the homogenization.

These notes are divided into four chapters: in Chapter 1 some preliminary notions of
Functional Analysis are very briefly recalled (metric, normed and Hilbert spaces, Sobolev
spaces and embedding theorems, space of bounded variation functions); these notions are
necessary for a complete understanding of the course itself; in Chapter 2 we study the
connections between existence of solutions to minimum problems for integral functionals
and well-posedness for the Dirichlet problem for elliptic PDEs in divergence form. To this
purpose we introduce the basic ideas of Convex Analysis (preliminary definitions, basic
properties of lower semicontinuous and convex functions, Gâteaux and Fréchet deriva-
tives) and we mention preliminary notions of Direct Methods of Calculus of Variations
(coercivity, existence theorem for minimizers, applications to integral functionals). We
mention also Lax-Milgram Lemma and some of its applications to linear variational PDEs.
In Chapter 3 we consider the homogenization of a standard elliptic equation, introducing
the technique of asymptotic expansions due to Bensoussan-Lions-Papanicolau and the
energy convergence method of Tartar. Finally, in Chapter 4 we apply the previously
introduced homogenization techniques to the study of a physical model governing the
electrical conduction in biological tissues (Electric Impedance Tomography).

October 2012

Micol Amar
Fabiola Didone
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1. Preliminaries of functional analysis

1.1. Metric, normed and Hilbert spaces.

Definition 1.1. Let X be a non-empty set. We define a distance on X×X, i.e. a functional
d : X ×X → R such that:
(i) d(x, y) ≥ 0 ∀x, y ∈ X;
(ii) (Identity of indiscernibles ) d(x, y) = 0 ⇐⇒ x = y;
(iii) (Simmetry) d(x, y) = d(y, x) ∀x, y ∈ X;
(iv) (Triangular inequality) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.
The pair (X, d) is called metric space.

Let x0 ∈ X and r > 0 be given. We call open ball of radius r and center x0 the set

Br(x0) = {x ∈ X : d(x, x0) < r} .
Definition 1.2. Let (X, d) be a metric space and {xn} ⊆ X be a sequence of points in X.
Let x0 ∈ X; we say that the sequence {xn} converges to x0 for n → +∞ (and we write
xn → x0) if d(xn, x0) → 0 for n→ +∞.

Definition 1.3. Let (X, d) be a metric space. We say that the function f : X → R is
continuous on X if for every x ∈ X and for each sequence {xn} ⊆ X, such that xn → x,
we have

lim
n→+∞

f(xn) = f(x) .

Definition 1.4. Let (X, d) be a metric space. We say that a set C ⊂ X is closed if for each
sequence {xn} ⊆ C converging to a point x ∈ X, we have that x ∈ C. We say that a set
A ⊂ X is open if its complement Ac is closed.

Definition 1.5. We say that a set K ⊆ X is compact if for each sequence {xn} ⊆ K it is
possible to extract a subsequence converging to a point x ∈ K.

Definition 1.6. Let X be a vector space. We define on X a norm, i.e. a functional
‖ · ‖X : X → R such that
(i) (Identity of indiscernibles ) ‖x‖X ≥ 0 ∀x ∈ X and ‖x‖X = 0 ⇐⇒ x = 0;
(ii) (Positive homogeneity ) ‖λx‖X = |λ| ‖x‖X ∀x ∈ X and ∀λ ∈ R;
(iii) (Triangular inequality) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X for every x, y ∈ X.
The pair (X, ‖ · ‖X) (or simply X, if ‖ · ‖X is assigned) is called normed space.

A normed space is a metric space with respect to the distance induced by the norm, i.e.
d(x, y) = ‖x− y‖X .

Remark 1.7. We observe that in a normed space, as well as in a metric space, the union of
any family of open sets and the intersection of a finite family of open sets is still an open
set; consequently, the intersection of any family of closed sets and the union of a finite
family of closed sets is a closed set.

Definition 1.8. Let X be a normed space and {xn} ⊆ X be a given sequence. Let x0 ∈ X;
we say that {xn} converges to x0 for n→ +∞ (and we write xn → x0), if ‖xn−x0‖X → 0,
for n→ +∞. This is the so-called strong convergence.
We say that {xn} is a Cauchy sequence if

∀ε > 0 ∃n0 ∈ N s.t. ‖xn − xm‖X < ε ∀n,m ≥ n0 .
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We observe that every convergent sequence is a Cauchy sequence, while, in general, the
converse is not true.

Definition 1.9. We say that X is a complete normed space if every Cauchy sequence is
convergent in X. In this case X is called Banach space.

Given a Banach space X (with finite or infinite dimension), we denote by X∗ its dual
space; i.e., the vector space of all the linear and continuous functionals on X, and by 〈·, ·〉
the canonical duality between X and X∗. For every functional x∗ ∈ X∗, ‖x∗‖X∗ denotes
the dual norm in the space X∗; i.e.,

‖x∗‖X∗ = sup
x∈X

‖x‖X≤1

|〈x∗, x〉| .

Finally, we denote by X∗∗ the bidual space of X (i.e. the dual space of X∗). It is well
known that X can be identified with a subspace of X∗∗. We will say that X is a reflexive
space if X coincide with its bidual space X∗∗.

Obviously, using the norm defined on X∗, we can introduce on this space, as already
done for X, a notion of strong convergence. Indeed, we say that the sequence {x∗n} ⊆ X∗

strongly converges to x∗ ∈ X∗ for n→ +∞ (and we write x∗n → x∗), if ‖x∗n − x∗‖X∗ → 0,
for n→ +∞. The space X∗ endowed with this norm is a Banach space.

Definition 1.10. Let {xn} ⊆ X be a given sequence. Let x ∈ X; we say that {xn} weakly
converges to x for n → +∞ (and we write xn ⇀ x), if 〈x∗, xn〉 → 〈x∗, x〉, for n → +∞
and for every x∗ ∈ X∗.
Let {x∗n} ⊆ X∗ be a given sequence. We say that x∗n converges to x∗ ∈ X∗ ∗-weakly for

n→ +∞ (and we write x∗n
∗
⇀ x∗), if 〈x∗n, x〉 → 〈x∗, x〉, for n→ +∞ and ∀x ∈ X.

We remark that in infinite dimensional normed spaces the weak convergence is, in general,
strictly weaker than the strong convergence. In particular, if X is a reflexive Banach
space of infinite dimension, it is possible to find weakly convergent sequences which do
not strongly converge (see Theorem 1.27 and subsequent considerations). For example,
the boundary ∂B1 of the unit sphere is closed in the sense of the Definition 1.4, but we can
find sequences {xn} ⊂ ∂B1 (i.e. ‖xn‖ = 1) such that xn ⇀ x with ‖x‖ < 1 (see [17, Chp.
III, Remark 4]). On the other hand, there are examples, although rare, of ”pathological”
infinite-dimensional spaces (for example the space l1), where all the weakly converging
sequences are also strongly converging. On the contrary, these two notions of convergence
always coincide in finite dimensional spaces.

We also note that, in general, the weak convergence is not metrizable; however, this is
possible on the unit sphere (or on bounded sets), if X∗ is separable. Similarly, if X is
separable, the same property applies to the ∗-weak convergence in X∗.

The following result is a direct consequence of the well-known Banach-Steinhaus Theorem.Theorem 1.11. Let X be a Banach space. Let {xn} ⊆ X be a given sequence and assume
that there exists x ∈ X such that xn ⇀ x. Then there exists a real number c > 0 such
that ‖xn‖ ≤ c, for every n ∈ N.
Let {x∗n} ⊆ X∗ be a given sequence and assume that there exists x∗ ∈ X∗ such that

x∗n
∗
⇀ x∗. Then there exists a real number c > 0 such that ‖x∗n‖X∗ ≤ c, for every ∈ N.

Now we will state some relations the strong and the weak or ∗-weak convergence.Theorem 1.12. Let X be a Banach space. Let {xn} ⊆ X, {x∗n} ⊆ X∗, x ∈ X and
x∗ ∈ X∗ be given.
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(i) If xn → x (strongly), then xn ⇀ x (weakly).

(ii) If x∗n → x∗ (strongly), then x∗n
∗
⇀ x∗ (∗-weakly).

(iii) If xn ⇀ x, then ‖x‖X ≤ lim inf
n→+∞

‖xn‖X.

(iv) If x∗n
∗
⇀ x∗, then ‖x∗‖X∗ ≤ lim inf

n→+∞
‖x∗n‖X∗.Theorem 1.13. Let X be a Banach space. Assume that {xn} ⊆ X is a weakly converging

sequence to x ∈ X and {x∗n} ⊆ X∗ is a strongly converging sequence to x∗ ∈ X∗. Then
〈x∗n, xn〉 → 〈x∗, x〉.
Similarly, assume that {xn} ⊆ X is a strongly converging sequence to x ∈ X and that
{x∗n} ⊆ X∗ is a ∗-weakly converging sequence to x∗ ∈ X∗. Then 〈x∗n, xn〉 → 〈x∗, x〉.
We recall some results concerning compactness. It is well known that in an infinite-
dimensional space, the unit sphere is never compact with respect to the strong conver-
gence; indeed, this is a special property of the finite-dimensional spaces (see [17, Theorem
VI.5]). However, as follows by next theorems, the compactness of the unit sphere holds
with respect to the weak convergence.Theorem 1.14. Let X be a separable Banach space. Then the unit sphere B1(0) of X∗

is compact with respect to the ∗-weak convergence; i.e., if {x∗n} ⊆ X∗ and there exists a
real number c > 0 such that ‖x∗n‖X∗ ≤ c, for every n ∈ N, then there exists a subsequence

{x∗nj
} from {x∗n} and a point x∗ ∈ X∗ such that x∗nj

∗
⇀ x∗, for j → +∞.

A similar result holds in the space X, as stated in the next theorem.Theorem 1.15. Let X be a reflexive Banach space. Let {xn} ⊆ X and assume that there
exists a real number c > 0 such that ‖xn‖X ≤ c, for every n ∈ N. Then there exists a
subsequence {xnj

} from {xn} and a vector x ∈ X such that xnj
⇀ x, for j → +∞.

We conclude this first section analyzing the relationship between weak and strong con-
vergence on convex sets.

Definition 1.16. Let X be a vector space. A subset C ⊆ X is called convex if for every
x, y ∈ X and every α ∈ [0, 1] we have αx+ (1 − α)y ∈ X.Theorem 1.17. (Mazur Lemma) Let X be a Banach space. Let {xn} ⊆ X and assume
that there exists x ∈ X such that xn ⇀ x. Then there exists a convex combination of
elements of the sequence {xn} strongly converging to x, i.e. for every ε > 0 there exist
n ∈ N and αi ∈ [0, 1], i = 1, . . . , n, such that

n∑

i=1

αi = 1 e ‖
n∑

i=1

αixi − x‖X < ε .

As a consequence of the previous result, we obtain the following corollary.Corollary 1.18. Let X be a Banach space. Let C ⊆ X be a convex set. Then C is closed
(with respect to the strong convergence) if and only if for any sequence {xn} ⊂ C weakly
converging to a point x ∈ X, we have that x ∈ C.

Let us conclude this section by recalling the definition of Hilbert space.

Definition 1.19. Let X be a vector space. We define on X × X a scalar product, i.e. a
bilinear form (·, ·) : X ×X → R such that
(i) (Null property) (x, x) ≥ 0 ∀x ∈ X and (x, x) = 0 ⇐⇒ x = 0;
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(ii) (Symmetry) (x, y) = (y, x) ∀x, y ∈ X;
(iii) (Linearity) (λx+ µy, z) = λ(x, z) + µ(y, z) for every x, y, z ∈ X and every λ, µ ∈ R.

A space with a scalar product is, in particular, a normed space with respect to the norm
defined by ‖x‖X =

√
(x, x). On the contrary, a normed space is not in general a space

with scalar product, unless the norm satisfies the parallelogram identity; i.e.

‖x+ y‖X + ‖x− y‖X = 2(‖x‖2
X + ‖y‖2

X) ∀x, y ∈ X .

If X is also complete with respect to the norm induced by the scalar product, it is called
a Hilbert space. In a Hilbert space it is possible to introduce the notion of orthogonality;
i.e., two vectors x, y ∈ X are orthogonal if (x, y) = 0. Moreover, the well-known Cauchy-
Schwartz inequality holds

|(x, y)| ≤ ‖x‖X‖y‖X ∀x, y ∈ X .

Finally, we recall that every Hilbert space is always reflexive.

1.2. Lebesgue summable functions and Sobolev spaces. Let Ω ⊆ R
N be an open

set, 1 ≤ p < +∞ and f : Ω → R
M be a measurable function. We say that f is a Lebesgue

p-summable function (and we write f ∈ Lp(Ω; R
M)) if

‖f‖p :=



∫

Ω

|f(x)|p dx




1/p

< +∞ .

Similarly, we say that f is essentially bounded (and we write f ∈ L∞(Ω; R
M)) if

‖f‖∞ := inf{α : |f(x)| ≤ α q.o. in Ω} < +∞ .

In particular, we say that f ∈ Lp
loc(Ω; R

M), 1 ≤ p ≤ +∞, if f ∈ Lp(A; R
M), for any open

set A ⊂⊂ Ω.
The Lp-spaces endowed with the norms defined above are Banach spaces and, for 1 ≤ p <
+∞, they are also separable. In particular, for p = 2, L2(Ω; R

M) is a Hilbert space with
the scalar product given by

(f, g) =

∫

Ω

f(x) g(x) dx ∀f, g ∈ L2(Ω; R
M) .

Obviously, a sequence {fn} ⊆ Lp(Ω,RM) strongly converges to f ∈ Lp(Ω; R
M), i.e. fn →

f , if ‖fn − f‖p → 0, for n→ +∞.
Let 1 ≤ p ≤ +∞ be given; we denote by p′ the conjugate exponent of p, i.e. 1/p+1/p′ = 1
if 1 < p < +∞, p′ = +∞ if p = 1 and p′ = 1 if p = +∞. If 1 ≤ p < +∞, it is possible
to prove that Lp′ is the dual space of Lp, while L1 is strictly contained in the dual of L∞.
Moreover, if 1 < p < +∞, the space Lp is also reflexive.
Let us now specialize in this context the notions of weak and ∗-weak convergence. For
the sake of simplicity, we assume M = 1 (and then write Lp(Ω) instead of Lp(Ω; R)). The
general case can be obtained reasoning by components.
Let, firstly, 1 ≤ p < +∞; then fn ⇀ f in Lp(Ω) if

∫

Ω

fn(x)g(x) dx→
∫

Ω

f(x)g(x) dx ∀g ∈ Lp′(Ω) .
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Analogously, we have fn
∗
⇀ f in L∞(Ω) if

∫

Ω

fn(x)g(x) dx→
∫

Ω

f(x)g(x) dx ∀g ∈ L1(Ω) .Theorem 1.20. Let {fn} be a sequence of functions in Lp(Ω) strongly converging to
f ∈ Lp(Ω), 1 ≤ p ≤ +∞. Then

(i) fn ⇀ f in Lp(Ω) if 1 ≤ p < +∞ and fn
∗
⇀ f in L∞(Ω);

(ii) ‖fn‖p → ‖f‖p, per 1 ≤ p ≤ +∞.

Proof. Clearly, (i) follows from Theorem 1.12, while (ii) is a direct consequence of the
triangular inequality. �

In the case where 1 < p < +∞, we can prove also the opposite result, as follows by next
theorem.Theorem 1.21. Assume 1 < p < +∞ and let {fn} be a sequence of functions in Lp(Ω).
If fn ⇀ f in Lp(Ω) and ‖fn‖p → ‖f‖p, then fn → f in Lp(Ω).Theorem 1.22. Let {fn} be a sequence of functions in Lp(Ω) strongly converging to
f ∈ Lp(Ω), 1 ≤ p ≤ +∞. Then there exists a subsequence {fnk

} of {fn} and a set
N ⊂ Ω with zero Lebesgue measure, such that fnk

(x) → f(x), for every x ∈ Ω \N ; i.e.,
the subsequence {fnk

} pointwise converges to f a.e. in Ω.

We recall here some relevant results concerning the passage to the limit under the Lebesgue
integral.Theorem 1.23.
(i)(Fatou Lemma) Let {fn} be a sequence of measurable functions defined on Ω, such that
fn(x) ≥ 0, for a.e. x ∈ Ω and every n ∈ N. Then

∫

Ω

[
lim inf
n→+∞

fn(x)

]
dx ≤ lim inf

n→+∞

∫

Ω

fn(x) dx .

(ii) (Beppo-Levi Theorem) Let {fn} be a sequence of measurable functions defined on Ω,
such that 0 ≤ fn(x) ≤ fn+1(x), for a.e. x ∈ Ω and every n ∈ N. Then

∫

Ω

fn(x) dx→
∫

Ω

f(x) dx where f(x) = sup
n∈N

fn(x) .

(iii) (Dominated convergence theorem) Let {fn} be a sequence of measurable functions
defined on Ω converging pointwise a.e. to a given function f . Assume that for a.e. x ∈ Ω
and every n ∈ N we have |fn(x)| ≤ g(x), where g ∈ L1(Ω). Then, f ∈ L1(Ω) and
‖fn − f‖1 → 0, for n→ +∞.

From Theorems 1.11, 1.14 e 1.15 we immediately obtain the following result.Theorem 1.24. Assume that {fn} is a weakly converging sequence in Lp(Ω), 1 ≤ p < +∞,
(respectively, a ∗-weakly converging sequence in L∞(Ω)). Then it is bounded uniformly
with respect to n ∈ N.
Assume that {fn} is a uniformly bounded sequence in Lp(Ω), 1 < p ≤ +∞. Then
there exists a function f ∈ Lp(Ω) and a subsequence of {fn} weakly converging to f , for
1 < p < +∞ (respectively ∗-weakly converging to f for p = +∞).
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We observe that, since L2 is a Hilbert space, by the Cauchy-Schwarz inequality we get

|(f, g)| =

∣∣∣∣∣∣

∫

Ω

f(x)g(x) dx

∣∣∣∣∣∣
≤
∫

Ω

|f(x)g(x)| dx ≤ ‖f‖2‖g‖2 ∀f, g ∈ L2(Ω) ,

which implies, in particular, that the product of two L2-functions gives an L1-function.
This result can be generalized to the case of the product of two functions belonging to
Lebesgue spaces in duality, as follows from next theorems.Theorem 1.25. (Hölder inequality) Let Ω ⊂ R

N be an open set, let 1 ≤ p ≤ +∞ and p′

be the conjugate exponent of p. Then for every u ∈ Lp(Ω) and v ∈ Lp′(Ω), we have that
uv ∈ L1(Ω) and

∣∣∣∣∣∣

∫

Ω

u(x)v(x) dx

∣∣∣∣∣∣
≤
∫

Ω

|u(x)v(x)| dx ≤ ‖u‖p‖v‖p′ .Theorem 1.26. (Young inequality) Let Ω ⊂ R
N be an open set, let 1 < p < +∞ and p′

be the conjugate exponent of p. Then, for every u ∈ Lp(Ω) and v ∈ Lp′(Ω), we have that
uv ∈ L1(Ω) and

∣∣∣∣∣∣

∫

Ω

u(x)v(x) dx

∣∣∣∣∣∣
≤
∫

Ω

|u(x)v(x)| dx ≤ 1

p δp
‖u‖p

p +
δp′

p′
‖v‖p′

p′ ∀δ > 0 .

