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I x = e maximum global point
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eπ > πe ?
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Inequalities Given N positive real numbers x1, x2, · · · xN , we define
their arithmetic mean as

Ma =
x1 + x2 + · · ·+ xN

N
=

∑N
i=1 xi
N

and their geometric mean as

Mg =
N√
x1 · x2 · · · xN =

N

√√√√ N∏
i=1

xi



Theorem (Mean Inequality)

Given N real positive numbers x1, x2, · · · xN

Mg =
N

√√√√ N∏
i=1

xi ≤
∑N

i=1 xi
N

= Ma.

Recall
N∏
i=1

xi = x1x2 . . . xN

N∑
i=1

xi = x1 + x2 + . . . xN

N = 2



The simplest for two non-negative numbers x and y , is the
statement that

x + y

2
≥ √xy

with equality if and only if x = y . This case can be seen from the
fact that the square of a real number is always non-negative

0 ≤ (x − y)2

= x2 − 2xy + y2

= x2 + 2xy + y2 − 4xy

= (x + y)2 − 4xy .



By induction n = 1, true at step n.
We consider the last number xn+1 as a variable and define the
function

f (t) =
x1 + · · ·+ xn + t

n + 1
− (x1 · · · xnt)

1
n+1 , t > 0.

Proving the induction step is equivalent to showing that f (t) ≥ 0
for all t > 0, with f (t) = 0 only if x1, ..., xn and t are all equal.
The first derivative of f is given by

f ′(t) =
1

n + 1
− 1

n + 1
(x1 · · · xn)

1
n+1 t−

n
n+1 , t > 0

.
A critical point t0 has to satisfy f ′(t0) = 0



(x1 · · · xn)
1

n+1 t
− n

n+1

0 = 1.

After a small rearrangement we get

t
n

n+1

0 = (x1 · · · xn)
1

n+1 ,

and finally

t0 = (x1 · · · xn)
1
n ,

which is the geometric mean of x1, ..., xn. This is the only critical
point of f. Since f ′′(t) > 0 for all t > 0, the function has a strict
global minimum at t0.



f (t0) =

x1 + · · ·+ xn + (x1 · · · xn)1/n

n + 1
− (x1 · · · xn)

1
n+1 (x1 · · · xn)

1
n(n+1)

=
x1 + · · ·+ xn

n + 1
+

1

n + 1
(x1 · · · xn)

1
n − (x1 · · · xn)

1
n

=
x1 + · · ·+ xn

n + 1
− n

n + 1
(x1 · · · xn)

1
n

=
n

n + 1

(x1 + · · ·+ xn
n

− (x1 · · · xn)
1
n

)
≥ 0,

where the final inequality holds due to the induction hypothesis.
The hypothesis also says that we can have equality only when
x1, ..., xn are all equal. In this case, their geometric mean has the
same value. Hence, unless x1, ..., xn, xn+1 are all equal, we have
f (xn+1) > 0. This completes the proof.



Short Introduction on Topology. Let us start our discussion
recalling the properties of the modulus. ∀ x , y ∈ R the following
properties hold true

I |x | ≥ 0

I x 6= 0 if and only if |x | > 0

I |x | = | − x |
I |xy | = |x ||y |
I |x + y | ≤ |x |+ |y |
I ||x | − |y || ≤ |x − y |



Norms Rm and p ≥ 1. The formula

‖x‖p = (|x1|p + · · ·+ |xm|p)1/p .

defines a norm in Rm.
We need to show the following properties ∀x , y , z ∈ Rm and
λ ∈ R:

I ‖x‖p ≥ 0,

I ‖x‖p = 0 ⇐⇒ x = 0,

I ‖λx‖p = |λ| · ‖x‖p,

I ‖x + y‖p ≤ ‖x‖p + ‖y‖p.



The inequality
‖x + y‖p ≤ ‖x‖p + ‖y‖p

will be shown later, thanks to Minkowski inequality.



Scalar Product The scalar product in Rm ı̀s real number given by

x · y = x1y1 + · · ·+ xmym for all x , y ∈ Rm

We need to verify that the following properties hold
for all x , y , z ∈ Rm λ ∈ R
I x · y = y · x ,
I (x + y) · z = x · z + y · z ,
I λ(x · y) = λx · y .

We have
(x , x) = ‖x‖2



The triangular inequality.
A particular case p = 1.