Now let us recall a useful result concerning the weak convergence of periodic functions.
To this purpose, denote by Y the unit N -dimensional open square (0, 1)N . Assume for
the sake of simplicity that f is a Y -periodic function (though the result holds for general
periodic functions, up to read the symbol f as the mean value of the function f on its
period).Theorem 1.27. Let f ∈ Lp(Y ), 1 ≤ p ≤ +∞, be a function which is periodically extended
on the whole of R

N . Set fε(x) = f(x/ε); then, for ε→ 0+, we have

fε ⇀ f :=

∫

Y

f(x) dx se 1 ≤ p < +∞ ;

fε
∗
⇀ f :=

∫

Y

f(x) dx se p = +∞ .

When f(x) = sin x, we obtain that sin(x/ε)
∗
⇀ 0 in L∞(0, 2π), which is the well-known

Riemann-Lebesgue Lemma. This implies, in particular, that the sequence {sin(nx)} is an
example of a weakly, but obviously not strongly, converging sequence.Lemma 1.28. Let Ω ⊆ R

N be an open set and f ∈ L1
loc(Ω). Assume that

∫

Ω

f(x)φ(x) dx = 0 ∀φ ∈ C∞
0 (Ω) .

Then f = 0 a.e. in Ω.Corollary 1.29. Let Ω ⊆ R
N be an open set and f ∈ L1

loc(Ω). Assume that
∫

Ω

f(x)φ(x) dx = 0 (1.1)
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for all functions φ ∈ C∞
0 (Ω) such that −

∫
Ω
φ dx = 1

|Ω|
∫

Ω
φ dx = 0. Then there exists a

constant c ∈ R such that f = c a.e. in Ω.

Proof. Let f ∈ L1
loc(Ω), ψ ∈ C∞

0 (Ω) and Ψ ∈ C∞
0 (Ω) with −

∫
Ω
Ψ dx = 1. Then

∫

Ω

[
f −−

∫

Ω

fΨ dy

]
ψ dx =

∫

Ω

fψ dx−
(
−
∫

Ω

fΨ dy

)


∫

Ω

ψ dx





=

∫

Ω

f

[
ψ − Ψ−

∫

Ω

ψ dy

]
dx = 0

since, setting φ = ψ − Ψ−
∫
Ω
ψ dy, we have that φ ∈ C∞

0 (Ω) and −
∫
Ω
φ dx = 0. Therefore,

by Lemma 1.28 we obtain f − −
∫
Ω
fΨ dy = 0 a.e. in Ω, i.e. the thesis is achieved with

c = −
∫
Ω
fΨ dy. �

We conclude this chapter by recalling the main properties of functions which admit deriva-
tives in a weak sense. First, given k ∈ N and 1 ≤ p ≤ +∞, we denote by W k,p(Ω; R

M)
the space of measurable functions whose distributional derivatives up to order k belongs
to the space Lp. This is a Banach space if it is equipped with the norm

‖f‖k,p :=

(
k∑

α=0

‖∇αf‖p
p

)1/p

se 1 ≤ p < +∞ ;

‖f‖k,∞ := max
0≤α≤k

‖∇αf‖∞ se p = +∞ ;

where ∇αf is the matrix of the α-th weak derivatives.
As usual, we denote by Hk(Ω; R

M) the space W k,2(Ω; R
M), which is a Hilbert space. In

particular, for k = 1 and M = 1, on H1(Ω) it is defined the scalar product

(f, g) =

∫

Ω

f(x) g(x) dx+

∫

Ω

∇f(x)∇g(x) dx ∀f, g ∈ H1(Ω) .

Moreover, for 1 ≤ p < +∞, W k,p
0 (Ω; R

M) denotes the closure of C∞
0 (Ω; R

M) with respect

to the norm of W k,p and Hk
0 (Ω; R

M) = W k,2
0 (Ω; R

M). The space W k,p
0 (Ω; R

M), equipped
with the norm of W k,p, is a Banach space. In the case where Ω = (a, b) is a real interval,
W 1,1(a, b) is identified with the space of absolutely continuous functions on (a, b).
We recall that, if p′ is the conjugate exponent of p, W−k,p′(Ω; R

M) is the dual space of

W k,p
0 (Ω; R

M); in particular, for k = 1 and M = 1, W−1,p′(Ω) is the dual space of W 1,p
0 (Ω)

(as usual, when p = 2, H−1(Ω) denotes the dual space W−1,2
0 (Ω)) and each element

g ∈W−1,p′(Ω) can be represented as follows

g = g −
N∑

j=1

∂jgj ,

where g, gj ∈ Lp′(Ω) and the derivatives are taken in the distributional sense. Moreover,
if Ω is bounded, h ≤ k and q < p, then W k,p(Ω; R

M) ⊂ W h,q(Ω; R
M).

We recall also that for 1 ≤ p < +∞, W k,p(Ω; R
M) is separable and for 1 < p < +∞ it is

also a reflexive space. Finally, if Ω is regular (for example ∂Ω ∈ C1) and 1 ≤ p < +∞, we
have that C∞(Ω; R

M) is dense in W k,p(Ω; R
M), with respect to the norm defined above

and, if Ω is bounded, W 1,∞(Ω; R
M) is identified with the space of Lipschitz functions.
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N be a bounded open set. Then the

following assertion hold.
(i) If 1 ≤ p < N , W 1,p

0 (Ω; R
M) ⊂ Lq(Ω; R

M), for every 1 ≤ q ≤ Np
N−p

and the embedding

is compact for 1 ≤ q < Np
N−p

.

(ii) If p = N , W 1,p
0 (Ω; R

M) ⊂ Lq(Ω; R
M), for every 1 ≤ q < +∞ and the embedding is

compact.
(iii) If p > N , W 1,p

0 (Ω; R
M) ⊂ C0(Ω; R

M) and the embedding is compact.

The previous result still hold if we replace W 1,p
0 (Ω; R

M) with W 1,p(Ω; R
M), but assuming

suitable regularity properties of the boundary of Ω, for example ∂Ω of class C1.
We observe that Theorem 1.30, in particular, implies that, if 1 ≤ p ≤ +∞ and fn ⇀ f
in W 1,p

0 (Ω; R
M), then fn → f in Lp(Ω; R

M). Moreover, if p > 1, we have the following
crucial compactness property of the space W 1,p(Ω; R

M).Theorem 1.31. Let p > 1 and Ω ⊂ R
N be a bounded open set. Assume that {fn} ⊆

W 1,p(Ω; R
M) is a bounded sequence; i.e., there exists a constant c > 0 such that

‖fn‖1,p ≤ c ∀n ∈ N .

Then there exists a subsequence {fnk
} of {fn} and a function f ∈W 1,p(Ω; R

M) such that

fnk
⇀ f in W 1,p(Ω; R

M), if p 6= +∞, or fnk

∗
⇀ f in W 1,∞(Ω; R

M), and hence fnk
→ f

strongly in Lp(Ω; R
M).

Unfortunately, when p = 1, the space W 1,1(Ω; R
M) fails to be compact with respect to

the weak convergence, since it is not a reflexive space. This problem will be overcome
with the introduction of the space BV (see Section 1.3 and Theorem 1.38).Theorem 1.32. (Poincaré inequality) Let Ω ⊂ R

N be an open bounded and connected set,
with boundary of class C1 and 1 ≤ p < +∞. Then,
(i) there exists a constant c > 0 such that, for every f ∈W 1,p

0 (Ω; R
M), we have

‖f‖p ≤ c‖∇f‖p ;

(ii) there exists a constant c > 0 such that, for every f ∈W 1,p(Ω; R
M), we have

‖f − f‖p ≤ c‖∇f‖p ,

where f = 1
|Ω|
∫

Ω
f(x) dx.

Remark 1.33. We note that property (i) holds, in general, for any bounded open set (not
necessarily connected or with boundary of class C1), while property (ii) holds also for
p = +∞.

For the sake of simplicity, we give the proof only for p > 1.

Proof.
(i) We assume by contradiction that the thesis does not hold, i.e. for every n > 0 there
exists fn ∈W 1,p

0 (Ω; R
M) such that

‖fn‖p > n‖∇fn‖p . (1.2)

We may suppose, without loss of generality, that ‖fn‖p = 1; therefore, from inequality
(1.2) we obtain that

‖fn‖1,p ≤ 2 e ‖∇fn‖p → 0 per n→ +∞ . (1.3)

From Theorem 1.15 it follows that there exists a function f ∈ W 1,p
0 (Ω; R

M) and a subse-
quence, still denoted {fn}, such that fn ⇀ f in W 1,p

0 (Ω; R
M). From Theorem 1.30 we also
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obtain that fn → f in Lp(Ω; R
M). Moreover, since ‖fn‖p = 1, it follows ‖f‖p = 1. On the

other hand, from (1.3) and Theorem 1.12, we obtain that ‖∇f‖p ≤ lim inf ‖∇fn‖p = 0,

i.e. f = constant in W 1,p
0 (Ω; R

M) and then f = 0 a.e. in Ω. This contradicts the fact
that ‖f‖p = 1 and so the thesis follows.
(ii) In order to prove the second inequality, we proceed in a similar way, replacing fn with
gn = fn − fn. We obtain that gn → g in Lp(Ω; R

M), with ‖g‖p = 1 and g = constant in
W 1,p(Ω; R

M). On the other hand, from the strong convergence we also obtain

0 =
1

|Ω|

∫

Ω

[fn(x) − fn] dx =
1

|Ω|

∫

Ω

gn(x) dx→ 1

|Ω|

∫

Ω

g(x) dx

which implies, since g is a constant vector of R
M , g = 0 a.e. in Ω, in contraddiction with

the fact that ‖g‖p = 1. �

We observe that the Poincaré inequality implies, in particular, that on W 1,p
0 (Ω; R

M), the
Lp norm of the gradient is equivalent to the standard norm of W 1,p. Then this space
endowed with the Lp-norm of the gradient is still a Banach space.
Finally, we denote by W 1,p

loc (Ω) the space of functions belonging to W 1,p(A), for every open
set A ⊂⊂ Ω.

1.3. The space BV.

Definition 1.34. Let Ω ⊆ R
N be an open set. The space BV(Ω) is defined as the space

of all functions f : Ω → R belonging to L1(Ω) whose distributional gradient Df is an
R

N -valued Radon measure (i.e., Df ∈ M(Ω; R
N)) with total variation |Df | bounded in

Ω. We recall that

|Df |(Ω) = sup





∫

Ω

f(x) divφ(x) dx : φ ∈ C1
c (Ω,RN), sup

x∈Ω
|φ(x)| = 1



 .

We denote by Daf and Dsf the absolutely continuous and the singular part of the measure
Df with respect to the Lebesgue measure. We recall that Daf and Dsf are mutually
singular, moreover we can write

Df = Daf +Dsf and Daf = ∇f LN ,

where ∇f is the Radon-Nikodým derivative of Daf with respect to the Lebesgue measure.
In particular,

Dsf = Dcf + (f+ − f−)νf HN−1⌊Jf

where Jf is a countably HN−1-rectifiable Borel set (see [9, Definition 2.57]) and νf is the
approximate normal vector to Jf . The set Jf is known as the set of the approximate jump
points of f and νf is the direction of the jump of f . The remaining part Dcu is called the
Cantor part of Du.

We recall the main properties of the space BV(Ω):
(i) BV(Ω) is a Banach space endowed with the norm

‖f‖BV = ‖f‖1 + |Df |(Ω) ;

(ii) BV(Ω) ⊂ L1(Ω) and the inclusion is strict;
(iii) BV(Ω) is not a separable space.
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Definition 1.35. (∗-weak convergence) Let {fn} ⊆ BV(Ω) and f ∈ BV(Ω) be given. We
say that the sequence {fn} ∗-weakly converges to f ∈ BV(Ω) if

fn → f strongly in L1(Ω) ;
∫

Ω

φDfn →
∫

Ω

φDf ∀φ ∈ C0(Ω) .

Definition 1.36. Let {fn} ⊆ BV(Ω) and f ∈ BV(Ω) be given. We say that the sequence
{fn} strictly converges to f ∈ BV(Ω) if

fn → f strongly in L1(Ω) ;

|Dfn|(Ω) → |Df |(Ω) .Theorem 1.37. Let Ω ⊆ R
N be an open bounded set with regular boundary. Let f ∈

BV(Ω). Then there exists a sequence of functions {fn} ⊆ C∞(Ω) which strictly converges
to f .Theorem 1.38. (Rellich Theorem) Let Ω ⊆ R

N be an open bounded set with regular
boundary. Let {fn} ⊆ BV(Ω) be such that there exists a constant c > 0 satisfying

‖fn‖BV ≤ c ∀n ∈ N .

Then there exists a subsequence {fnk
} of {fn} and a function f ∈ BV(Ω) such that

fnk
→ f strongly in L1(Ω) .

Remark 1.39. Clearly W 1,1(Ω) ⊂ BV(Ω) and, thanks to Theorems 1.38 and 1.40, BV(Ω)
has the compactness property which fails to hold in W 1,1(Ω).

As a consequence of Theorems 1.11 and 1.38, we obtain the following criterion for the
∗-weak convergence.Theorem 1.40. Let Ω ⊆ R

N be an open bounded set with regular boundary and {fn} ⊂
BV(Ω) be a given sequence. Then {fn} ∗-weakly converges to f ∈ BV(Ω) if and only if
{fn} is bounded in BV(Ω) and converges to f strongly in L1(Ω).Theorem 1.41. (Poincaré inequality) Let Ω ⊂ R

N be an open bounded and connected set
with regular boundary. Let f ∈ BV(Ω) be such that supp(f) ⊂⊂ Ω. Then there exists a
constant c > 0, depending only on the dimension N and the set Ω such that∫

Ω

|f | dx ≤ c|Df |(Ω) .

For many applications, it is useful to introduce some special subspaces of BV, such as the
space SBV and the space SBV2.

Definition 1.42. The space SBV(Ω) is defined as the subspace of all f ∈ BV(Ω) such that

Df = ∇f LN + (f+ − f−)νf HN−1⌊Jf ;

i.e. Dcf = 0.

Definition 1.43. The space SBV2(Ω) is defined as the subspace of all f ∈ SBV(Ω) such
that ∫

Ω

|∇f |2 dx < +∞ , and HN−1(Jf ) < +∞ .



HOMOGENIZATION TECHNIQUES .... 11

We point out that SBV(Ω) is not a closed space; indeed, there exists sequences of SBV-
functions ∗-weakly converging to functions belonging to BV(Ω) \ SBV(Ω). In particular,
this means that sequences of functions whose derivatives have only the absolutely contin-
uous and the jump part, can display in the limit also the Cantor part. On the contrary,
the space SBV2(Ω) has an essential compactness property. Indeed, it is possible to prove
that, if Ω ⊂ R

N is a bounded set with Lipschitz boundary and {fn} ⊆ SBV2(Ω) is a
sequence of function such that

sup
n∈N



‖fn‖∞ dx+

∫

Ω

|∇fn|2 dx+ HN−1(Jfn
)



 ≤ c (1.4)

for a proper constant c > 0, then there exists a subsequence {fnk
} of {fn} and a function

f , still belonging to SBV2(Ω), such that fnk
→ f , strongly in L1(Ω), ∇fnk

⇀ ∇f ,
weakly in L2(Ω), and HN−1(Jf ) ≤ lim infn→+∞HN−1(Jfnk

). In this case, the limit of

sequences in SBV2(Ω) satisfying (1.4), has derivatives which cannot display the Cantor
part. Moreover, the absolutely continuous part and the jump part of the derivatives of fnk

converge separately to the absolutely continuous part and the jump part of the derivatives
of f , so that no mixing effects between the two mutually singular parts of the derivatives
can happen.

For a general survey on the topics covered in this chapter, we refer to [1], [9], [17].
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2. Partial derivatives equations and minimum problems

2.1. Direct Methods in Calculus of Variations. In the following, X denotes a general
Banach space which, if it is not differently specified, will be endowed with the strong
convergence; i.e., the one induced by the norm. We also set R := R ∪ {±∞}.
Definition 2.1. Let f : X → R. It is convex if

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y) ∀α ∈ [0, 1]

and for each x, y such that f(x), f(y) < +∞. The function f is strictly convex if it isn’t
identically +∞ and if

f(αx+ (1 − α)y) < αf(x) + (1 − α)f(y) ∀α ∈ (0, 1)

and for each x 6= y such that f(x), f(y) < +∞.

Definition 2.2. Let f : X → R. It is lower semicontinuity (respect. weakly sequentially
lower semicontinuity), if, for each x ∈ X,

f(x) ≤ lim inf
xn→x

f(xn) ∀xn → x in X (respect. ∀xn ⇀ x in X).

In this case, we simply write that f is l.s.c. (respect. weakly l.s.c.).

Remark 2.3. We observe that, if f is convex and takes value −∞ in one extremal point of
a segment, it an assume finite value only in one point of this segment; then if x0 ∈ X, f
is upper bounded in a neighborhood of x0 and f(x0) = −∞, then it is identically equal
to −∞ in the whole neighborhood. If f is convex and l.s.c. and it takes value −∞ in a
point, then it cannot be bounded.

As a consequence of the previous remark, we shall consider only functions that never
assume the value −∞. We recall that a function f is said proper if f(x) > −∞ for
each x ∈ X and if there exists at least a point x ∈ X such that f(x) < +∞; i.e.,
f : X → R ∪ {+∞} is not identically equal to +∞.

We call domain of f the set defined by

dom(f) = {x ∈ X : f(x) < +∞} .
If f is convex, its domain is a convex set. Also, if f is proper, its domain is non empty
and coincides with the set of points where f is finite.
Finally, we call epigraph of f the set

epi(f) = {(x, t) ∈ X × R : t ≥ f(x)} .Theorem 2.4. Let f : X → R be a proper convex function. Then it is l.s.c. if and only
if it is weakly l.s.c.

In particular, previous theorem implies the result already stated in Theorem 1.12 (iii). In
fact, the function x ∈ X 7→ ‖x‖X is convex and continuous (then l.s.c.), therefore it is
also weakly l.s.c. Hence, for each sequence {xn} ⊆ X such that xn ⇀ x weakly in X we
have ‖x‖X ≤ lim inf ‖xn‖X .

We are now in the position to solve the problem

min{F (u) : u ∈ X} , (2.1)

where X is a Banach space and F : X → R is a given function.
We want to study under which assumptions we can obtain the existence of a (possibly
unique) solution of (2.1). For our purposes, we will have that in general X is a functional
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space with appropriate boundary conditions and F is an integral functional. Some classic
examples are:

Example 2.5. [Dirichlet integral] Let Ω ⊂ R
N be a bounded open set;

X = H1
0 (Ω) F (u) =

1

2

∫

Ω

|∇u|2 dx .

Example 2.6. [Area functional] Let Ω ⊂ R
N be a bounded open set;

X = W 1,1
0 (Ω) F (u) =

∫

Ω

√
1 + |∇u|2 dx .

Example 2.7. [Functional of the geometric optics] Let I = (a, b) ⊂ R be a bounded real
interval;

X = {u ∈ C1(I) : u(a) = u0 , u(b) = u1} F (u) =

∫

I

g(t, u)
√

1 + (u′)2 dt .

A first approach to such problems can be done through the so-called classical methods
(whose pioneers were Bernoulli and Euler). They consist in determining the critical points
u ∈ X for the functional F , i.e. the points such that F ′(u) = 0, and then to study
the successive derivatives in order to determine the nature of the critical points. These
methods have the defect that they need to assume some regularity of the functional
and the critical points that, in general, may not be present. A second and more recent
approach has been developed from the beginning of the twentieth century by Hilbert and
Lebesgue, in connection with the study of the Dirichlet integral. These methods were
then generalized by Tonelli and are known as Direct Methods of Calculus of Variations.
The approach with the direct methods is essentially based on the classical Weierstrass
theorem. The main idea is, namely, to find minimizing compact sequences (from which
it is then possible to extract convergent subsequences) and then exploit the continuity
(or rather the l.s.c.) of the functional in order to show that the limit points are in fact
minimum points for the functional itself. We observe that compactness and l.s.c. are
topological properties in competition with each other; indeed, compactness properties are
easily obtained in weak topologies while properties of continuity are obtained more easily
in finer topologies. For this reason, it is essential, once assigned F and X, to choose the
appropriate topology in which the two requirements can be balanced.
These ideas lead to the statement of the next theorem; however, we need before some
definitions.

Definition 2.8. Let F : X → R. We say that a sequence {un} ⊆ X is a minimizing
sequence for the functional F on X if

lim
n→+∞

F (un) = inf
X
F .

Definition 2.9. Let F : X → R and Y be an unbounded subset of X. We say that F is
coercive on Y (or simply coercive, if Y = X), if there exists α > 0 such that

lim
‖u‖X→+∞

u∈Y

F (u)

‖u‖X
≥ α > 0 . (2.2)Theorem 2.10. Let X be a reflexive Banach space and F : X → R be a coercive and

weakly l.s.c functional on X. Then problem (2.1) admits at least one solution.
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Proof. If F ≡ +∞, every point u ∈ X is a point of minimum. Otherwise we have
infX F (u) < +∞. Then, if {un} ⊆ X is a minimizing sequence, there is c > 0 such
that F (un) ≤ c and thus, from the coercivity, there exists c′ > 0 such that ‖un‖X ≤ c′.
Therefore, every minimizing sequence is bounded. Since the space X is reflexive, we can
extract a subsequence, still denoted by {un}, weakly converging to a point u ∈ X (see
Teorema 1.15). From the weakly l.s.c. of F it follows

inf
X
F (u) ≤ F (u) ≤ lim inf

n→+∞
F (un) = inf

X
F (u) .

Then u is a minimum point. �Corollary 2.11. Let X be a reflexive Banach space, Y be a convex and closed subset of X
and F : Y → R be a coercive functional on Y and weakly l.s.c. on X. Then the problem

min{F (u) : u ∈ Y } ,
admits at least one solution.

Proof. We proceed as in the proof of previous theorem, noting that, as u is the weakly
limit of a sequence in Y , then u ∈ Y , as Y is convex and closed (see Corollary 1.18). �

As for the uniqueness of the solution, we state the following result.Theorem 2.12. Let F : X → R be a strictly convex functional. Then the problem (2.1)
admits at most one solution.

Proof. By contradiction, assume that there exist u, v ∈ X, with u 6= v, such that

F (u) = F (v) = min
w∈X

F (w) .

Then, from the strict convexity of F it follows

F

(
1

2
u+

1

2
v

)
<

1

2
F (u) +

1

2
F (v) = min

w∈X
F (w) ,

i.e. w = 1
2
u+ 1

2
v is a point where F reaches a value strictly less than its minimum. Since

this is a contradiction, the thesis is proved. �

Next, using Theorem 2.10 (or Corollary 2.11), we will prove the existence of solutions for
the minimum problem in some particular case, which is interesting in the applications.
To this end, we consider the case of integral functionals defined on spaces of summable
functions or on Sobolev spaces. In the following, although not explicitly mentioned, we
always assume that Ω is a bounded open subset of R

N with Lipschitz boundary.

Definition 2.13. Given f : Ω × R
M → R, we say that it is a Carathéodory function if

(i) f(·, ξ) is Lebesgue measurable for every ξ ∈ R
M ;

(ii) f(x, ·) is continuous for almost every x ∈ Ω .Theorem 2.14. Let 1 < p < +∞ and f : Ω × R
N → R be a Carathéodory function.

Assume that there exist a nonnegative function b ∈ L1(Ω) and a real number λ > 0 such
that

f(x, ξ) ≥ −b(x) + λ|ξ|p for a.e. x ∈ Ω and for every ξ ∈ R
N . (2.3)

Assume also that the function ξ 7→ f(x, ξ) is convex, for a.e. x ∈ Ω, and that F :
W 1,p

0 (Ω) → R is the functional defined by

F (u) =

∫

Ω

f(x,∇u) dx . (2.4)
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Then, there exists u0 ∈W 1,p
0 (Ω) such that

F (u0) = min
u∈W 1,p

0 (Ω)
F (u) .

Proof. If F ≡ +∞, all points of W 1,p
0 (Ω) are minimum points and the result is trivial.

Otherwise, F is a ”proper” functional which is convex and, thanks to Fatou’s Lemma,
also l.s.c. with respect to strong convergence. Indeed, if {un} ⊆ W 1,p

0 (Ω) is a sequence
of functions strongly converging to u ∈W 1,p

0 (Ω), by Theorem 1.22, we have that, up to a
subsequence, ∇un(x) → ∇u(x) a.e. in Ω and hence, since f is a Carathéodory function
(i.e. f(x, ·) is continuous on R

N for a.e. x ∈ Ω), f(x,∇un(x)) → f(x,∇u(x)) a.e. in Ω.
Moreover, by (2.3) the function (x, ξ) 7→ f(x, ξ) + b(x) is nonnegative, so that applying
Fatou’s Lemma it follows

lim inf
n→+∞

F (un) = lim inf
n→+∞

∫

Ω

f(x,∇un(x)) dx

= lim inf
n→+∞

∫

Ω

[f(x,∇un(x)) + b(x)] dx−
∫

Ω

b(x) dx

≥
∫

Ω

[f(x,∇u(x)) + b(x)] dx−
∫

Ω

b(x) dx =

∫

Ω

f(x,∇u(x)) dx = F (u) .

Then, by Theorem 2.4 F is also weakly l.s.c. on W 1,p
0 (Ω), which is a reflexive Banach

space, since 1 < p < +∞. In order to obtain the existence of a minimum point, it is
sufficient to prove the coercivity of F on W 1,p

0 (Ω) and then to apply Theorem 2.10. We
observe that by (2.3) and by the Poicaré inequality (see Teorema 1.32) we obtain

lim
‖u‖1,p→+∞

∫
Ω
f(x,∇u) dx
‖u‖1,p

≥ lim
‖u‖1,p→+∞

−
∫

Ω
b(x) dx+ λ‖∇u‖p

p

‖u‖1,p

≥ c lim
‖u‖1,p→+∞

‖u‖p
1,p

‖u‖1,p
= +∞ ;

(2.5)

where the last equality is due to the fact that p > 1. Then F is coercive and the proof is
accomplished. �

The same result as in Theorem 2.14 applies also to functionals F : W 1,p
0 (Ω) → R (1 <

p < +∞) of the form

F (u) =

∫

Ω

f(x,∇u) dx−
∫

Ω

gu dx , (2.6)

where g ∈ Lp′(Ω) (1/p+ 1/p′ = 1) and f is as in the statment of Theorem 2.14. Indeed,
the second term in (2.6) is a linear continuous functional on W 1,p

0 (Ω), hence F is still a
weakly l.s.c. functional on W 1,p

0 (Ω); moreover, recalling (2.5) and Hölder inequality, we
obtain that F is also coercive. Indeed,

lim
‖u‖1,p→+∞

F (u)

‖u‖1,p
≥ lim

‖u‖1,p→+∞

[
c
‖u‖p

1,p

‖u‖1,p
− ‖g‖p′‖u‖p

‖u‖1,p

]
= lim

‖u‖1,p→+∞

[
c
‖u‖p

1,p

‖u‖1,p
− ‖g‖p′‖u‖1,p

‖u‖1,p

]

= c lim
‖u‖1,p→+∞

‖u‖p
1,p

‖u‖1,p
− ‖g‖p′ = +∞ .

Hence, Theorem 2.10 assures the existence of a minimizer. In particular, setting p = p′ = 2
and aij ∈ L∞(Ω), i, j = 1, . . . , N , we obtain the existence of a minimizer in H1

0 (Ω) for
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the functional

F (u) =
1

2

∫

Ω

a(x)∇u∇u dx−
∫

Ω

gu dx ,

where a is the matrix of the coefficients aij. In this last case, being the functional also
strictly convex, the minimizer is unique.

The general case is treated in the next theorem, whose proof is a direct consequence of
the previous arguments.Theorem 2.15. Let 1 < p < +∞, 1/p+ 1/p′ = 1, g ∈ Lp′(Ω) and f : Ω × R

N → R be a
Carathéodory function. Assume that there exist a nonnegative function b ∈ L1(Ω) and a
real number λ > 0 such that

f(x, ξ) ≥ −b(x) + λ|ξ|p for a.e. x ∈ Ω and for every ξ ∈ R
N . (2.7)

Assume also that the function ξ 7→ f(x, ξ) is convex, for a.e. x ∈ Ω, and that F :
W 1,p(Ω) → R is the functional defined by

F (u) =

∫

Ω

f(x,∇u) dx−
∫

Ω

g u dx . (2.8)

Then, there exists u0 ∈W 1,p(Ω) such that

F (u0) = min
u∈Y

F (u) ,

where Y = w +W 1,p
0 (Ω) and w ∈W 1,p(Ω).

Remark 2.16. These existence results cannot be easily extended to the case p = 1, since
the space X = W 1,1(Ω) (or X = W 1,1

0 (Ω)) is neither reflexive nor the dual of a separa-
ble Banach space, hence it is not true, in general, that a minimizing sequence in X is
convergent, even up to a subsequence, in the same space.

2.2. Linear elliptic equations in divergence forms. In the following X denotes a
general Hilbert space. We say that a form a : X × X → R is bilinear if, for every
x, y, z ∈ X and every λ, µ ∈ R, we have

a(λx+ µy, z) = λa(x, z) + µa(y, z) and a(z, λx+ µy) = λa(z, x) + µa(z, y) ;

i.e. if it is linear in each entry. We say that a is symmetric if for every x, y ∈ X we have
a(x, y) = a(y, x). Moreover, we say that the bilinear form a is continuous if there exists
a constant Λ > 0 such that

a(x, y) ≤ Λ‖x‖ ‖y‖ ∀x, y ∈ X .

Definition 2.17. Let a : X ×X → R be a bilinear form. We say that it is coercive if there
exists λ > 0 such that

a(x, x) ≥ λ‖x‖2 ∀x ∈ X .

A first very simple example of bilinear continuous symmetric and coercive form on X is
the scalar product itself.
Let us recall the well-known Lax-Milgram Lemma, which is a crucial result in the frame-
work of variational equations (see, for instance, [28, Section 5]).Lemma 2.18. Let a : X ×X → R be a bilinear continuous and coercive form. Then, for
every x∗ ∈ X∗ there exists a unique solution x ∈ X such that

a(x, y) = 〈x∗, y〉 ∀y ∈ X .
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A special application of the previous result arises in the treatment of linear elliptic equa-
tions of variational type. To this purpose, set X = H1

0 (Ω), with Ω an open bounded
subset of R

N . Assume that A = [aij ] is a symmetric matrix with aij ∈ L∞(Ω), for every
i, j = 1, . . . , N , and satisfying

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for a.e. x ∈ Ω, ∀ξ ∈ R
N , (2.9)

for two suitable constants 0 < λ ≤ Λ < +∞. Assume in addition that f ∈ H−1(Ω) and
consider the Dirichlet problem

{
− div (A(x)∇u0) = f(x) in Ω,

u0 ∈ H1
0 (Ω) .

(2.10)

Taking into account the weak formulation of (2.10), i.e.
∫

Ω

A(x)∇u0(x)∇φ(x) dx =

∫

Ω

f(x)φ(x) dx ∀φ ∈ H1
0 (Ω) ,

and defining the bilinear symmetric form a : H1
0 (Ω) ×H1

0 (Ω) → R given by

a(u, v) =

∫

Ω

A(x)∇u∇v dx ,

problem (2.10) can be rewritten as

find u0 ∈ H1
0 (Ω) such that

a(u0, φ) = 〈f, φ〉 ∀φ ∈ H1
0 (Ω) .

By (2.9), the bilinear form is continuous and coercive on H1
0 (Ω), since

a(u, v) ≤ c

∫

Ω

∇u∇v dx ≤ c‖∇u‖2‖∇v‖2 ≤ c‖u‖1,2‖v‖1,2

thanks to Hölder inequality (see Theorem 1.25), and

a(u, u) ≥ λ

∫

Ω

|∇u|2 dx ≥ C‖u‖1,2 ∀u ∈ H1
0 (Ω) ,

thanks to Poincaré inequality (see Theorem 1.32). Hence, as a consequence of Lax-
Milgram Lemma, there exists a unique solution u0 ∈ H1

0 (Ω) of (2.10).

It is worthwhile to remark that the same result can be obtained in a completely different
way, starting from classical well-posedeness results stated in the regular case and then
using a standard regularization procedure, to cover the case of weak solutions. A similar
approach can be followed also in the nonlinear case. Indeed, in order to obtain well-
posedness results for nonlinear elliptic equations of variational type, one can use the
Schauder fixed point theory (see for instance [28]) which assures, under classical regularity
assumptions on the data of the problem, existence and uniqueness of a classical solution
of the problem {− div g(x,∇u0) = f in Ω,

u0 = ϕ on ∂Ω.

Then, weak solutions can be obtained under weaker assumptions via a regularization
procedure.
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2.3. Minimum problems and variational PdEs. In Section 2.1 we stated some results
on the existence of minimizers for integral functionals while in Section 2.2 we stated some
results on the well-posedness of some variational elliptic equations. In the present section
we emphasize how to connect these two problems; more precisely, we will prove that,
under suitable conditions, existence of minimizers can be obtained by proving the well-
posedness for a proper elliptic equation as well as well-posedness of an elliptic equation
can be obtained by proving existence of minimizers for a suitable functional.

Definition 2.19. Let X be a Banach space. Let f : X → R. We say that f is Gâteaux
differentiable at x ∈ X, if for each y ∈ X the following limit

lim
t→0+

f(x+ ty) − f(x)

t
=: df(x, y) ,

exists and it is finite. Moreover, the functional y ∈ X 7→ df(x, y) has to be linear and
continuous; i.e., there exists a map df : X → X∗ such that df(x, y) = 〈df(x), y〉. In this
case, the continuous linear functional df(x) is said differential or Gâteaux derivative of f
at the point x.

Definition 2.20. Let f : X → R. We say that it is Fréchet differentiable at x ∈ X, if there
exists a linear and continuous functional D ∈ X∗ such that

lim
y→x

f(y) − f(x) − 〈D, y − x〉
‖y − x‖X

= 0 .

We note that previous definitions are local, then it is possible to to state the notion of
Gâteaux or Fréchet differentiability at a point x ∈ X also for an extended real-valued
function, up to suppose that it is finite in a neighborhood of the point x.

Remark 2.21.

(i) If f is Fréchet differentiable, then it is also Gâteaux differentiable. In this case,
D = df(x).
(ii) If X = R

N (N > 1), the Gâteaux differentiability of f corresponds to the derivability
of f along each direction, together with the request that the directional derivative depends
linearly on the direction. In turn, the Fréchet differentiability corresponds to the classical
differentiability of functions of several variables.

It is well known that, for functions defined on R
N , the derivability does not imply, in

general, the differentiability, unless some continuity assumptions on the partial derivatives
are considered. Similarly, the Gâteaux differentiability, in general, does not imply the
Fréchet differentiability, unless the continuity of the Gâteaux differential is required, as
follows from the next theorem.Theorem 2.22. Let f : X → R be a Gâteaux differentiable function in X. We assume
that the application df : X → X∗ is continuous. Then f is Fréchet differentiable at X.

We recall that if f is a Gâteaux differentiable function and if x0 is a minimum point, then
df(x0) = 0 in X∗. If f is convex, the converse is also true; i.e., each point x0 such that
df(x0) = 0 in X∗ is a minimum point of f .

Example 2.23. Let g ∈ L2(Ω) and X = H1
0 (Ω) and consider the functional F : X → R

defined by

F (u) =
1

2

∫

Ω

|∇u|2 dx−
∫

Ω

gu dx .
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Clearly, F satisfies all the hypotheses of Theorem 2.15, hence it admits at least a minimizer
u0 ∈ X. Moreover, F is also Gâteaux differentiable at every point of X. Indeed, for every
v ∈ H1

0 (Ω), we have

lim
t→0

F (u+ tv) − F (u)

t

= lim
t→0

1
2

∫
Ω
|∇u+ t∇v|2 dx−

∫
Ω
g(u+ tv) dx− 1

2

∫
Ω
|∇u|2 dx+

∫
Ω
gu dx

t

= lim
t→0

t
∫

Ω
∇u∇v dx+ 1

2
t2
∫

Ω
|∇v|2 dx− t

∫
Ω
gv dx

t

=

∫

Ω

∇u∇v dx−
∫

Ω

gv dx = −〈∆u+ g, v〉H−1,H1
0
.

Hence, if u0 ∈ H1
0 (Ω) is a minimum point for F in X, we obtain that u0 satisfies the

equation −∆u0 = g in H−1(Ω). Finally, by the convexity of F , also the converse holds;
i.e., u0 ∈ X is a minimizer for F if and only if −∆u0 = g in H−1(Ω). Analogously, we
obtain that, if A = [aij ] is a symmetric matrix such that aij ∈ L∞(Ω) for i, j = 1, . . . , N ,
and F : X → R is the functional defined by

F (u) =
1

2

∫

Ω

A(x)∇u∇u dx−
∫

Ω

gu dx ,

then F is Gâteaux differentiable on H1
0 (Ω) and u0 ∈ H1

0(Ω) is a minimum point for F if
and only if u0 satisfies the equation − div(A(x)∇u0) = g in H−1.

Example 2.24. Let 1 < p < +∞, 1/p + 1/p′ = 1, g ∈ Lp′(Ω) and f : Ω × R
N → R be

a Carathéodory function satisfying (2.7). Assume also that the function ξ 7→ f(x, ξ) is
convex, for a.e. x ∈ Ω, there exists ∂ξf , it is a Carathéodory function and |∂ξf(x, ξ)| ≤
γ(x) for a.e. x ∈ Ω and every ξ ∈ R

N , where γ ∈ L1(Ω). Let F : W 1,p
0 (Ω) → R be the

functional defined by

F (u) =

∫

Ω

f(x,∇u) dx−
∫

Ω

g u dx . (2.11)

Then, F is Gateaux differentiable on H1
0 (Ω) and for every v ∈ H1

0 (Ω) we have

lim
t→0

F (u+ tv) − F (u)

t

= lim
t→0

∫
Ω
f(x,∇u+ t∇v) dx−

∫
Ω
g(u+ tv) dx−

∫
Ω
f(x,∇u) dx+

∫
Ω
gu dx

t

=

∫

Ω

∂ξf(x,∇u)∇v dx−
∫

Ω

gv dx = −〈div
(
∂ξf(·,∇u)

)
+ g, v〉H−1,H1

0
.

Hence, u0 ∈ X is a minimizer for F if and only if − div
(
∂ξf(x,∇u0)

)
= g in H−1(Ω).