Example

I The formula

‖x‖1 = |x1|+ · · ·+ |xm| , x = (x1, . . . , xm) ∈ Rm

defines a norm on Rm.
Indeed

‖x + y‖1 = |x1 + y1|+· · ·+|xm + ym| ≤ |x1|+|y1| · · ·+|xm|+|ym|

= ‖x‖1 + ‖y‖1



A particular case p =∞.

Example

I The formula

‖x‖∞ = max{|x1| , . . . , |xm|}

defines a norm on Rm.

‖x + y‖∞ = max{|x1 + y1| , . . . , |xm + ym|} ≤

max{|xi |}+ max{|yi |} = ‖x‖∞ + ‖y‖∞



Exercise. Given the function

f (x1, x2) = ax2
1 − x2

2 + x2
1x

2
2 ,

with a > 0 real number.

(i) Find the partial derivatives of the function f

(ii) Find the points where the gradient of f is 0.

(ii) Find the Hessian matrix of the function f



fx1 = 2ax1 + 2x1x
2
2 , fx2 = −2x2 + 2x2

1x2)

.
2ax1 + 2x1x

2
2 = 0 =⇒ x1 = 0,

a > 0 and x2
2 = −a no solution in R.

−2x2 + 2x2
1x2 = 0 =⇒ x2 = 0

(0, 0)

The Hessian matrix is

D2f (x1, x2) =

[
2a + 2x2

2 4x1x2

4x1x2 −2 + 2x2
1

]
Point: (0, 0).

D2f (0, 0) =

[
2a 0
0 −2

]
det −4a < 0, (0, 0) is a saddle point.



Exercise Given the function

f (x1, x2) = 2e−x
2
1 + 5e−x

2
2

(i) Find the partial derivatives of the function f

(ii) Find the points where the gradient of f is 0.

(ii) Find the Hessian matrix of the function f



fx1 = −4x1e
−x2

1 fx2 = −10x2e
−x2

2 )

D2f (x1, x2) =

[
8x2

1 e
−x2

1 − 4e−x
2
1 0

0 20x2
2 e
−x2

2 − 10e−x
2
2

]

D2f (x1, x2)|(0,0) =

[
−4 0
0 −10

]
Point (0, 0). (0, 0) is a local maximum point, since
det(D2f (x1, x2)|(0,0)) > 0 and fx1,x1(0, 0) < 0
f (0, 0) = 7.



Young inequality Given p > 1, p ∈ R we define the conjugate of p
the real number q such that

1

p
+

1

q
= 1.

Theorem
Young inequality: given two real positive numbers a e b, and given
two numbers real and conjugate p, q, we have

ab ≤ ap

p
+

bq

q



Let b > 0 and fixed and we define

f : [0,+∞)→ R f (t) =
tp

p
+

bq

q
− tb
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Since

lim
t→+∞

tp

p
+

bq

q
− tb = +∞ f (0) =

bq

q
> 0

if we are to show that there exists a unique point t̂ > 0 such that
f ′(t̂) = 0 and f (t̂) = 0 then t̂ will be the absolute minimum point

f ′(t) = tp−1 − b

tp−1 = b ⇐⇒ t̂ = b
1

p−1 f ′′(b
1

p−1 ) > 0



f (b
1

p−1 ) =
b

p
p−1

p
+

bq

q
− b

1
p−1 b =

(
1

p
+

1

q
− 1

)
bq = 0

Then for any a ≥ 0
f (a) ≥ 0,

this means

ab ≤ 1

p
ap +

1

q
bq



Inequalities Given N positive real numbers x1, x2, · · · xN , we define
their arithmetic mean as

Ma =
x1 + x2 + · · ·+ xN

N
=

∑N
i=1 xi
N

and their geometric mean as

Mg =
N√
x1 · x2 · · · xN =

N

√√√√ N∏
i=1

xi



Theorem (Mean Inequality)

Given N real positive numbers x1, x2, · · · xN

Mg =
N

√√√√ N∏
i=1

xi ≤
∑N

i=1 xi
N

= Ma.

Recall
N∏
i=1

xi = x1x2 . . . xN

N∑
i=1

xi = x1 + x2 + . . . xN



I p, q ∈ Q

Then p = n
m with m, n ∈ N with m < n and

q =
n

n −m
.

Then by taking
x1 = x2 = · · · = xm = xp

xm+1 = · · · = xn = yq



Mg =
n

√√√√ n∏
i=1

xi ≤
∑n

i=1 xi
n

= Ma.