Let Y = (0, 1)N and let us denote by H1
#(Y ) the space of the functions belonging to

H1
loc(R

N) which are Y -periodic and denote by H̃1
#(Y ) the subspace of the functions be-

longing toH1
#(Y ) having null mean average on Y . As a consequence of Poincaré inequality

(Theorem 1.32), we have that H̃1
#(Y ) endowed with the L2-norm of the gradient is a Ba-

nach space.
We conclude this section with the following lemma (see, for instance, [32, Lemma 2.1]).
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loc(R

N ) be a Y -periodic function. Let A = [aij ] be a symmetric and
Y -periodic matrix with aij ∈ L∞(RN) and assume that there exist two positive constants
0 < λ ≤ Λ < +∞ such that

λ|ξ|2 ≤ aij(y)ξiξj ≤ Λ|ξ|2 for a.e. y ∈ Y, ∀ξ ∈ R
N . (2.12)

Then the equation {
− div(A(y)∇v) = g in Y ;

v ∈ H1
#(Y ) ;

(2.13)

has a unique solution, up to an additive constant, if and only if
∫

Y

g dy = 0 . (2.14)

Proof. First we note that, if v ∈ H1
#(Y ) is a solution of (2.13), for every C ∈ R the

function v + C is a solution, too. Then it is enough to prove that (2.13) has a unique

solution in H̃1
#(Y ). To this end, we may follow different approaches. We propose here

two different proofs: the first one based on the Lax-Milgram Lemma and the second one
based on the Direct Methods of Calculus of Variations.

• We remark that problem (2.13) is equivalent to
∫

Y

A(y)∇v∇w dy =

∫

Y

g w dy ∀w ∈ H1
#(Y ) . (2.15)

Hence, let v be a solution of (2.15) and take w ≡ 1; clearly, (2.14) follows. Next,
let us assume that (2.14) holds and prove that there exists a unique solution v ∈
H̃1

#(Y ) satisfying (2.15). On H̃1
#(Y ), let us consider the bilinear and symmetric

form given by

a(w̃1, w̃2) =

∫

Y

A(y)∇w̃1 · ∇w̃2 dy , ∀w̃1, w̃2 ∈ H̃1
#(Y ) .

Clearly, by (2.12), it is continuous and coercive on H̃1
#(Y ); i.e., for every w̃1, w̃2 ∈

H̃1
#(Y ) we have

a(w̃1, w̃2) ≤ c

∫

Y

∇w̃1 ∇w̃2 dy ≤ c‖w̃1‖H̃1
#

(Y )‖w̃2‖H̃1
#

(Y ) ,

and

a(w̃1, w̃1) ≥ λ

∫

Y

|∇w̃1|2dy ≥ C‖w̃1‖2
H̃1

#
(Y )

;

where in the last inequality we use the Poincaré inequality (see Theorem 1.32).

Moreover, the map w̃ ∈ H̃1
#(Y ) 7→

∫
y
f(y)w̃(y) dy is a linear and continuous

functional. Hence, by Lax-Milgram Lemma (see Lemma 2.18), there exists a

unique function v ∈ H̃1
#(RN) such that

a(v, w̃) =

∫

Y

g w̃ dy ∀w̃ ∈ H̃1
#(Y ) . (2.16)
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In order to prove that the previous equality holds for every w ∈ H1
#(Y ), let us fix

w ∈ H1
#(Y ) and consider the function w̃ = w −

∫
Y
w(y) dy ∈ H̃1

#(Y ). It follows
that
∫

Y

A(y)∇v · ∇w dy =

∫

Y

A(y)∇v · ∇w̃ dy = a(v, w̃)

=

∫

Y

g w̃ dy =

∫

Y

g w dy −
∫

Y

g dy

∫

Y

w dy =

∫

Y

g w dy ,

where in the third equality we use (2.16) and in the last equality we use (2.14).
Hence (2.15) holds and the thesis is accomplished.

• Assume that v ∈ H1
#(Y ) is a solution of (2.13). Integrating on Y both the sides

of the first equation in (2.13) and taking into account the Y -periodicity of the
solution v and of the matrix A = [aij ], it easily follows

0 =

∫

∂Y

A(y)∇v · n dσ(y) = −
∫

Y

div(A(y)∇v) dy =

∫

Y

g dy ,

where n denotes the outward unit normal vector to ∂Y and dσ denotes the surface
measure on ∂Y . Hence, (2.14) holds. Next, let us assume (2.14) and prove that
(2.13) has a unique solution with null mean average on Y . To this purpose let us

define on H̃1
#(Y ) the functional

F (w̃) =
1

2

∫

Y

A(y)∇w̃∇w̃ dy −
∫

Y

g w̃ dy , ∀w̃ ∈ H̃1
#(Y ) .

Clearly F is strictly convex, weakly l.s.c. and coercive; indeed, using Poincaré
inequality (see Theorem 1.32) and Young inequality (see Theorem 1.26), it follows

F (w̃) ≥ λ

2

∫

Y

|∇w̃|2 dy − 1

2δ

∫

Y

g2 dy − δ

2

∫

Y

w̃2 dy

≥
(
λ− δC

2

)∫

Y

|∇w̃|2 dy − 1

2δ

∫

Y

g2 dy ,

which is the required coercivity property for δ small enough. By Corollary 2.11,

with X = H1
#(Y ) and Y = H̃1

#(Y ), and Theorem 2.12 we obtain that the func-

tional F admits a unique minimum v ∈ H̃1
#(Y ) (note that we could also appeal

directly to Theorem 2.15).
Moreover, since F is Gateaux differentiable and v is a minimum, according to

analogous calculations as in Example 2.23, it follows

lim
t→0

F (v + tw̃) − F (v)

t
=

∫

Y

A(y)∇v∇w̃ dy −
∫

Y

g w̃ dy = 0 , ∀w̃ ∈ H̃1
#(Y ) .
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Taking into account (2.14) and replacing w̃ = w−
∫

Y
w dy, where w ∈ H1

#(Y ), we
have also∫

Y

A(y)∇v∇w dy−
∫

Y

g w dy =

∫

Y

A(y)∇v∇w̃ dy−
∫

Y

g w̃ dy−
∫

Y

g dy

∫

Y

w dy

=

∫

Y

A(y)∇v∇w̃ dy −
∫

Y

gw̃ = 0 ,

(2.17)

for every w ∈ H1
#(Y ). Equality (2.17) implies that v ∈ H1

#(Y ) satisfies the first
equation in (2.13) and hence the thesis is accomplished.

�



HOMOGENIZATION TECHNIQUES .... 23

3. Homogenization of the standard Dirichlet problem

In this chapter we present the classical homogenization method, due to Bensoussan-Lions-
Papanicolau (see [12], [32]), based on the asymptotic expansion.
Let Ω be a bounded open subset of R

N with n ≥ 1. Let Y = (0, 1)n be the unit cell in
R

N . A function f(x), defined on R
N , is said to be Y -periodic if it is periodic of period 1

with respect to each variable xi, with 1 ≤ i ≤ n. We denote by L2
#(Y ) and H1

#(Y ) the

spaces of functions in L2
loc(R

N) and H1
loc(R

N ), respectively, which are Y -periodic.
Let A(y) be a symmetric matrix of order n with entries aij(y) which are measurable Y -
periodic functions. We assume that there exist two constants 0 < λ < Λ < +∞ such
that, for a.e. y ∈ Y ,

λ|ξ|2 ≤ aij(y)ξiξj ≤ Λ|ξ|2 for a.e. y ∈ Y , ∀ξ ∈ R
N . (3.1)

Let Aε(x) = A(x
ε
) be a periodically oscillating matrix of coefficients. For a given function

f ∈ L2(Ω) we consider the following problem

{− div(Aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
(3.2)

which admits a unique solution in H1
0 (Ω), in the sense that, given ε > 0, there exists a

unique function uε ∈ H1
0 (Ω) such that

∫

Ω

Aε∇uε∇ϕ dx =

∫

Ω

fϕ dx ∀ϕ ∈ H1
0 (Ω) , (3.3)

(see Lemma 2.18). The homogenization of equation (3.2) is by now a classical matter (see
e.g. [10], [11], [12], [37]). We recall the main ingredients of this process that we shall use
later (we mainly follow the exposition of Ch. I §2 in [12]). Firstly, we establish the usual
energy estimate (obtained multiplying the first equation in (3.2) by uε and integrating by
parts):

‖uε‖2
1,2 ≤ c

∫

Ω

|∇uε|2 dx ≤ c

λ

∫

Ω

Aε∇uε∇uε dx

=
c

λ

∫

Ω

f uε dx ≤ c

λ
‖f‖2‖uε‖2 ≤ C‖uε‖1,2 ,

(3.4)

where, in the first inequality, we used the Poincaré inequality (see Theorem 1.32). From
(3.4), it follows

‖uε‖1,2 ≤ C , (3.5)

where the constant C depends on the Poincaré constant c, on the ellipticity constant λ
and on the L2-norm of f , but not on ε. Therefore, from (3.5), it can be easily proved that
there exists a function u ∈ H1

0 (Ω) such that, up to a subsequence,

uε ⇀ u weakly in H1
0 (Ω). (3.6)

It remains to identify the limit function u. This will be done in a formal way in the next
Section.



24 M. AMAR - F. DIDONE

3.1. Formal Expansion. We assume that the solution uε admits the following ansatz
(or asymptotic expansion)

uε(x) = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ ε3u3

(
x,
x

ε

)
+ . . . (3.7)

where each function ui(x, y) is Y -periodic with respect to the fast variable y. Plugging this
ansatz in equation (3.2) and identifying different powers of ε yields a cascade of equations.
Defining an operator Lε by Lεφ = − divAε∇φ, we may write Lε = ε−2L0 + ε−1L1 + L2,
where

L0 = − ∂

∂yi

(
aij(y)

∂

∂yj

)

L1 = − ∂

∂yi

(
aij(y)

∂

∂xj

)
− ∂

∂xi

(
aij(y)

∂

∂yj

)

L2 = − ∂

∂xi

(
aij(y)

∂

∂xj

)
.

The two space variables x and y are taken as independent, and at the end of the compu-
tation y is replaced by x

ε
. Equation (3.2) is therefore equivalent to the following system

L0u0 = 0

L0u1 + L1u0 = 0

L0u2 + L1u1 + L2u0 = f

L0u3 + L1u2 + L2u1 = 0

. . . . . .

(3.8)

the solutions of which are easily computed. The first equation in (3.8); i.e.,




− ∂

∂yi

(
aij(y)

∂u0(x, y)

∂yj

)
= 0 in Y

y 7→ u0(x, y) Y -periodic

where y is the independent variable, while x plays the role of a parameter, has a constant
solution (where the constant clearly depends on x), due to Lemma 2.25; so that u0(x, y) ≡
u0(x), which does not depend on y. The second equation of (3.8) can be explicitly solved
in term of u0; indeed, it can be easily verified that the solution u1 is given by

u1

(
x,
x

ε

)
= −χj

(x
ε

) ∂u0

∂xj

(x) + ũ1(x) (3.9)

where, thanks to Lemma 2.25, χj(y), j = 1, . . . , n, are the unique solutions in H1
#(Y )

with zero average of the cell equation




L0χ
j = −∂aij

∂yi
(y) in Y ;

∫

Y

χj(y)dy = 0 y → χj(y) Y -periodic .
(3.10)

By Lemma 2.25, the third equation in (3.8), which can be written as the system
{
L0u2 = f − L1u1 − L2u0 in Y

y 7→ u2(x, y) Y -periodic ,
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where u0 and u1 play the role of known functions, is solvable if and only if
∫

Y

[f(x) − (L1u1)(x, y) − (L2u0)(x, y)] dy = 0 .

Inserting (3.9) in the last equality, by easy calculations it follows

0 =

∫

Y

f(x) dy −
∫

Y

(L1u1)(x, y) dy −
∫

Y

(L2u0)(x, y) dy

= f(x) −
∫

Y

∂xi
[aik(y)∂yk

(χj(y)∂xj
u0(x))] dy −

∫

Y

∂yi
[aik(y)∂xk

(χj(y)∂xj
u0(x))] dy

+

∫

Y

∂xi
[aij(y)∂xj

u0(x)] dy

= f(x) − ∂xi




(∫

Y

aik(y)∂yk
χj(y) dy

)
∂xj

u0(x)



−
(∫

Y

∂yi
aik(y)χ

j(y) dy

)
[∂xk

∂xj
u0(x)]

+ ∂xi



(∫

Y

aij(y) dy

)
∂xj

u0(x)




= f(x) −
(∫

Y

aik(y)∂yk
χj(y) dy

)
∂xi
∂xj

u0(x) −
(∫

∂Y

aik(y)χ
j(y)νi dσ

)
[∂xk

∂xj
u0(x)] dy

+

(∫

Y

aij(y) dy

)
∂xi
∂xj

u0(x)

= f(x) −
(∫

Y

aik(y)∂yk
χj(y) dy

)
∂xi
∂xj

u0(x) +

(∫

Y

aij(y) dy

)
∂xi
∂xj

u0(x) ,

where, in the last equality, we use the periodicity of the function y 7→ aik(y)χ
j(y). This

implies

−∂i

(∫

Y

[aij(y) − aik(y)∂yk
χj(y)]∂ku0

)
= f ,

which can be rewritten

− div(A∗∇u0) = f ,

where the homogenized matrix A∗ is defined by its constant entries a∗ij given by

a∗ij =

∫

Y

[
aij(y) − aik(y)

∂χj

∂yk

(y)

]
dy. (3.11)

The homogenized problem for u0(x) is just the previous compatibility condition, comple-
mented with the natural boundary condition obtained by (3.2); i.e.,

{− div(A∗∇u0) = f in Ω,

u0 = 0 on ∂Ω
(3.12)
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It is important to observe that the homogenized matrix A∗ it is not obtained simply by
averaging the original one, even if this could be considered more natural. Obviously, this
implies that the convergence of the solutions {uε} cannot take place in H1

0 (Ω) strongly.
As a consequence of Lax-Milgram Lemma (see 2.18) we easily obtain that problem (3.12)
is well-posed in H1

0 (Ω), since it can be proved that A∗ is symmetric and coercive (see
Remark 2.6 in [12]). As remarked in Section 2.3, existence and uniqueness for problem
(3.12) can be obtained also passing to the corresponding minimum problem; i.e.,

min
u∈H1

0 (Ω)

∫

Ω

A∗∇u∇u dx−
∫

Ω

fu dx .

Moreover, also the solution u2 can be explicitly given in terms of u0; in fact,

u2

(
x,
x

ε

)
= χij

(x
ε

) ∂2u0

∂xi∂xj
(x) − χj

(x
ε

) ∂ũ1

∂xj
(x) + ũ2(x) (3.13)

where χij ∈ H1
#(Y ), for i, j = 1, . . . , n, are the solutions of another cell problem (see

(2.42) and (2.39) in [12])




L0χ
ij = bij −

∫

Y

bij(y) dy in Y ;

∫

Y

χij(y)dy = 0 y → χij(y) Y -periodic.

(3.14)

with

bij(y) = aij(y) − aik(y)
∂χj

∂yk
− ∂

∂yk
(aki(y)χ

j).

Remark that, so far (i.e. if we do not look at higher order equations in (3.8)), the functions
ũ1 in (3.9) and ũ2 in (3.13) are non-oscillating functions that are not determined. As
pointed out in [12], if we stop expansion (3.7) at the first order, the function ũ1 (and a
fortiori ũ2) does not play any role, and so we may choose ũ1 ≡ 0. However, if higher
order terms are considered, then ũ1 must satisfy some equation. More precisely, the
compatibility condition of the fourth equation of (3.8) leads to (see [12], equation (2.45))

− divA∗∇ũ1 = cijk
∂3u0

∂xi∂xj∂xk
(3.15)

with

cijk =

∫

Y

[
akl(y)

∂χij

∂yl
(y) − aij(y)χ

k(y)

]
dy.

Similar considerations hold for ũ2, but we shall not need it in the sequel. At this point we
emphasize that the above method of two-scale asymptotic expansion is formal. However,
a well-known theorem states that the two first terms of (3.7) are correct.

3.2. Tartar’s convergence Theorem.Theorem 3.1. For every ε > 0, let uε be the solution of (3.2) and u0 be the solution of
(3.12). Then uε ⇀ u0 weakly in H1

0 (Ω).

Proof. Set

ξj
ε :=

N∑

k=1

aε
kj

∂uε

∂xk
for j = 1, . . . , N .
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Clearly, by the energy estimate (3.5), it follows that

‖ξj
ε‖2 ≤ C ∀j = 1, . . . , N ,

where C does not depend on ε. Then, up to a subsequence, for every j = 1, . . . , N , there
exists ξj

0 ∈ L2(Ω), such that ξj
ε ⇀ ξj

0, weakly in L2(Ω). Moreover, by (3.6), again up to a
subsequence, uε ⇀ u weakly in H1

0 (Ω). Passing to the limit in (3.3), we obtain
∫

Ω

ξ0∇ϕ dx =

∫

Ω

fϕ ⇐⇒ − div ξ0 = f . (3.16)

Next we have to identify ξj
0. To this purpose, for j = 1, . . . , N , let wj

ε be the function
defined by

wj
ε(x) = xj − εχj

(x
ε

)
,

where χj is given in (3.10). Clearly,

− div(Aε∇wj
ε) = 0 . (3.17)

Fix j ∈ {1, . . . , N} and take ϕwj
ε, with ϕ ∈ C∞

c (Ω), as a test function in (3.3) and ϕuε as
a test function in the weak formulation of (3.17). Taking the difference, we obtain

∫

Ω

ξε∇ϕwj
ε dx−

∫

Ω

Aε∇wj
ε∇ϕuε =

∫

Ω

fwj
εϕ dx . (3.18)

Passing to the limit in (3.18), it follows

∫

Ω

ξ0∇ϕxj dx−
∫

Ω




∫

Y

[Aej −A∇χj(y)] dy



∇ϕu =

∫

Ω

fxjϕ dx , (3.19)

where ej is the jth-vector of the canonical base of R
N . Next, let us take φ xj as a test

function in (3.3); passing to the limit it follows
∫

Ω

ξ0∇ϕxj dx+

∫

Ω

ξ0 ej ϕ dx =

∫

Ω

f xj ϕ dx ,

so that (3.19) becomes

−
∫

Ω




∫

Y

[Aej − A∇χj(y)] dy



∇ϕu =

∫

Ω

ξ0 ej ϕ dx , (3.20)

which implies 

∫

Y

[Aej − A∇χj(y)] dy


∇u = ξj

0 . (3.21)

Then, recalling (3.11), we have that (3.16) and (3.21) imply the first equation in (3.12).
Finally, since u ∈ H1

0 (Ω) and problem (3.12) admits a unique solution, it follows that
u coincides with u0, so that the whole sequence {uε} converges to u0 and the thesis is
accomplished. �

As consequence of previous theorem, we have been able to identify the limit function u
in (3.6), which is equal to u0, solution of (3.12). This identification can be obtained also
in different ways, as shown below.
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3.3. L∞-convergence and error estimate. In this section we will prove that, under
additional assumptions, the convergence of the sequence {uε} to the homogenized solution
u0 can be improved. Firstly we concentrate on the L∞-convergence.Theorem 3.2. Assume that, for i, j = 1, . . . , N , the coefficients aij ∈ C∞(Y ) are Y -
periodic functions satisfying (3.1). For every ε > 0, let uε be the solution of (3.2) and
u0 be the solution of (3.12), with f ∈ C∞(Ω). Assume, in addition, that u0 ∈ W 4,∞(Ω).
Then uε → u0 strongly in L∞(Ω).

Proof. Let u1, u2 be defined as in (3.9) and (3.13), respectively, with ũ1, ũ2 ≡ 0 and set

rε(x) = uε(x) −
[
(u0(x) + εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)]
.

Taking into account (3.8), an easy calculation gives

Lεrε = f − 1

ε2
L0u0 −

1

ε
L1u0 − L2u0

− ε

(
1

ε2
L0u1 +

1

ε
L1u1 + L2u1

)
− ε2

(
1

ε2
L0u2 +

1

ε
L1u2 + L2u2

)

= − 1

ε2
L0u0 −

1

ε
(L1u0 − L0u1) + [f − (L0u2 + L1u1 + L2u0)]

− ε(L2u1 + L1u2) − ε2L2u2 = −ε(L1u2 + L2u1 + εL2u2) =: εgε .

Moreover, by the regularity assumptions, it follows that

‖gε‖L∞(Ω) = ‖L1u2 + L2u1 + εL2u2‖L∞(Ω×Y ) ≤ C ,

with C independent on ε. On the other hand, on ∂Ω, rε = −(εu1 + ε2u2); hence

sup
x∈∂Ω

|rε(x)| ≤ sup
(x,y)∈(∂Ω×Y )

∣∣∣εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)∣∣∣ ≤ Cε ,

with C independent on ε. Finally, by the maximum principle, we obtain that ‖rε‖L∞(Ω) ≤
Cε, which implies ‖uε − u0‖L∞(Ω) ≤ Cε, so that the thesis follows. �

Next, let us prove the error estimate.Theorem 3.3. Assume that, for i, j = 1, . . . , N , the coefficients aij ∈ C∞(Y ) are Y -
periodic functions satisfying (3.1). For every ε > 0, let uε be the solution of (3.2) and u0

be the solution of (3.12), with f ∈ C∞(Ω). Assume in addition that u0 ∈ W 2,∞(Ω). Then

‖uε(x) − u0(x) − εu1(x,
x

ε
)‖H1(Ω) ≤ C

√
ε

where u1 is given by (3.9).

Proof. Defining rε(x) = ε−1(uε(x) − u0(x) − εu1(x, x/ε), it satisfies

− divAε∇rε = ε−1(f + divAε∇u0) + divAε∇u1 .
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Taking into account system (3.8), for any φ ∈ H1
0 (Ω), we have

∣∣∣∣∣∣

∫

Ω

[
1

ε
(f + divAε∇u0) + divAε∇u1

]
φ dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

Ω

[
−1

ε
divy Aε∇yu2

(
x,
x

ε

)
+ divxAε∇xu1

(
x,
x

ε

)]
φ dx

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∫

Ω

−
[
divxAε∇yu2

(
x,
x

ε

)
+

1

ε
divy Aε∇yu2

(
x,
x

ε

)]
φ dx

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∫

Ω

[
divxAε∇yu2

(
x,
x

ε

)
+ divxAε∇xu1

(
x,
x

ε

)]
φ dx

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∫

Ω

Aε∇yu2

(
x,
x

ε

)
∇φ dx

∣∣∣∣∣∣
+ C‖φ‖H1

0 (Ω) ≤ C‖φ‖H1
0 (Ω).

Passing to the supremum when ‖φ‖H1
0 (Ω) = 1, we obtain that

‖ − divAε∇rε‖H−1(Ω) = ‖1

ε
(f + divAε∇u0) + divAε∇u1‖H−1(Ω) ≤ C . (3.22)

Next, let ϕε ∈ C∞(Ω) be a cut-off function such that 0 ≤ ϕε(x) ≤ 1 and |∇ϕε(x)| ≤ c
ε

in
Ω; ϕε(x) = 1 on ∂Ω and ϕε(x) = 0 for x ∈ Ω with dist(x, ∂Ω) > ε. Then define

r̃ε = ε−1(uε(x) − u0(x) − εu1(x, x/ε)) + u1(x, x/ε)ϕε(x) = rε(x) + u1(x, x/ε)ϕε(x) .

Clearly, r̃ε ∈ H1
0 (Ω) and

‖rε‖H1(Ω) ≤ ‖r̃ε‖H1
0 (Ω) + ‖u1ϕε‖H1(Ω) ; (3.23)

moreover,

‖u1ϕε‖2
H1(Ω) ≤



∫

Ω

|u1ϕε|2 dx+

∫

Ω

|u1|2|∇ϕε|2 dx+

∫

Ω

|ϕε|2|∇u1|2 dx




≤ C


1 +

∫

Ωε

|∇ϕε|2 dx+

∫

Ωε

|∇xu1| + ε−1∇yu1|2 dx




≤ C

(
1 +

1

ε2
|Ωε| +

1

ε2
|Ωε|

)
≤ C

ε
;

where we set Ωε = {x ∈ Ω : dist(x, ∂Ω) ≤ ε} and we take into account that there exists
C > 0 such that |Ωε| ≤ Cε. This implies

‖u1ϕε‖H1(Ω) ≤
C√
ε
. (3.24)
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Taking into account (3.1) and (3.22), it follows

‖r̃ε‖2
H1

0 (Ω) ≤
1

λ

∫

Ω

Aε∇r̃ε∇r̃ε dx =
1

λ



∫

Ω

Aε∇rε∇r̃ε dx+

∫

Ω

Aε∇(u1ϕε)∇r̃ε dx




≤ 1

λ
‖ − divAε∇rε‖H−1(Ω)‖r̃ε‖H1

0 (Ω)

+
1

λ



(∫

Ωε

|Aεϕε|2|∇u1|2 dx
)1/2

+
(∫

Ωε

|Aεu1|2|∇ϕε|2 dx
)1/2


 ‖r̃ε‖H1

0 (Ω)

≤ C‖r̃ε‖H1
0 (Ω)

[
1 +

( 1

ε2
|Ωε|

)1/2

+
( 1

ε2
|Ωε|

)1/2
]
≤ C√

ε
‖r̃ε‖H1

0 (Ω) .

(3.25)
This last inequality, together with (3.24) and (3.23), gives the thesis. �

An immediate consequence of previous theorem is the strong H1(Ω)-convergence of the
sequence {uε − εu1} to the homogenized limit u0.
The results stated in Theorems 3.2 and 3.3 (as well as Theorem 3.1 proved in the previous
section) are classical (see e.g. [12] and [32]). Remark that they hold whatever the choice
of ũ1 is. In particular, note that in Theorem 3.3 the term εũ1(x) is smaller than

√
ε in

the H1(Ω)-norm. However, the error estimate of order
√
ε, although generically optimal,

is a little surprising since one could expect to get ε if the next order term in the ansatz
was truly ε2u2(x,

x
ε
). As it is well known, this worse-than-expected result is due to the

appearance of boundary layers (see [11], [13], [32]). Indeed, the expected result is obtained
in Theorem 3.5, where the boundary data “is corrected” by means of the function zε, the
so-called boundary layer, defined in (3.26). Next lemma provides an estimate of the rate
of divergence for ε → 0 of the boundary layer.Lemma 3.4. Assume that, for i, j = 1, . . . , N , the coefficients aij ∈ C∞(Y ) are Y -periodic
functions satisfying (3.1). Let u0 be the unique solutions of (3.12), with f ∈ C∞(Ω).
Assume, in addition, that u0 ∈ W 2,∞(Ω). For every ε > 0, let zε ∈ H1(Ω) be the unique
solution of {− divAε∇zε = 0 in Ω,

zε = −u1

(
x,
x

ε

)
on ∂Ω.

(3.26)

Then

‖zε‖H1(Ω) ≤
C√
ε
.

By assumptions it follows

‖u1

(
·, ·
ε

)
‖L∞(Ω) = sup

x∈Ω
| − χj(

x

ε
)
∂u0

∂xj
(x) + ũ1(x)| ≤ C (3.27)

and

‖∇u1

(
·, ·
ε

)
‖L∞(Ω)≤ sup

y∈Y
x∈Ω

[
|1
ε
∇yχ

j(y)
∂u0

∂xj
(x)| + |χj(y)∇∂u0

∂xj
(x)| + |∇ũ1(x)|

]
≤ C

ε
. (3.28)

These two estimates will be crucial in the proof of the lemma. Note also that, by the
definition of zε, the function u1 + zε belongs to H1

0 (Ω); i.e., it satisfies the homogeneous
boundary condition.
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Proof. Let us define z̃ε(x) = −u1

(
x, x

ε

)
exp

[
−d(x,∂Ω)

ε

]
. By (3.27) and (3.28), we have that

‖z̃ε‖H1(Ω) ≤ C√
ε
. Set δε = zε − z̃ε. Clearly, δε ∈ H1

0 (Ω); hence,
∫

Ω

Aε∇zε∇δε dx = 0. (3.29)

By (3.1) and (3.29), it follows

λ‖∇δε‖2
L2(Ω) ≤

∫

Ω

Aε∇δε∇δε dx = −
∫

Ω

Aε∇z̃ε∇δε dx ≤ C‖∇z̃ε‖L2(Ω)‖∇δε‖L2(Ω).

This implies that

‖∇δε‖L2(Ω) ≤ C‖∇z̃ε‖L2(Ω) ≤
C√
ε

and hence

‖zε‖H1(Ω) ≤ ‖δε‖H1
0 (Ω) + ‖z̃ε‖H1(Ω) ≤ C

[
‖∇δε‖L2(Ω) +

1√
ε

]
≤ C√

ε
.

�

Taking into account the boundary layer, it is possible to improve the estimate stated in
Theorem 3.3.Theorem 3.5. Assume that, for i, j = 1, . . . , N , the coefficients aij ∈ C∞(Y ) are Y -
periodic functions satisfying (3.1). For every ε > 0, let uε be the solution of (3.2) and u0

be the solution of (3.12), with f ∈ C∞(Ω). Assume in addition that u0 ∈ W 2,∞(Ω). Let
u1, zε be defined by (3.9) and (3.26). Then

‖uε(x) − u0(x) − εu1

(
x,
x

ε

)
− εzε(x)‖H1

0 (Ω) ≤ Cε.

Proof. As in [34], defining rε(x) = ε−1(uε(x) − u0(x) − εu1(x, x/ε) − εzε(x)), it satisfies
{

− divAε∇rε = ε−1(f + divAε∇u0) + divAε∇u1 in Ω,

rε = 0 on ∂Ω ,

since by (3.26) divAε∇zε = 0. Hence, repeating the same calculations as in the proof of
Theorem 3.3, it follows that

‖ − divAε∇rε‖H−1(Ω) = ‖1

ε
(f + divAε∇u0) + divAε∇u1‖H−1(Ω) ≤ C ,

so that

‖rε‖H1
0 (Ω) ≤

1

λ
‖1

ε
(f + divAε∇u0) + divAε∇u1‖H−1(Ω) ≤ C,

which implies the desired result. �

From Theorem 3.5 and taking into account that by Lemma 3.4 the boundary layer zε

blows up as 1/
√
ε, when ε → 0, we obtain again the error estimate given in Theorem 3.3,

since
‖uε − u0 − εu1‖H1(Ω) ≤ ‖uε − u0 − ε(u1 + zε)‖H1

0 (Ω) + ε‖zε‖H1(Ω)

≤ Cε+ ε
C√
ε
≤ C

√
ε .
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Remark 3.6. For the sake of simplicity, we assume in this section strong regularity hy-
potheses on the coefficients aij and the function f , though the result holds true even in a
more general context. However, it is out of our interest here to make any effort in order to
consider the best possible regularity assumptions which assure the uniform convergence
and the error estimate in the homogenization procedure.

3.4. Non homogeneous Dirichlet boundary conditions. In this section we consider
the case of non homogeneous boundary conditions; i.e.,

{− div(Aε∇uε) = f in Ω,

uε = g on ∂Ω,
(3.30)

for a given function f ∈ L2(Ω) and g ∈ H1/2(∂Ω). We denote by g0 ∈ H1(Ω) the unique
solution of {− div(A∗∇g0) = 0 in Ω,

g0 = g on ∂Ω,
(3.31)

where A∗ is the homogenized matrix defined in (3.11). Hence, we setH1
0 (Ω) ∋ vε = uε−g0,

where uε ∈ H1(Ω) is the unique solution of (3.30). Clearly vε satisfies
{− div(Aε∇vε) = f + div(Aε∇g0) in Ω,

vε = 0 on ∂Ω ,
(3.32)

and
∫

Ω

|∇vε|2 dx ≤ C



∫

Ω

|f |2 dx+

∫

Ω

|∇g0|2 dx


 ≤ C , (3.33)

where C depends on λ,Λ, ‖f‖2 and ‖g0‖1,2. By (3.33), up to a subsequence, still denoted
by {vε}, we have that there exists a function v0 ∈ H1

0 (Ω) such that vε → v0 strongly in
L2(Ω) and ∇vε ⇀ ∇v0 weakly in L2(Ω) (see Theorems 1.32 and 1.31). Let us choose wk

ε ,
k = 1, . . . , N , as in the proof of Theorem 3.1 and define

ξ0 := (w − L2(Ω)) − lim
ε→0

Aε∇vε . (3.34)

Then using ϕwk
ε , with ϕ ∈ C∞

0 (Ω), as a test function in the weak formulation of (3.32)
and ϕvε as a test function in the weak formulation of (3.17), integrating by parts and
subtracting the two results, as in the proof of Theorem 3.1, it follows
∫

Ω

Aε∇vε∇ϕwk
ε dx−

∫

Ω

Aε∇wk
ε∇ϕ vε dx =

∫

Ω

f wk
ε ϕdx−

∫

Ω

Aε∇g0∇wk
ε ϕdx−

∫

Ω

Aε∇g0∇ϕwk
ε dx . (3.35)

Then, passing to the limit for ε → 0 and taking into account (3.34) and the fact that
Aε∇wk

ε ⇀ A∗ek as in (3.19), we obtain
∫

Ω

ξ0∇ϕxk dx−
∫

Ω

a∗kj∂jϕ v0 dx =

∫

Ω

f xk ϕdx−
∫

Ω

a∗kj∂jg0 ϕdx−
∫

Ω

A∇g0∇ϕxk dx , (3.36)
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where the matrix A is defined by its constant entries aij given by

aij =

∫

Y

aij(y) dy .

Moreover, using the function xkϕ as a test function in the weak formulation of (3.32) and
passing again to the limit, we obtain
∫

Ω

ξ0∇ϕxk dx+

∫

Ω

ξ0 ekϕdx =

∫

Ω

f xk ϕdx−
∫

Ω

A∇g0∇ϕxk dx

−
∫

Ω

A∇g0 ek ϕdx =

∫

Ω

f xk ϕdx+

∫

Ω

div(A∇g0)ϕx
k dx . (3.37)

Replacing (3.37) in (3.36) and simplifying, it follows

−
∫

Ω

ξ0 ekϕdx =

∫

Ω

a∗kj∂jϕ v0 dx−
∫

Ω

a∗kj∂jg0 ϕdx−
∫

Ω

A∇g0∇ϕxk dx

−
∫

div(A∇g0)ϕx
k dx = −

∫

Ω

a∗kj(∂jv0+∂jg0)ϕdx+

∫

Ω

div(A∇g0)ϕx
k dx+

∫

Ω

A∇g0 ek ϕdx

−
∫

Ω

div(A∇g0)ϕx
k dx = −

∫

Ω

a∗kj(∂jv0 + ∂jg0)ϕdx+

∫

Ω

akj∂jg0 ϕdx , (3.38)

which implies
ξk
0 = a∗kj(∂jv0 + ∂jg0) − akj∂jg0 . (3.39)

Finally, passing to the limit in the weak formulation of (3.32) and taking into account
(3.39), we obtain
∫

Ω

A∗(∇v0+∇g0)∇ψ dx−
∫

Ω

A∇g0∇ψ dx =

∫

Ω

f ψ dx−
∫

Ω

A∇g0∇ψ dx , ∀ψ ∈ C∞
0 (Ω) ,

which implies ∫

Ω

A∗(∇v0 + ∇g0)∇ψ dx =

∫

Ω

f ψ dx .

Setting u0 := v0 + g0, it follows that uε ⇀ u0 weakly in H1(Ω) and u0 satisfies
{− div(A∗∇u0) = f in Ω ;

u0 = g on ∂Ω ;
(3.40)

so that problem (3.40) is exactly the expected homogenized problem, where the homoge-
nized matrix A∗ does not depend on the boundary data.

3.5. Concluding remarks. The method presented above can be easily generalized to
the case in which the matrix A depends also on the “slow variable” x; i.e., A = A(x, y)
and Aε(x) = A(x, x/ε), provided that it continuously depends on x (see, for instance, [12]
and [32]).
Similarly, with the previous technique and without relevant changes, we can prove the
same results for the case in which the source term depends on ε; i.e., f = fε, provided
that the sequence {fε} converges strongly in L2(Ω).
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For the sake of completeness, we recall that homogenization is often performed for integral
functionals. This leads to an interesting and useful theory (the Γ-convergence theory, see
for instance [15], [16], [22]), which however is out of the aims of these Notes.
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4. A model for the electrical conduction in biological tissues

It is well known that electric potentials can be used in diagnostic devices to investigate
the properties of biological tissues. Besides the well-known diagnostic techniques such as
magnetic resonance, X-rays and so on, it plays an important role a more recent, cheap and
noninvasive technique called electric impedance tomography (EIT). Such a technique is
essentially based on the possibility of determining the physiological properties of a living
body by means of the knowledge of its electrical behavior.
This leads to an inverse problem for an elliptic equation, usually the Laplacian, which
is the equation satisfied by the electrical potential, when the body is assumed to display
only a resistive behavior. However, it has been observed that, applying high frequency
potentials to the body, a capacitive behavior appears, due to the electric polarization at
the interface of the cell membranes, which act as capacitors. This phenomenon (known
in physics as Maxwell-Wagner effect) is studied modeling the biological tissue as a com-
posite medium with a periodic microscopic structure of characteristic length ε, where two
finely mixed conductive phases (the intra- and the extra-cellular phase) are separated by
a dielectric interface (the cellular membrane). From the mathematical point of view, the
electrical current flow through the tissue is described by means of a system of decoupled
elliptic equations in the two conductive phases (obtained from the Maxwell equations,
under the quasi-static assumption; i.e., we assume that the magnetic effects are negli-
gible). The solutions of this system are coupled because of the interface conditions at
the membrane, whose physical behavior is described by means of a dynamical boundary
condition, together with the flux-continuity assumption. Because of the complex geome-
try of the domain, these models are not easily handled, for example from the numerical
point of view. This justifies the need of the homogenization approach, with the aim of
producing macroscopic models for the whole medium as ε → 0, since the typical scale
ε of the microstructure is very small with respect to the tissue macroscopic scale ana-
lyzed in the experiments. The macroscopic equation obtained with this approach is an
elliptic equation with memory, as it could be expected in any electrical circuit in which a
capacitor is present.

The results presented in this section are contained in [3]–[7].

4.1. Setting of the problem. Let Ω be an open connected bounded subset of R
N . Let

us introduce a periodic open subset E of R
N , so that E + z = E for all z ∈ Z

N . For all
ε > 0 define Ωε

int = Ω ∩ εE, Ωε
out = Ω \ εE. We assume that Ω, E have regular boundary,

say of class C∞ for the sake of simplicity. Moreover, we set Ω = Ωε
int ∪Ωε

out ∪ Γ ε, where
Γ ε = ∂Ωε

int∩Ω = ∂Ωε
out ∩Ω. We also employ the notation Y = (0, 1)N , and Eint = E∩Y ,

Eout = Y \ E, Γ = ∂E ∩ Y . As a simplifying assumption, we stipulate that Eint is a
connected smooth subset of Y such that dist(Eint, ∂Y ) > 0. Some generalizations may be
possible, but we do not dwell on this point here. Finally, we assume that dist(Γ ε, ∂Ω) > γε
for some constant γ > 0 independent of ε, by dropping the inclusions contained in the
cells ε(Y + z), z ∈ Z

N which intersect ∂Ω (see Figure 1). Finally, let T > 0 be a given
time.
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Figure 1. An examples of admissible periodic structures in R
2. Left: Y

is the dashed square, and E ∩ Y is the shaded region. Right: the domain
Ω.