((xp)m(yq)n−m)
1
n ≤ 1

n
(mxp + (n −m)yq)(

(xp)
m
n (yq)

n−m
n
)
≤ m

n
xp +

n −m

n
yq

and we get the inequality.
Recall p = n

m q = n
n−m .



Convex Functions

Definition
Ω ⊂ RN is a convex set if for any x and y ∈ Ω,

λx + (1− λ)y ∈ Ω for any λ ∈ [0, 1].

Definition
Let C be an open convex set. f : C → R is convex if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) ∀x , y ∈ C , λ ∈ [0, 1].



An alternative proof can be done by using the convexity of the
function x → ex . Indeed

xy = e ln xy = e ln x+ln y =

e
1
p

ln xp+ 1
q

ln yq

≤ 1

p
e ln xp +

1

q
e ln xq =

xp

p
+

xq

q



Theorem ( Hölder Inequality)

Let p, q such that p, q ∈ [1,+∞) and conjugate, then ∀x , y ∈ Rm

we have
|x · y | ≤ ‖x‖p‖y‖q.



ai =
|xi |
‖x‖p

, bi =
|yi |
‖y‖q

Follow, by Young inequality

aibi ≤
1

p

|xi |p

‖x‖pp
+

1

q

|yi |q

‖y‖qq

Taking the sum over the index i

m∑
i=1

aibi ≤
1

p

∑m
i=1 |xi |p

‖x‖pp
+

1

q

∑m
i=1 |yi |q

‖y‖qq
= 1



Then we get
m∑
i=1

aibi =
m∑
i=1

|xi |
‖x‖p

|yi |
‖y‖q

≤ 1

and Hölder inequality follows

|x · y | ≤ ‖x‖p‖y‖q.



Exercise.
Find the minimum and the maximum of f (x , y) = 1 + x2 − y2 in
K , where K is the trapezoid region of the plane delimited by the
points (1, 2), (−1, 2), (1/4, 1/2), (−1/4, 1/2), with the boundary
included.

I The function is C 1(R2), hence the function is continuous on
K . Since K is closed and bounded and f is continuous on K ,
by the Weierstrass Theorem, the minimum and maximum
exist.

I The function is C 1: we may split the problem on the interior
of K computing the gradient of f and on the boundary, here
we need to find the equation of the lines making the boundary.



I On the interior of K : fx(x , y) = 2x fy (x , y) = −2y
∇f (x , y) = 0 ⇐⇒ x = 0, y = 0. The point (0, 0) does not
belong to interior trapezoid region then (0, 0) will be not
considered.
Next, we study the function on the boundary

I Compute the function at the points
(1, 2), (−1, 2), (1/4, 1/2), (−1/4, 1/2)

f (1, 2) = f (−1, 2) = −2

f (1/4, 1/2) = f (−1/4, 1/2) = 1− 3

16
=

13

16



I Compute the function on the boundary lines

f (x , 1/2) = x2 − 1

4
+ 1 = x2 +

3

4
− 1/4 ≤ x ≤ 1/4

f (x , 2x) = −3x2 + 1 1/4 ≤ x ≤ 1

f (x , 2) = x2 − 3 − 1 ≤ x ≤ 1

f (x ,−2x) = −3x2 + 1 − 1 ≤ x ≤ −1/4

and putting equal to 0 the derivatives we find the points
(0, 1/2) and (0, 2)

f (0, 1/2) = 3/4 f (0, 2) = −3



As a consequence, we need to compare

f (0, 1/2) = 3/4 f (0, 2) = −3 f (1, 2) = f (−1, 2) = −2

f (1/4, 1/2) = f (−1/4, 1/2) =
13

16

Hence

xm = (0, 2) m = −3 xM = (1/4, 1/2)

xM = (−1/4, 1/2) M =
13

16



Here we use the parametric equation of the curve.
Maxime f (x , y) = 4xy under the constraints

x2

a2
+

y2

b2
= 1 a > 0, b > 0

x ≥ 0, y ≥ 0

Observe that if x = 0 or y = 0 then f (x , y) = 0. Since we are
considering a maximization problem we consider positive x and y .