We are interested in the homogenization limit as ε ց 0 of the problem for uε(x, t) (here
the operators div and ∇ act only with respect to the space variable x)

− div(σint∇uε) = 0 , in Ωε
int; (4.1)

− div(σout∇uε) = 0 , in Ωε
out; (4.2)

σint∇u(int)
ε · ν = σout∇u(out)

ε · ν , on Γ ε; (4.3)

α

ε

∂

∂t
[uε] +

β

ε
[uε] = σout∇u(out)

ε · ν , on Γ ε; (4.4)

[uε](x, 0) = Sε(x) , on Γ ε; (4.5)

uε(x, t) = 0 , on ∂Ω. (4.6)

The notation in (4.1)–(4.4), (4.6), means that the indicated equations are in force in the
relevant spatial domain for 0 < t < T .
Here σint, σout and α are positive constants, β ≥ 0, and ν is the normal unit vector to Γ ε

pointing into Ωε
out. Since uε is not in general continuous across Γ ε we have set

u(int)
ε := trace of uε|Ωε

int
on Γ ε; u(out)

ε := trace of uε|Ωε
out

on Γ ε.

Indeed we refer conventionally to Ωε
int as to the interior domain, and to Ωε

out as to the
outer domain. We also denote

[uε] := u(out)
ε − u(int)

ε .

Similar conventions are employed for other quantities; for example (4.3) can be rewritten
as

[σ∇uε · ν] = 0 , on Γ ε,

where
σ = σint in Ωε

int, σ = σout in Ωε
out.

The initial data Sε will be discussed below.
In Section 4.4, under the assumptions above, we prove existence and uniqueness of a weak
solution to (4.1)–(4.6), in the class

uε|Ωε
i
∈ L2(0, T ;H1(Ωε

i )) , i = 1 , 2 , (4.7)

and uε|∂Ω = 0 in the sense of traces (see [6]).
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A similar result holds true also for all the other problems which we will encounter in these
Notes, which differ just for the nature of the boundary conditions.
In the following, we will show that, if γ−1ε ≤ Sε(x) ≤ γε, where Sε is the initial jump
prescribed in (4.5), for a fixed constant γ > 1, then uε becomes stable as ε → 0 (i.e.,
it converges to a nonvanishing bounded function). Therefore, let us stipulate that Sε ∈
H1/2(Γ ε) and

Sε(x) = εS1

(
x,
x

ε

)
+ εRε(x) , (4.8)

where S1 : Ω × ∂E → R, and

‖S1‖L∞(Ω×∂E) <∞ , ‖Rε‖L∞(Ω) → 0 , as ε→ 0;

S1(x, y) is continuous in x, uniformly over y ∈ ∂E,

and periodic in y, for each x ∈ Ω.

(4.9)

Firstly, we remark that, up to a change of function, we can assume β = 0; indeed, setting

vε(x, t) = uε(x, t)e
β
α , it follows that vε satisfies

− div(σint∇vε) = 0 , in Ωε
int;

− div(σout∇vε) = 0 , in Ωε
out;

σint∇v(int)
ε · ν = σout∇v(out)

ε · ν , on Γ ε;

α

ε

∂

∂t
[vε] = σout∇v(out)

ε · ν , on Γ ε;

[vε](x, 0) = Sε(x) , on Γ ε;

vε(x, t) = 0 , on ∂Ω.

Hence, from now on, we assume β = 0 in (4.4). The weak formulation of problem (4.1)–
(4.6) is

T∫

0

∫

Ω

σ∇uε · ∇ψ dx dt− α

ε

T∫

0

∫

Γ ε

[uε]
∂

∂t
[ψ] dσ dt− α

ε

∫

Γ ε

[uε](0)[ψ](0) dσ = 0 , (4.10)

for each ψ ∈ L2(Ω × (0, T )) such that ψ is in the class (4.7), [ψ] ∈ H1(0, T ;L2(Γ ε)), and
ψ vanishes on ∂Ω × (0, T ), as well as at t = T .
Moreover, multiplying (4.1), (4.2) by uε, integrating by parts and using (4.3)–(4.6), for
all 0 < t < T , we obtain the energy estimate

t∫

0

∫

Ω

σ|∇uε|2 dx dτ +
α

2ε

∫

Γ ε

[uε]
2(x, t) dσ =

α

2ε

∫

Γ ε

S2
ε (x) dσ ≤ C < +∞ , (4.11)

where C does not depend on ε and the last inequality is due to (4.8), (4.9), taking into
account that |Γ ε|N−1 ∼ 1/ε.
Inequality (4.11) together with the following Poincaré type lemma will give the correct
estimate, which will be used in Section 4.5 in order to pass to the limit for ε → 0 in the
sequence of the solutions {uε} of (4.1)–(4.6).Lemma 4.1. (Poincaré inequality) Let v : Ω → R be given by

v|Ωε
int

= v1|Ωε
int
, v|Ωε

out
= v2|Ωε

out
, v1 , v2 ∈ H1

0 (Ω) .
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Then ∫

Ω

v2 dx ≤ C

{∫

Ω

|∇v|2 dx+ ε−1

∫

Γ ε

[v]2 dσ

}
. (4.12)

Here C depends only on Ω and E.

Proof. As v2 is of class W 1,1 both in Ωε
int and in Ωε

out, v
2 ∈ BV (Ω); hence, by Theorem

1.41, we obtain
∫

Ω

v2 dx ≤ γ|Dv2(Ω)| ≤ γ

∫

Ω

|v||∇v| dx+ γ

∫

Γ ε

|[v2]| dσ , γ = γ(Ω) . (4.13)

Indeed the singular part of the variation of v (and therefore of v2) is concentrated on Γ ε.

Using Theorem 1.26 with δ replaced with
√
εδ, we estimate above last integral by

∫

Γ ε

|[v]|(|v(int)| + |v(out)|) dσ ≤ (2δε)−1

∫

Γ ε

[v]2 dσ +
δε

2

∫

Γ ε

(|v(int)|2 + |v(out)|2) dσ , (4.14)

for a δ ∈ (0, 1) to be chosen presently. Exploiting the periodicity of E, and standard trace
inequalities, we check that for each cell Qi = ε(Y + zi), zi ∈ Z

N ,
∫

Γ ε∩Qi

(|v(int)|2 + |v(out)|2) dσ ≤ γε−1

∫

Ω∩Qi

(
v2 + ε2|∇v|2

)
dx , (4.15)

where γ = γ(E) does not depend on Qi. Next we add (4.15) over all the cells covering
Ω, and use the resulting inequality in (4.14). A further application of Theorem 1.26 to
(4.13) yields

∫

Ω

v2 dx ≤ γδ−1

∫

Ω

|∇v|2 dx+ γ(δε)−1

∫

Γ ε

[v]2 dσ + γδ

∫

Ω

v2 dx ,

whence (4.12) on selecting a small enough δ. �

Remark 4.2. The factor ε−1 in (4.12) is necessary in general, as one can show easily by
counterexample. However, if E or Ec is connected, this is not the case: actually, one can
prove an estimate similar to (4.12), but with the factor ε−1 formally replaced by ε (in this
spirit, see Lemma 6 of [31]).

From (4.11) and Lemma 4.1, after an integration in time of (4.12) over the interval (0, T ),
it follows that

‖uε‖2

L2

(
Ω×(0,T )

) ≤ C




T∫

0

∫

Ω

|∇uε|2 dx dt+
1

ε

T∫

0

∫

Γ ε

[uε]
2 dσ dt


 ≤ C ,

where C does not depend on ε. Hence, from Theorem 1.24, we have that there exists
a function u ∈ L2

(
0, T ;BV (Ω)

)
, such that, up to a subsequence, uε → u weakly in

L2
(
Ω × (0, T )

)
. As in Section 3, it remains to identify the limit function u, and this will

be done in a formal way in Section 4.3 and rigorously in Section 4.5.
We point out that, in this case, the situation is more delicate than in Section 3, since
here the convergence of the sequence {uε} takes place only weakly in L2

(
Ω × (0, T )

)

(actually also in L1
loc

(
0, T ;L1(Ω)

)
, see (5.9) in [4]). However, no a priori information on

the convergence of the sequence {∇uε} is available.
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4.2. Concentration of the physical problem. We point out that in the physical set-
ting, the cell membrane has a nonzero thickness, even it is very small with respect to
the characteristic length of the cell. Hence, we denote by η the ratio between these two
quantities and remark that η << 1. Moreover, we write Ω as Ω = Ωε,η ∪ Γ ε,η ∪ ∂Γ ε,η,
where Ωε,η and Γ ε,η are two disjoint open subsets of Ω, Γ ε,η is the tubular neighborhood
of Γ ε with thickness εη, and ∂Γ ε,η is its boundary. In addition, we assume also that
Ωε,η = Ωε,η

int ∪ Ωε,η
out and ∂Γ ε,η = (∂Ωε,η

int ∪ ∂Ωε,η
out) ∩ Ω. Again, Ωε,η

out, Ω
ε,η
int correspond to

the conductive regions, and Γ ε,η to the dielectric shell. We assume that, for η → 0 and
ε > 0 fixed, |Γ ε,η| ∼ εη|Γ ε|N−1, Ω

ε,η → Ωε
out ∪Ωε

int and ∂Γ ε,η → Γ ε. We employ also the
notation Y = Eη ∪ Γ η ∪ ∂Γ η, where Eη and Γ η are two disjoint open subsets of Y , Γ η

is the tubular neighborhood of Γ with thickness η, and ∂Γ η is its boundary. Moreover,
Eη = Eη

int ∪ Eη
out (see Figure 2). For η → 0, Eη → Eint ∪ Eout, |Γ η| ∼ η|Γ |N−1 and

∂Γ η → Γ .

Eη
out

Eη
int

∂Γ η

Γη

νη

νη

ν

Eout

Eint

Figure 2. The periodic cell Y . Left: before concentration; Γ η is the
shaded region, and Eη = Eη

int ∪ Eη
out is the white region. Right: after

concentration; Γ η shrinks to Γ as η → 0.

The classical governing equation is derived from the Maxwell system in the quasi-static
approximation, which gives

− div(Aη∇uη
ε) = 0 , in Ωε,η; (4.16)

− div(Bη∇uη
εt) = 0 , in Γ ε,η; (4.17)

Aη∇uη
ε · νη = Bη∇uη

ε t · νη , on ∂Γ ε,η; (4.18)

∇uη
ε(x, 0) = S

η
ε(x) , in Γ ε,η; (4.19)

uη
ε(x, t) = 0 , on ∂Ω. (4.20)

We assume that the conductivity Aη > 0 is such that Aη = σint in Ωε,η
int , A

η = σout in Ωε,η
out;

the permeability Bη > 0 is such that Bη = α η; and S
η
ε = ∇S̃η

ε , for some S̃η
ε ∈ H1(Γ ε,η)

with |Sη
ε | ∼ 1/η.

Remark 4.3. We are interested in preserving, in the limit η → 0, the conduction across
the membrane Γ ε instead of the tangential conduction on Γ ε. To this purpose, we need
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to preserve the flux Bη∇uη
εt · ν and the jump [uη

εt] across the dielectric shells to be con-
centrated. This is the reason for which we rescale Bη = αη, instead of scaling Bη = α/η
in Γ ε,η, as more usual in concentrated-capacity literature.

We are next interested in passing to the limit for η → 0+, keeping ε > 0 fixed. In [7] it is
proven the following result.Theorem 4.4. Under the previous assumptions, when η → 0+, it follows that the con-
centration of problem (4.16)–(4.20) is given by (4.1)–(4.6). More precisely, as η → 0+

it follows that uη
ε → uε, weakly in L2

loc(Ω × (0, T )), where uε|Ωε
int

∈ L2
loc(0, T ;H1(Ωε

int)),

uε|Ωε
out

∈ L2
loc(0, T ;H1(Ωε

out)) and uε is the unique solution of (4.1)–(4.6). Moreover, as
η → 0+, ∇uη

ε → ∇uε, weakly in L2
loc(Ω

ε
int × (0, T )) and in L2

loc(Ω
ε
out × (0, T )).

We provide here just a formal sketch of the proof, letting η → 0, while keeping ε > 0
fixed. Let φη be a smooth testing function in ΩT , such that ∇φη(x, T ) = 0 in Γ ε,η, and
φη vanishes in a neighborhood of ∂Ω. Multiplying (4.16), (4.17) by φη, and integrating
by parts, yields after routine calculations,

T∫

0

∫

Ωε,η

Aη∇uη
ε∇φη dx dt−

T∫

0

∫

Γ ε,η

Bη∇uη
ε∇φη

t dx dt =

∫

Γ ε,η

Bη
S

η
ε∇φη(0) dx . (4.21)

We expect the limit uε of uη
ε to be discontinuous across the interface Γ ε. Then we may

approximate

∇uη
ε · ν ∼ [uη

ε ]

εη
, on Γ ε, (4.22)

where

[uη
ε ](P ) = uη

ε(P +
η

2
ν) − uη

ε(P − η

2
ν) ∀P ∈ Γ ε . (4.23)

In order to take advantage of (4.22), we select φη as follows: first, let it equal a smooth
function in each of the two components Ωε,η

int and Ωε,η
out. Then, extend it to Γ ε,η in such a

way that

∇φη · ν ∼ [φη]

εη
, on Γ ε.

Then (4.21) can be rewritten as

T∫

0

∫

Ωε,η

Aη∇uη
ε∇φη dx dt− εη2α

T∫

0

∫

Γ ε

[uη
ε ]

εη

[φη]t
εη

dσ dt ≃ εη2α

∫

Γ ε

[S̃η
ε ]

εη

[φη(0)]

εη
dσ .

We also exploited here the property |Γ ε,η|N ∼ εη|Γ ε|N−1, and we let S
η
ε · ν ∼ [S̃η

ε ]/εη,

where [S̃η
ε ] is defined as in (4.23). Moreover, we assume that [S̃η

ε ] → Sε as η → 0, for Sε

as in (4.5). Here and in the following we assume that the tangential parts on Γ ε of the
gradients of the involved functions are stable, so that they produce higher order terms in
the asymptotic estimate in η and then they are neglected.
Finally taking the limit η → 0+ above, we get

T∫

0

∫

Ωε
out∪Ωε

int

σ∇uε∇φ dx dt− α

ε

T∫

0

∫

Γ ε

[uε][φ]t dσ dt =
α

ε

∫

Γ ε

Sε[φ(0)] dσ ,

which is nothing else than the weak formulation of (4.1)–(4.6), as given in (4.10).
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4.3. Formal homogenization of the concentrated problem. In this section we aim
at identifying the form of the homogenized equation, via the two-scale method (see [12],
[32], [37]). To this purpose, we introduce the microscopic variables y ∈ Y , y = x/ε and
assume that the following asymptotic expansion holds

uε = uε(x, y, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + . . . . (4.24)

Note that u0, u1, u2 are periodic in y. Recalling that

div =
1

ε
divy + divx , ∇ =

1

ε
∇y + ∇x , (4.25)

we compute

∆ uε =
1

ε2
A0u0 +

1

ε
(A0u1 + A1u0) + (A0u2 + A1u1 + A2u0) + . . . , (4.26)

Here

A0 = ∆y , A1 = divy ∇x + divx ∇y , A2 = ∆x . (4.27)

Let us recall explicitly that

∇uε =
1

ε
∇yu0 +

(
∇xu0 + ∇yu1

)
+ ε
(
∇yu2 + ∇xu1

)
+ . . . , (4.28)

and stipulate, in addition to (4.8),

Sε = Sε(x, y) = εS1(x, y) + ε2S2(x, y) + . . . . (4.29)

4.3.1. The term of order ε−2. Equating the first term on the right hand side of (4.26) to
zero, and applying (4.24), (4.28) to (4.1)–(4.5) we find

−σ∆y u0 = 0 , in Eint, Eout; (4.30)

σint∇yu
(int)
0 · ν = σout∇yu

(out)
0 · ν , on Γ ; (4.31)

α
∂

∂t
[u0] = σout∇yu

(out)
0 · ν , on Γ ; (4.32)

[u0](x, y, 0) = 0 , on Γ . (4.33)

In (4.33) we have also exploited the expansion (4.29). By Theorem 4.6 it follows that

u0 = u0(x, t) . (4.34)

4.3.2. The term of order ε−1. Proceeding as above, but taking into consideration the
second term on the right hand side of (4.26) we obtain

−σ∆y u1 = σA1u0 = 0 , in Eint, Eout; (4.35)

[σ∇yu1 · ν] = −[σ∇xu0 · ν] , on Γ ; (4.36)

α
∂

∂t
[u1] = σout∇yu

(out)
1 · ν + σout∇xu0 · ν , on Γ ; (4.37)

[u1](x, y, 0) = S1(x, y) , on Γ . (4.38)

In (4.35) and in (4.37) we have made use of (4.34), and of its consequence [u0] = 0.

We recall that in the classical case (see Section 3.1) the analysis of the term of order ε−1

leads to the factorization of u1 in terms of the gradient of u0 and a suitable cell function.
Here the situation is more complicated, due to the presence of the time derivative in the
left-hand side of (4.37); nevertheless, we still obtain a sort of factorization of u1, which
will be the crucial point in order to achieve the homogenized equation.
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Let s : Γ → R be a jump function. Consider the problem

−σ∆y v = 0 , in Eint, Eout; (4.39)

[σ∇yv · ν] = 0 , on Γ ; (4.40)

α
∂

∂t
[v] = σout∇yv

(out) · ν , on Γ ; (4.41)

[v](y, 0) = s(y) , on Γ , (4.42)

where v is a periodic function in Y , such that
∫

Y
v = 0. Define the transform T by

T (s)(y, t) = v(y, t) , y ∈ Y , t > 0 ,

and extend the definition of T to vector (jump) functions, by letting it act componentwise
on its argument.
Introduce also the functions χ0 : Y → R

N , χ1 : Y × (0, T ) → R
N as follows. The

components χ0
h, h = 1, . . . , N , satisfy

−σ∆y χ
0
h = 0 , in Eint, Eout; (4.43)

[σ(∇yχ
0
h − eh) · ν] = 0 , on Γ ; (4.44)

[χ0
h] = 0 , on Γ . (4.45)

We also require χ0
h to be a periodic function with vanishing integral average over Y .

Moreover χ1
h is defined from

αχ1
h = T

(
σout(∇yχ

0 (out)
h − eh) · ν

)
. (4.46)

Let us stipulate that u1 may be written in the form

u1(x, y, t) = −χ0(y) · ∇xu0(x, t) + T (S1(x, ·))(y, t)

−
t∫

0

∇xu0(x, τ) · χ1(y, t− τ) dτ . (4.47)

It is worthwhile making some remarks on the structure of u1, which is made of three parts:
the first one is the standard one (see (3.9)); while the second one keeps into account the
effect of the initial datum. The real novelty is the third integral term, which is a non local
memory term, due to the capacitive behavior of the membrane; i.e., to the dynamical
nature of condition (4.4).

Equations (4.35) are equivalent to (4.43), when we remember that the terms χ1
h and

T (S1(x, ·)) in (4.47) fulfil (4.39). Next, let us impose (4.36) in (4.47). We get, on recalling
(4.40)

[σ∇yu1 · ν] = −[σ∇yχ
0
h(y) · ν]u0xh

(x, t) = −[σ∇xu0 · ν] = −[σu0xh
(x, t)νh] .