=

The parametric equation in (0, π/2).{
x(t) = a cos(t) t ∈ (0, π/2)

y(t) = b sin(t)

F (t) = 4ab cos(t) sin(t) = 2ab sin(2t) t ∈ [0, π/2]

F ′(t) = 0 ⇐⇒ cos(2t) = 0 2t =
π

2
+ kπ t0 =

π

4

x0 = x(t0) = a
√

2/2 y0 = y(t0) = b
√

2/2



Theorem (Minkowski inequality)

Let p ∈ [1,+∞) and ∀ x , y ∈ Rm then

‖x + y‖p ≤ ‖x‖p + ‖y‖p. (1)



We have
|xi + yi |p = |xi + yi |p−1|xi + yi | ≤

|xi + yi |p−1(|xi |+ |yi |)

Taking the sum

m∑
i=1

|xi + yi |p ≤
m∑
i=1

|xi + yi |p−1|xi |+
m∑
i=1

|xi + yi |p−1|yi |



we obtain

m∑
i=1

|xi + yi |p−1|xi | ≤ ‖x‖p
( m∑

i=1

|xi + yi |(p−1)q

) 1
q

m∑
i=1

|xi + yi |p−1|yi | ≤ ‖y‖p
( m∑

i=1

|xi + yi |(p−1)q

) 1
q



Then since (p − 1)q = p

‖x + y‖pp ≤ ‖x + y‖p−1
p (‖x‖p + ‖y‖p)

then making the quotient with ‖x + y‖p−1
p (that we assume not 0)

we obtain the Minkowski inequality

‖x + y‖p ≤ ‖x‖p + ‖y‖p.



Example

Rm(R) with the euclidean norm. Given x = (x1, . . . , xm) ∈ Rm

then
‖x‖2 =

(
x2

1 + · · ·+ x2
m

)1/2
.



Properties. It is possible to show

lim
p→+∞

‖x‖p = ‖x‖∞

Proof.
Indeed by the comparison with norms for any p ≥ 1

‖x‖∞ ≤ ‖x‖p ≤ m
1
p ‖x‖∞ ,

and the result follows passing to the limit p → +∞.

Recall
‖x‖∞ = |xi0 |,

for some i0.

‖x‖p∞ = |xi0 |p ≤
m∑
i=1

|xi |p ≤ m|xi0 |p = m ‖x‖p∞



Two norms ‖x‖a ‖x‖b are equivalent if there exist two constant m
and M such that

m ‖x‖b ≤ ‖x‖a ≤ M ‖x‖b .

The norms p for p ≥ 1 are equivalent (the proof is not given here).



Exercises. Consider
‖x‖2 ≤ 1.

This is the ball with respect to the euclidean norm: we draw the
ball in the plane (n = 2).

‖x‖2 ≤ 1

Now we consider the the ball with respect to ‖x‖∞: in the plane
this is the square.

‖x‖∞ ≤ 1

‖x‖∞ ≤ 1



Now we consider the the ball with respect to ‖x‖1: we draw in the
plane ‖x‖1 ≤ 1.

‖x‖1 ≤ 1



d1(x, y) = ‖x− y‖1 =
n∑

i=1

|xi − yi |,

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

I

-2 -1 0 1 2 3 4 5 6 7 8

-1

1

2

3

4

5

6



‖x‖1:this is the taxicab norm or Manhattan norm. The name
relates to the distance a taxi has to drive in a rectangular street
grid to get from the origin to the point x. The distance derived
from this norm is called the Manhattan distance.

d1(x, y) = ‖x− y‖1 =
n∑

i=1

|xi − yi |,

A taxicab (Manhattan distance or Manhattan length) geometry is
a form of geometry in which the metric of Euclidean geometry is
replaced by a new metric in which the distance between two points
is the sum of the absolute differences of their Cartesian
coordinates. The name alludes to the grid layout of most streets
on the island of Manhattan, which causes the shortest path a car
could take.



Vectorial Spaces

A vectorial space over a field K is a set V with two applications,
sum and product with a scalar number λ, characterized by the
following properties

I the sum of two vectors u, v gives a new vector denoted by
u + v ,

(u, v)→ u + v

I the product of the vector u with a scalar number λ ∈ K gives
a new vector denoted by λu

(u, λ)→ λu



The following properties are requested

I (V ,+) is an abelian group:

I λ(u + v) = λu + λv ∀λ ∈ K ∀u, v ∈ V

I (λ+ λ1)v = λv + λ1v ∀λ, λ1 ∈ K ∀v ∈ V

I (λλ1)v = λ(λ1v) ∀λ, λ1 ∈ K ∀v ∈ V

I 1v = v ∀v ∈ V



Example

V = Rm K = R.

x + y = (x1 + y1, x2 + y2, . . . , xm + ym)

λx = (λx1, λx2, . . . , λxm)

Let V a vectorial space, a subset W of V is a vectorial subspace if
is a vectorial space with respect to the same applications:

∀λ, λ1 ∈ K , ∀u, v ∈W =⇒ λu + λ1v ∈W

Notation V (K ), V over K



Normed Spaces

A vectorial space X (R) endowed with norm is a vectorial normed
space
∀x , y , z ∈ X e λ ∈ R, the properties hold

I ‖x‖ ≥ 0,

I ‖x‖ = 0 ⇐⇒ x = 0,

I ‖λx‖ = |λ| · ‖x‖,
I ‖x + y‖ ≤ ‖x‖+ ‖y‖.