In order to satisfy this requirement, we prescribe (4.44). Note that (4.38) is obviously
satisfied, owing to the definition of T .
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Finally we get to (4.37), which we combine with (4.47) obtaining

α
∂

∂t
[u1] + f ′(0)[u1] = −α[χ0(y) · ∂

∂t
∇xu0(x, t)] + α

∂

∂t
[T (S1(x, ·))](y, t)

− α∇xu0(x, t) · [χ1](y, 0)− α

t∫

0

∇xu0(x, τ) ·
∂

∂t
[χ1](y, t− τ) dτ .

On the other hand,

σout∇yu
(out)
1 · ν + σout∇xu0 · ν = −σout∇yχ

0 (out)
h (y) · νu0xh

(x, t)

+ σout∇yT (S1(x, ·))(out) · ν −
t∫

0

u0xh
(x, τ)σout∇yχ

1
h(y, t− τ) · ν dτ + σoutu0xh

(x, t)νh .

Hence, (4.45)–(4.46) follow, on equating the quantities above.

Remark 4.5. We note that (4.47) defines u1 up to an additive function ũ1(x, t) independent
of y. However, since for our purpose we will stop the expansion (4.24) to the second order
term, ũ1 does not play any role, so that we may assume that it is identically zero, without
loss of generality.

4.3.3. The term of order ε0. Let us first calculate

A1u1 = 2
∂2u1

∂xj∂yj
,

where we employ the summation convention. Therefore, the complete problem involving
the third term on the right hand side of (4.26) is

−σ∆y u2 = σ∆x u0 + 2σ
∂2u1

∂xj∂yj

, Eint,Eout (4.48)

[σ∇yu2 · ν] = −[σ∇xu1 · ν] , on Γ ; (4.49)

α
∂

∂t
[u2] = σout∇xu

(out)
1 · ν + σout∇yu

(out)
2 · ν , on Γ ; (4.50)

[u2](x, y, 0) = S2(x, y) , on Γ . (4.51)

Integrating by parts equation (4.48) both in Eint and in Eout, and adding the two contri-
butions, we get
[ ∫

Eint

+

∫

Eout

]{
σ∆x u0(x, t) + 2σ

∂2u1

∂xj∂yj

}
dy

=

∫

Γ

{
σout∇yu

(out)
2 · ν − σint∇yu

(int)
2 · ν

}
dσ =

∫

Γ

[σ∇yu2 · ν] dσ = −
∫

Γ

[σ∇xu1 · ν] dσ .

Thus

σ0 ∆x u0 = 2

∫

Γ

[σ∇xu1 · ν] dσ −
∫

Γ

[σ∇xu1 · ν] dσ =

∫

Γ

[σ∇xu1 · ν] dσ ,

where we denote

σ0 = σint|Eint| + σout|Eout| . (4.52)
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We use equality (4.47), where only last two terms on the right hand side have a non zero
jump across Γ . Thus we infer from the equality above

σ0 ∆x u0 =

∫

Γ

[σ∇xu1 · ν] dσ = −
∫

Γ

[σ]χ0
h(y)νj dσu0xhxj

(x, t)

+
∂

∂xj

∫

Γ

[σT (S1(x, ·))](y, t)νj dσ −
t∫

0

u0xhxj
(x, τ)

∫

Γ

[σχ1
h](y, t− τ)νj dσ dτ .

We finally write the PDE for u0 in Ω × (0, T ) as

− div

(
σ0∇xu0 + A0∇xu0 +

t∫

0

A1(t− τ)∇xu0(x, τ) dτ

−
∫

Γ

[σT (S1(x, ·))](y, t)ν dσ

)
= 0 , (4.53)

where the two matrices Ai are defined by

(A0)jh =

∫

Γ

[σ]χ0
h(y)νj dσ , (A1(t))jh =

∫

Γ

[σχ1
h](y, t)νj dσ , (4.54)

are symmetric, and σ0I + A0 is positive definite (see [4], Section 4). Accordingly with
(4.6), equation (4.53) must be complemented with the homogeneous boundary datum
u0(x, t) = 0 on ∂Ω × (0, T ).
We emphasize again that the decomposition of u1 stated in (4.47) has been crucial in order
to determine the homogenized equation (4.53). That equation is different from the stan-
dard elliptic equation which are usually employed in bioimpedenziometric tomography. In
fact, the appearance of the memory term in the equation (which, from the mathematical
point of view, is a consequence of the structure of the first corrector u1) seems to be
in agreement with the fact that a contribution to current flux is produced not only by
the potential applied to the boundary but also by the charge and discharge cycles of the
membranes; i.e., to their capacitive behavior.

4.4. Well-posedness results. The first result of this section is connected with the well-
posedness of all the microscopic problems appearing in our framework.Theorem 4.6. Let Ω be an open connected bounded subset of R

N such that Ω = Ω1∪Ω2∪Γ,
where Ω1 and Ω2 are two disjoint open subset of Ω, Γ = ∂Ω1 ∩Ω = ∂Ω2 ∩Ω is a compact
regular set, and Γ ∩ ∂Ω = ∅. Assume also that Ω, Ω1 and Ω2 have Lipschitz boundaries.
Let α > 0 and β ≥ 0. Let f ∈ L2(Ω × (0, T )), q, h ∈ L2(0, T ;L2(Γ)), and S ∈ H1/2(Γ ).
Therefore, problem

−σ∆ v = f(t) , in Ωint, Ωout; (4.55)

[σ∇v · ν] = q(t) , on Γ ; (4.56)

α
∂

∂t
[v] + β[v] = σout∇v(out) · ν + h(t) , on Γ ; (4.57)

[v](x, 0) = S , on Γ ; (4.58)

v(x, t) = 0 , on ∂Ω; (4.59)
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admits a unique solution v ∈ L2(0, T ;H1
o(Ω)) with [v] ∈ C(0, T ;L2(Γ)), where H1

o(Ω) =
{u = (u1, u2) | u1 := u|Ωint

, u2 := u|Ωout
with u1, u2 ∈ H1

o (Ω)}.

The technique employed to prove this theorem relies on a result of existence and unique-
ness for abstract parabolic equations (see [39], Chapter 23), to which problem (4.55)–(4.59)
can be reduced by means of a suitable identification of the function spaces there involved.

Remark 4.7. Note that the same result as in Theorem 4.6 holds if we assume that Ω =
Y = (0, 1)N , g(·, t) is Y -periodic for a.e. t ∈ (0, T ), f and q satisfy the compatibility
condition ∫

Y

f(y, t) dy =

∫

Γ

q(y, t) dy for a.e. t ∈ (0, T ) ,

and we replace (4.59) with the requirement that v(·, t) is Y -periodic.

For equation (4.53), complemented with boundary conditions (e.g. Dirichlet boundary
condition), an existence and uniqueness theorem, both for weak and classical solutions, is
available (see [5]). Indeed, let us consider the following problem





−div


A(x)∇xu+

t∫

0

B(x, t− τ)∇xu(x, τ) dτ


 = f(x, t) in Ω × (0, T ) ,

u = g in ∂Ω × (0, T ) ,

(4.60)

where A(x) is a symmetric and positive definite matrix, B(x, t) is a symmetric matrix,
f : Ω × (0, T ) → R and g : Ω × (0, T ) → R are given functions. Then the two following
results hold true.Theorem 4.8. Let A ∈ L∞(Ω; R

N2

) be a symmetric matrix such that λ|ξ|2 ≤ A(x)ξ · ξ ≤
Λ|ξ|2, for suitable 0 < λ < Λ < +∞, for almost every x ∈ Ω and every ξ ∈ R

N ; let

B ∈ L2(0, T ;L∞(Ω; R
N2

)), and let g ∈ L2(0, T ;H1(Ω)). Assume that f : Ω × (0, T ) → R

is a Carathéodory function such that f ∈ L2(0, T ;H−1(Ω)).
Then, there exists a unique function u ∈ L2(0, T ;H1(Ω)) satisfying in the sense of distri-
butions problem (4.60).Theorem 4.9. Let m ≥ 0 be any fixed integer and let also 0 < α < 1. Let A ∈
C1+α(Ω; R

N2

) satisfy the assumption of Theorem 4.8 and

B ∈ C0([0, T ];C1+α(Ω; R
N2

)) be such that B′ ∈ L2(0, T ;W 1,∞(Ω; R
N2

)) .

Assume that f ∈ C0([0, T ];Cm+α(Ω)), and that ∇xf(x, t) and ft(x, t) exist and are
bounded. Let g ∈ C0([0, T ];Cm+2+α(Ω)), with gt ∈ L∞(0, T ;Cm+2+α(Ω)).
Then there exists a unique function u ∈ C0([0, T ];C1+α(Ω))∩L∞(0, T ;Cm+2+α(Ω)) solv-
ing (4.60) in the classical sense.

Both the proofs can be obtained, for example, with a standard delay argument or a
fixed point theorem, together with an a-priori estimate in the corresponding function
spaces. The a-priori estimates are obtained as in standard elliptic equations, using also
the Gronwall’s Theorem to deal with the memory term.
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4.5. The homogenization theorem. The aim of this section is to state the rigorous
mathematical proof of the homogenization result.Theorem 4.10. Under the assumptions listed in Section 4.1, as ε → 0, we have that
uε → u0, weakly in L2(Ω × (0, T )), and strongly in L1

loc(0, T ;L1(Ω)), where the limit
u0 ∈ L2(0, T ;H1

0(Ω)) solves (4.53).

Proof. Introduce for i = 1, . . . , N , the functions

wε
i (x, t) = xi − εχ0

i

(x
ε

)
− ε

T∫

t

χ1
i

(x
ε
, τ − t

)
dτ , (4.61)

so that explicit calculations reveal

−σ∆wε
i = 0 , in Ωε

int, Ω
ε
out; (4.62)

[σ∇wε
i · ν] = 0 , on Γ ε; (4.63)

α

ε

∂

∂t
[wε

i ] = −σout∇wε
i
(out) · ν , on Γ ε. (4.64)

Let ϕ ∈ C∞
o (Ω), and select wε

iϕ as a testing function in the weak formulation (4.10). We
obtain

T∫

0

∫

Ω

σ∇uε · ∇wε
i ϕ dx dt+

T∫

0

∫

Ω

σ∇uε · ∇ϕwε
i dx dt

− α

ε

T∫

0

∫

Γ ε

[uε]
∂

∂t
[wε

i ]ϕ dσ dt− α

ε

∫

Γ ε

[uε](0)[wε
i ](0)ϕ dσ = 0 , (4.65)

once we use the obvious relation [wε
i ](x, T ) = 0. Next select uεϕ as a testing function in

the weak formulation of (4.62)–(4.64); in this second step, no integration by parts in t is
needed on Γ ε. We get

T∫

0

∫

Ω

σ∇wε
i · ∇uε ϕ dx dt+

T∫

0

∫

Ω

σ∇wε
i · ∇ϕuε dx dt

− α

ε

T∫

0

∫

Γ ε

∂

∂t
[wε

i ][uε]ϕ dσ dt = 0 . (4.66)

Subtract (4.66) from (4.65) and find, taking (4.8) into account,

T∫

0

∫

Ω

σ∇uε · ∇ϕwε
i dx dt = K1ε +K2ε , (4.67)
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where we have defined

K1ε =

T∫

0

∫

Ω

σ∇wε
i · ∇ϕuε dx dt ,

K2ε = −αε
∫

Γ ε

(
S1

(
x,
x

ε

)
+Rε(x)

)
ϕ(x)

T∫

0

[χ1
i ]
(x
ε
, τ
)
dτ dσ .

We rely here on the energy inequality (4.11) which, together with Lemma 4.1 and Theorem
1.24, imply that, extracting subsequences if needed, we may assume

−σ∇uε → ξ , uε → u , weakly in L2(Ω × (0, T )), (4.68)

and, by [4, Lemma 7.4]), also

uε → u , strongly in L1
loc(0, T ;L1(Ω)), (4.69)

for some ξ ∈ L2(Ω × (0, T ))N , u ∈ L2(Ω × (0, T )). On the other hand, clearly wε
i → xi

strongly in L2(Ω × (0, T )), as ε → 0. Let us investigate the limiting behavior of σ∇wε
i .

Due to the periodicity of the functions χi, and to (4.54), one immediately gets

σ∇
(
xi − εχ0

i

(x
ε

))
→ (σ0I + A0)ei , weakly in L2(Ω).

By the same token, in the same weak sense,

−σ∇
(
ε

T∫

t

χ1
i

(x
ε
, τ − t

)
dτ

)
→ −

T∫

t

∫

Y

σ∇yχ
1
i (y, τ − t) dy dτ =

T∫

t

A1(τ − t)ei dτ ,

where the last equality follows from the definition (4.54) of A1 and from a trivial integra-
tion by parts. Thus, invoking Lemma 7.5 and Remark 7.3 in [4],

K1ε →
T∫

0

∫

Ω

(σ0I + A0)ei · ∇ϕu dx dt+

T∫

0

∫

Ω

T∫

t

A1(τ − t)ei dτ · ∇ϕu dx dt =: K10 .

Elementary manipulations show that

K10 =

T∫

0

∫

Ω

{
u(x, t)(σ0I + A0)ei +

t∫

0

u(x, τ)A1(t− τ)ei dτ
}
· ∇ϕ(x) dx dt .

Next we turn to the task of evaluating the limiting behavior of K2ε. Clearly the term
involving Rε vanishes in the limit. Then we appeal to the stipulated regularity of S1, and
apply, with minor changes, the ideas of [38] Lemma 3; we infer

K2ε → −α
∫

Ω

ϕ(x)

∫

Γ

S1(x, y)

T∫

0

[χ1
i ](y, τ) dτ dσ dx =

T∫

0

∫

Ω

ϕ(x)Fi(x, τ) dx dτ ,

where F is defined by

Fi(x, t) := −α
∫

Γ

S1(x, y)[χ
1
i ](y, t) dσ =

∫

Γ

[σT (S1(x, ·))](y, t)νi dσ . (4.70)
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Collecting the results above, let ε → 0 in (4.67) to arrive at

−
T∫

0

∫

Ω

ξ · ∇ϕxi dx dt =

T∫

0

∫

Ω

ϕ(x)Fi(x, τ) dx dτ

+

T∫

0

∫

Ω

{
u(x, t)(σ0I + A0)ei +

t∫

0

u(x, τ)A1(t− τ)ei dτ
}
· ∇ϕ(x) dx dt . (4.71)

As usual, next we take ϕxi as a testing function in (4.10). This test essentially does not
detect the boundary Γ ε, due to (4.3); on letting ε→ 0

T∫

0

∫

Ω

ξ · ∇ϕxi dx dt+

T∫

0

∫

Ω

ξ · ei ϕ dx dt = 0 . (4.72)

We substitute (4.72) in (4.71), and differentiate in T the resulting equality; in fact the
choice of T is essentially arbitrary in this setting. We obtain (reverting to t as the time
variable)

∫

Ω

{
u(x, t)(σ0I + A0) +

t∫

0

u(x, τ)A1(t− τ) dτ
}
∇ϕ(x) dx

=

∫

Ω

ξ(x, t)ϕ(x) dx−
∫

Ω

ϕ(x)F(x, t) dx ,

for a.e. t ∈ (0, T ). Using [4, Lemma7.2], it follows that u ∈ L2(0, T ;H1(Ω)) and that

ξ(x, t) = −(σ0I + A0)∇u(x, t) −
t∫

0

A1(t− τ)∇u(x, τ) dτ + F(x, t) , (4.73)

for a.e. (x, t) ∈ Ω × (0, T ). Clearly div ξ = 0 in the sense of distributions (see e.g., (4.72)
above).
Recalling (4.70), this shows that the limit function u satisfies (4.53). Moreover, as it will
be proved in the following Subsection 4.5.1, u satisfies also the homogeneous boundary
condition. Therefore, by Theorem 4.8, with f(x, t) = − divF(x, t) and g = 0, the function
u coincides with u0 and hence the whole sequence {uε} converges to u0, so that the result
is achieved. �

Remark 4.11. Equality (4.73), which is the constitutive relationship of the homogenized
material, expresses the limiting current ξ as a function of the history of the gradient of
the potential, ∇u0.

4.5.1. u vanishes on ∂Ω. The trace of u on ∂Ω exists for a.e. t ∈ (0, T ), because of the
already proven regularity of u. It is left to show that this trace is zero.
We understand here u and each uε to be defined on R

N × (0, T ), by extending them as
zero outside Ω. Also define,

Uε(x) =

T∫

0

uε(x, t) dt , U(x) =

T∫

0

u(x, t) dt .
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Since we already know that the trace on ∂Ω of each uε, and therefore of Uε, is zero, we
infer that for each bounded open set G ⊂ R

N , the variation |DUε|(G) is given by

|DUε|(G) =

∫

G

∣∣∣∣∣∣

T∫

0

∇uε dt

∣∣∣∣∣∣
dx+

∫

Γ ε∩G

∣∣∣∣∣∣

T∫

0

[uε] dt

∣∣∣∣∣∣
dσ ≤ γ


|G|1/2

(∫

G

T∫

0

|∇uε|2 dx dt
)1/2

+(ε|Γ ε ∩G|N−1)
1/2
(1

ε

∫

Γ ε∩G

T∫

0

[uε]
2 dt dσ

)1/2


 ≤ γ

(
|G|1/2 + (ε|Γ ε ∩G|N−1)

1/2
)
, (4.74)

where we have made use of Hölder’s inequality and of (4.11). As a first consequence of
this estimate, we may invoke classical compactness and semicontinuity results to show
that (extracting subsequences if needed)

Uε → U , in L1(RN), |DU |(G) ≤ lim inf
ε→0

|DUε|(G) , (4.75)

for every set G ⊂ R
N as above. On the other hand, according to [9, Theorem 3.77] ,

|DU |(∂Ω) =

∫

∂Ω

|U+ − U−| dσ =

∫

∂Ω

|U+| dσ , (4.76)

where the symbol U+ (respectively, U−) denotes the trace on ∂Ω of U0|Ω (respectively, of
U

0|RN\Ω ≡ 0).

Define for 0 < h < 1 the open set

Vh = {x ∈ R
N | dist(x, ∂Ω) < h} .

Combining (4.74)–(4.76), we obtain, as ∂Ω ⊂ Vh for all h,
∫

∂Ω

|U+| dσ ≤ |DU(Vh)| ≤ γ lim inf
ε→0

(
|Vh|1/2 + (ε|Γ ε ∩ Vh|N−1)

1/2
)
≤ γh1/2 .

Indeed, it is readily seen that |Vh| ≤ γh, and that |Γ ε ∩ Vh|N−1 ≤ γh/ε for all sufficiently
small h. Therefore, letting h→ 0 above we obtain that U+ = 0 a.e. on ∂Ω. However, U+

and the trace u+ of u are related by

U+(x) =

T∫

0

u+(x, t) dt , x ∈ ∂Ω .

Clearly, T stands here for any positive time, so that, differentiating the last equality in
time, we obtain u+(x, t) = 0 a.e. on ∂Ω × (0, T ).

4.6. Comparison with other similar models. In this regard, different models are
obtained corresponding to different scaling with respect to ε (where ε denotes the length
of the periodicity cell) of the relevant physical quantity α, entering in the dynamical
boundary condition given by

α

εk

∂

∂t
[uε] = σ∇uout

ε · ν , on the membrane interface, (4.77)

with k ∈ Z. In this case the energy estimate becomes

T∫

0

∫

Ω

σ|∇uε|2 dx dτ +
α

2εk

∫

Γ ε

[uε]
2(x, T ) dσ =

α

2εk

∫

Γ ε

S2
ε (x) dσ ,
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which, taking into account that |Γ ε|N−1 ∼ 1/ε, will be finite if Sε = O(ε(k+1)/2). Hence,
recalling that Sε = Sε(x, y) = S0(x, y) + εS1(x, y) + ε2S2(x, y) + . . . , it follows that
S0(x, y) = 0 for k ≥ 0, S1(x, y) = 0 for k ≥ 2, and so on. Next, repeating the same
arguments as in Section 4.3, we achieve the corresponding homogenized equations. As we
saw, the case k = 1 leads to an elliptic equation with memory; in turn, the case k = −1 (see
[30] and [35]) leads to a degenerate parabolic system, the well known bidomain model for
the cardiac syncithial tissue, where however, in the left hand side of (4.77) an extra term
depending on [uε] appears, modeling the nonlinear conductive behavior of the membrane.
The case k = 0 (see [33], [7]) leads to a standard elliptic equation.
In the following we analyze in details the whole family k ∈ Z. Let us start with the
homogenized equation in the cases k 6= −1, 0, 1:

• for k ≥ 2 =⇒ single elliptic equation

− div
(
((σint|Eint| + σout|Eout|)I + AD)∇xu0

)
= 0 in ΩT

• for k ≤ −2 =⇒ system of two independent elliptic equations

− div
(
(σint|Eint|I + AN

int)∇xu
int
0

)
= 0 , in ΩT ;

− div
(
(σout|Eout|I + AN

out)∇xu
out
0

)
= 0 in ΩT ;

where uint
0 and uint

0 are the components of u0

Remark 4.12. Note that in both the previous cases the dependance on time is only para-
metric. Moreover, all the matrices AD , AN

int , A
N
out do not depend on the permeability

α.

4.6.1. Electrical activation of cardiac syncithial tissues (the case k = −1). Let us consider
the linearized version of the model proposed by Krassowska and Neu in [30]. In this case
we deal with the system of equations

− div(σint∇u(out)
ε ) = 0 , in Ωε

int;

− div(σout∇u(int)
ε ) = 0 , in Ωε

out;

σint∇u(int)
ε · ν = σout∇u(out)

ε · ν , on Γ ε;

αε
∂

∂t
[uε] = σout∇u(out)

ε · ν , on Γ ε;

[uε(x, 0) = Sε(x) , on Γ ε;

uε(x, t) = 0 , on ∂Ω.

Following the notation introduced in Section 3 and assuming that S0(x, y) = S0(x) 6= 0,
it can be found (see [30, 35, 7]) that the macroscopic solution u0 is actually split into two
different functions (this is the reason of the name bidomain model), accordingly to

u0(x, y, t) =

{
uint

0 (x, t) , in Eint,

uout
0 (x, t) , in Eout.

Moreover, the first corrector u1 can be factorized as follows

u1(x, y, t) =

{
−χN (y) · ∇xu

int
0 (x, t) + ũint

1 (x, t) y ∈ Eint ,

−χN (y) · ∇xu
out
0 (x, t) + ũout

1 (x, t) y ∈ Eout ,
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where the components χN
h (h = 1, . . . , N) of the cell function χN satisfy

−σ∆y χ
N
h = 0 , in Eint, Eout; (4.78)

[σ(∇yχ
N
h − eh) · ν] = 0 , on Γ ; (4.79)

σout(∇yχ
N
h,out − eh) · ν = 0 , on Γ . (4.80)

The components χN
h are also required to be periodic functions in Y , with zero integral

average on Y . This implies that only one of the two constants up to which χN
int and χN

out are
determined by the previous equations is fixed, but this does not affect the homogenized
system below. Note also that, in general, [χN

h ] 6= 0 on Γ .
Finally, the functions ũint

1 , ũout
1 can be taken equal to zero, and the macroscopic homoge-

nized function u0 satisfies the degenerate parabolic system given by





|Γ |α ∂
∂t

(uout
0 − uint

0 ) = div
(
(σout|Eout|I + AN

out)∇xu
out
0

)
;

−div
(
(σint|Eint|I + AN

int)∇xu
int
0 + (σout|Eout|I + AN

out)∇xu
out
0

)
=0 ;

where

AN
int = −

∫

Γ

σintν ⊗ χN
int dσ , AN

out =

∫

Γ

σoutν ⊗ χN
out dσ .

4.6.2. Heat transmission with imperfect interfaces (the case k = 0). Let us consider the
evolutive version of the model studied by Lipton in [33]. In this case we deal with the
system of equations

− div(σint∇u(out)
ε ) = 0 , in Ωε

int;

− div(σout∇u(int)
ε ) = 0 , in Ωε

out;

σint∇u(int)
ε · ν = σout∇u(out)

ε · ν , on Γ ε;

α
∂

∂t
[uε] = σout∇u(out)

ε · ν , on Γ ε;

[uε(x, 0) = Sε(x) , on Γ ε;

uε(x, t) = 0 , on ∂Ω.

Following the notation introduced in Section 3 and assuming that S0(x, y) = 0, it can be
found (see [33, 7]) that the macroscopic solution u0, which at a first look can be split into
two functions, as follows

u0(x, y, t) =

{
uint

0 (x, t) , in Eint,

uout
0 (x, t) , in Eout,

actually must satisfy the conditions

|Γ |
(
α
∂

∂t
[u0]
)

= 0 + [u0]|t=0 = 0

which imply that [u0] = 0 on Γ for all t ∈ (0, T ), so that uint
0 (x, t) = uout

0 (x, t) = u0(x, t).
Moreover, the first corrector can be factorized as follows

u1(x, y, t) =

{
−χN (y) · ∇xu0(x, t) + ũint

1 (x, t) y ∈ Eint ,

−χN (y) · ∇xu0(x, t) + ũout
1 (x, t) y ∈ Eout ,
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where the components χN
h (h = 1, . . . , N) of the cell function χN satisfies (4.78)–(4.80) as

before. Finally, the macroscopic homogenized function u0 satisfies the standard elliptic
equation given by

− div
(
(σ0I + AN )∇xu0

)
= 0 ,

where

AN = AN
int + AN

out = −
∫

Γ

σintν ⊗ χN
int dσ +

∫

Γ

σoutν ⊗ χN
out dσ

=

∫

Γ

[σν ⊗ χN ] dσ

and σ0 = σint|Eint| + σout|Eout|. We note that in this case the homogenized matrix
AN does not depend on the physical properties of the cell membrane; i.e., it does not
depend on α, as far as the cell membranes disappear in the homogenization limit.

4.6.3. Elasticity (the case k = 1). Let us consider the static version of the evolutive model
extensively discussed in Sections 4.1–4.5 (see [31]). In this case we deal with the system
of equations

− div(σint∇u(out)
ε ) = f(x) , in Ωε

int;

− div(σout∇u(int)
ε ) = f(x) , in Ωε

out;

σint∇u(int)
ε · ν = σout∇u(out)

ε · ν , on Γ ε;
α

ε
[uε] = σout∇u(out)

ε · ν , on Γ ε;

uε(x) = 0 , on ∂Ω;

with f ∈ L2(Ω).
Following the notation introduced in Section 3 and assuming that S0(x, y) = 0, it can
be found (see [31]) that the macroscopic solution u0(x, y) = u0(x) does not depend on y.
Moreover, the first corrector can be factorized as u1(x, y) = −χS(y) · ∇xu0(x) + ũ1(x),
where ũ1 can be chosen identically equal to zero, and the components χS

h (h = 1, . . . , N)
of the cell function χS satisfy





−σ∆y χ
S
h = 0 , in Eint, Eout;

[σ(∇yχ
S
h − eh) · ν] = 0 , on Γ ;

α[χS
h ] = σout(∇yχ

S
h,out − eh) · ν , on Γ .

Finally, the macroscopic homogenized function u0 satisfies the standard elliptic equation
given by

− div

(
(σ0I + AS)∇xu0

)
= f(x)

where AS =
∫

Γ
[σν ⊗ χS ] dσ and again σ0 = σint|Eint| + σout|Eout|. We note that

in this case, as well as in the corresponding evolutive case, the homogenized matrix AS

depends on the physical properties of the cell membrane, as it can be seen in the system
of equations satisfied by the cell function χS .
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4.6.4. Final remarks. We would like to observe that the model considered in details in
these notes (i.e., k = 1), together with the one corresponding to k = −1 in (4.77),
preserves memory, in the limit, of the membrane properties (i.e., of the constant α).
This is not true for all the other choices of k. Moreover, we expect that, both for cases
k = 1 and k = −1, assigning an alternating potential on the boundary will result in a
periodic steady state or a limit cycle as t → +∞, possibly displaying also a phase delay,
as expected in a resistive-capacitive circuit (see the next Section 4.7).
It is not yet clear which one of the two models here presented is more appropriate to
describe the physical situation. Indeed, it seems that both of them are valid in their
respective frequency ranges. However, the one treated in details in these notes (i.e., model
(4.1)–(4.6)) seems to be more suitable to describe the response of a biological tissue to an
impulsive potential.
The applicability of this model to real physical situations is connected to the study of
an inverse problem, which for the elliptic equation is tipically related to the study of the
Neumann-Dirichlet map. This problem has been widely studied. On the contrary (a part
from some geometrically simple cases), the inverse problem for equation (4.53) is still
open; in this case, the usual Dirichlet-Neumann map should be replaced with a map in
which we assign the Dirichlet boundary condition together with the condition:

σ0
∂u0

∂n
+ A0

ij

∂u0

∂xi
nj +

t∫

0

A1
ij(t− τ)

∂u0

∂xi
(x, τ)nj dτ = h(x, t) ,

where n is the outward normal to ∂Ω and h is a given function.

4.7. Stability. In this last section we will give a brief description of the asymptotic
behavior of uε(x, t) and u0(x, t) for large times. In the case where a homogeneous Dirichlet
boundary condition is satisfied, the following results were proven in [8].Theorem 4.13. Let Ωε

int, Ω
ε
out, Γ

ε, σint, σout, α be as before. Assume that the initial datum
Sε satisfies (4.8), (4.9). Let uε be the solution of (4.1)–(4.6). Then

‖uε(·, t)‖L2(Ω) ≤ C(ε+ e−λt) a.e. in (1,+∞), (4.81)

where C and λ are independent of ε. Moreover, if Sε has null mean average over each
connected component of Γ ε, it follows that

‖uε(·, t)‖L2(Ω) ≤ Ce−λt a.e. in (1,+∞). (4.82)

This theorem easily yields the following exponential time-decay estimate for u0 under
homogeneous Dirichlet boundary data.Corollary 4.14. Under the assumptions of Theorem 4.13, if uε → u0 weakly in L2(Ω ×
(0, T )) for every T > 0, then

‖u0(·, t)‖L2(Ω) ≤ Ce−λt a.e. in (1,+∞). (4.83)

Next we are interested in the case of a nonhomogeneous but time-periodic Dirichlet bound-
ary data for uε and u0. Then we assume

uε(x, t) = Ψ(x)Φ(t) and u0(x, t) = Ψ(x)Φ(t) , on ∂Ω × (0,+∞), (4.84)

where
Φ(t) ∈ H1

#(R) , and Ψ(x) ∈ H1(RN) , ∆Ψ = 0 in Ω. (4.85)

Here and in the following a subscript # denotes a space of T -periodic functions, for some
fixed T > 0.
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In order to deal with this case, for every ε > 0 we introduce an auxiliary function u#
ε

which solves a time-periodic version of the microscopic differential scheme introduced at
the beginning of this chapter

− div(σ∇u#
ε ) = 0 , in (Ωε

int ∪Ωε
out) × R; (4.86)

[σ∇u#
ε · ν] = 0 , on Γ ε × R; (4.87)

α

ε

∂

∂t
[u#

ε ] = σ∇u#,out
ε · ν , on Γ ε × R; (4.88)

u#
ε (x, t) = Ψ(x)Φ(t) , on ∂Ω × R; (4.89)

u#
ε (x, ·) is T periodic, ∀x ∈ Ω ; (4.90)

[u#
ε (·, t)] − Sε(·) has null average over each connected component of Γ ε . (4.91)

Indeed, this problem is derived from (4.1)–(4.6), replacing equation (4.5) with (4.90).
Equation (4.91) has been added in order to guarantee the uniqueness of the solution, and
is suggested by the observation that [uε(·, t)]−Sε(·) has null average over each connected
component of Γ ε, as a consequence of (4.1)–(4.4), (4.5).
In [8, Theorem 7] it has been proved that as ε → 0, the function u#

ε (x, t) approaches a

time-periodic function u#
0 ∈ H1

#(R;H1(Ω)) solving

− div
(
A∇u#

0 +

+∞∫

0

B(τ)∇u#
0 (x, t− τ) dτ

)
= 0 , in Ω × R; (4.92)

u#
0 = Ψ(x)Φ(t) , on ∂Ω × R. (4.93)

Moreover, the following result holds.Theorem 4.15. Let Ωε
int, Ω

ε
out, Γ

ε, σint, σout, α be as before. Assume that the initial datum
Sε satisfies (4.8), (4.9) and the boundary datum satisfies (4.85). Let {uε} and {u#

ε } be
the sequences of the solutions of (4.1)–(4.5), (4.84) and (4.86)–(4.91), respectively. Then

‖uε(·, t) − u#
ε (·, t)‖L2(Ω) ≤ Ce−λt a.e. in (1,+∞), (4.94)

where C and λ are positive constants, independent of ε.

This theorem easily yields the following exponential time-decay estimate for u0 − u#
0 .Corollary 4.16. Under the assumption of Theorem 4.15, if uε → u0 and u#

ε → u#
0 weakly

in L2(Ω × (0, T )), for every T > 0, then the following estimate holds:

‖u0(·, t) − u#
0 (·, t)‖L2(Ω) ≤ Ce−λt a.e. in (1,+∞), (4.95)

where C and λ are positive constants, independent of ε.

Finally, expressing the function Φ by means of its Fourier series; i.e.,

Φ(t) =

+∞∑

k=−∞
cke

iωkt (4.96)

where ωk = 2kπ/T is the k-th circular frequency, and representing the solution u#
ε (x, t)

as follows:

u#
ε (x, t) =

+∞∑

k=−∞
vεk(x)e

iωkt , (4.97)
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we obtain that the complex-valued functions vεk(x) ∈ L2(Ω) are such that vεk|Ωε
i
∈

H1(Ωε
i ), i = 1, 2, and for k 6= 0 satisfy the problem

− div(σ∇vεk) = 0 , in Ωε
int ∪Ωε

out; (4.98)

[σ∇vεk · ν] = 0 , on Γ ε; (4.99)

iωkα

ε
[vεk] = (σ∇vεk · ν)out , on Γ ε; (4.100)

vεk = ckΨ , on ∂Ω, (4.101)

whereas for k = 0 they satisfy the problem

− div(σ∇vε0) = 0 , in Ωε
int ∪Ωε

out; (4.102)

[σ∇vε0 · ν] = 0 , on Γ ε; (4.103)

(σ∇vε0 · ν)out = 0 , on Γ ε; (4.104)

vε0 = c0Ψ , on ∂Ω; (4.105)

[vε0] − Sε(·) has null average over each connected component of Γ ε . (4.106)

Note that any solution vεk of Problem (4.98)–(4.101) is such that [vεk] has null average
over each connected component of Γ ε.
Finally, in [8] the following homogenization result is proven:Theorem 4.17. Let Ωε

int, Ω
ε
out, Γ

ε, σint, σout, α be as before. Assume that the boundary
datum satisfies (4.85). Then, for k ∈ Z \ {0} [respectively, k = 0, under the further
assumptions (4.8), (4.9)], the solution vεk of Problem (4.98)–(4.101) [respectively, Problem
(4.102)–(4.106)] strongly converges in L2(Ω) to a function v0k ∈ H1(Ω) which is the unique
solution of the problem

− div(Aωk ∇v0k) = 0 , in Ω; (4.107)

v0k = ckΨ , on ∂Ω; (4.108)

where

Aωk = A0 +

+∞∫

0

A1(t) e−iωkt dt , (4.109)

with A0 and A1(t) defined in (4.54).

Remark 4.18. Experimental measurements in clinical applications are currently performed
by assigning time-harmonic boundary data and assuming that the resulting electric po-
tential is time-harmonic, too. This assumption, which is often referred to as the limiting
amplitude principle, leads to the commonly accepted mathematical model based on the
complex elliptic Problem (4.107)–(4.108) for the electric potential [14, 25]. In [8], in view
of the preceding theorem, this phenomenological equations have been mathematically jus-
tified and, moreover, a quasi-explicit relation between the circular frequency ω and the
coefficient Aωk has been found.
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[10] I. Babuška: Solution of interface problems by homogenization I, II, III. Siam J. Math. Anal., Vol. 7,
(1976), pp. 603–634 and pp. 635–645, vol. 8, (1977), pp. 923–937.

[11] N. Bakhvalov, G. Panasenko: Homogenization: averaging processes in periodic media. Mathematics
and its Applications, Vol. 36, Kluwer Academic Publishers, Dordrecht, 1990.

[12] A. Bensoussan, J.L. Lions, G.Papanicolaou: Asymptotic Analysis for Periodic Structures. North
Holland, Amsterdam, 1978.

[13] A. Bensoussan, J.L. Lions, G. Papanicolaou: Boundary layers and homogenization of transport
processes. Publ. RIMS, Kyoto Univ., vol. 15 (1979), pp. 53–157.

[14] L. Borcea: Electrical impedance tomography. Inverse Problems, Vol. 18, (2002), pp. R99–R136.
[15] A. Braides: Γ-convergence for beginners. Oxford University Press, New York, (2002).
[16] A. Braides, A. Defranceschi: Homogenization of Multiple Integrals. Oxford University Press, New

York, (1998).
[17] H. Brezis: Analyse fonctionelle. Masson, Paris, (1983).
[18] G. Buttazzo: Semicontinuity, relaxation and integral representation in the calculus of variations.

Pitman, Longman, Harlow, (1989).
[19] G. Buttazzo, G. Dal Maso, E. De Giorgi: Calcolo delle variazioni. Enciclopedia del Novecento, Vol.

XI, Istituto della Enciclopedia Italiana, Roma, 1998, pp. 833–848.
[20] C. Castaing, M. Valadier: Convex analysis and measurable multifunctions. Springer, Berlin, (1977).
[21] B. Dacorogna: Direct methods in the calculus of variations. Springer, Berlin, (1982).
[22] G. Dal Maso: An introduction to Γ-convergence. Birkhäuser, Boston, (1993).
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[27] M. Giaquinta, G. Modica, J. Souček: Functionals with linear growth in the calculus of variations. I.
Comment. Math. Univ. Carolinae, Vol. 20, 1979, pp. 143–156.

[28] D. Gilbarg, N.S. Trudinger: Elliptic partial differential equations of second order. Springer-Verlag,
New York, (1983).

[29] C. Goffman, J. Serrin: Sublinear functions of measures and variational integrals. Duke Math. J., Vol.
31, 1964, pp. 159–178.



HOMOGENIZATION TECHNIQUES .... 57

[30] W. Krassowska, J.C. Neu: Homogenization of Syncytial Tissues. Critical Reviews in Biomedical
Engineering, 21 (1993), pp. 137–199.

[31] F. Lene, D. Leguillon: Étude de l’influence d’un glissement entre les constituants d’un matériau
composite sur ses coefficients de comportement effectifs. Journal de Mécanique, Vol. 20, 1981, pp.
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