Metric Spaces.

Consider at first Rm: this is a normed space with the ‖x‖2 .

Definition
We define the distance between two points of Rm tas

d(x , y) := ‖x − y‖

d(x , y) := ‖x − y‖ =

√√√√ m∑
i=1

(xi − yi )2

I d(x , y) ≥ 0

I d(x , y) = 0 ⇐⇒ x = y

I d(x , y) = d(y , x)

I d(x , y) ≤ d(x , z) + d(z , y)



The canonical base in Rm is given by the vectors
e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), em = (0, 0, . . . , 1).

e j = (0, . . . 1, 0 . . . 0)

ek = (0, . . . 0, 1 . . . 0).

We may compute the distance

d(e j , ek) =
√

2 j 6= k

Rm with ‖x‖2 may be endowed of a metric, then (Rm, d) is a
metric space.



(X , d)

Generally, X is a set and d the metric

I d(x , y) ≥ 0

I d(x , y) = 0 ⇐⇒ x = y

I d(x , y) = d(y , x)

I d(x , y) ≤ d(x , z) + d(z , y)



Every normed space is also a metric space, with the distance

d(x , y) := ‖x − y‖ .

The metric defined by the norm has two properties

I Invariance by translation

d(x + w , y + w) = d(x , y)

I Scaling
d(λx , λy) = |λ|d(x , y)



These properties are not always satisfied in a metric space: indeed
there exist metric spaces where d can not by obtained by a norm

Example

The set R with metric given by

d(x , y) =
1

π
| arctan x − arctan y |

The distance function is positive with values in [0, 1)

0 ≤ 1

π
| arctan x−arctan y | ≤ 1

π
(| arctan x |+| arctan y |) < 1

π

(π
2

+
π

2

)
= 1.



Moreover

arctan x = arctan y ⇐⇒ x = y

follows by the injectiveness of the function arctan.
Also

d(x , y) =
1

π
| arctan x−arctan y | =

1

π
| arctan y−arctan x | = d(y , x)

is verified.
And the triangular inequality holds

d(x , y) =
1

π
| arctan x − arctan y | =

1

π
| arctan x − arctan z + arctan z − arctan y | ≤

1

π
| arctan x − arctan z |+ 1

π
| arctan z − arctan y | = d(x , z) +d(z , y).



However this distance does not enjoy the scaling property, and it
can not be obtained by a norm
Observe that the open ball of centrum 0 and ray 1 in (R, d) with
d(x , y) = 1

π | arctan x − arctan y |

B(0, 1) = {x :
1

π
| arctan x − arctan 0| < 1}

1

π
| arctan x − arctan 0| < 1 ⇐⇒ | arctan x | < π ∀x ∈ R

It is all the space R.



Definition
A sequence (xn) xn ∈ Rm is a convergent sequence if there exists
a ∈ Rm, (the limit of the sequence) such that ‖xn − a‖ → 0 as
n→∞.
We say (xn) converges to a, and we write

xn → a also lim xn = a

.

Definition
A sequence (xn) xn ∈ Rm is a Cauchy sequence if ∀ε > 0 ∃ν > 0
such that ‖xn − xm‖ < ε, ∀n,m > ν

Definition
A sequence (xn) xn ∈ Rm is a Cauchy sequence if ∀ε > 0 ∃ν > 0
such that ‖xn+p − xn‖ < ε, ∀n > ν, ∀p ∈ N
Let (xn) xn ∈ Rm, a ∈ Rm we write

xn = (xn1, . . . , xnm) and a = (a1, . . . , am).

Then xn → a in Rm ⇐⇒ xnk → ak in R, for any k .
k = 1, . . . ,m.



Definition
A sequence (xn) in a metric space is a Cauchy sequence if

∀ε > 0 ∃N ∈ N : d(xh, xk) < ε ∀h, k > N

Definition
A Banach space X is a normed space and complete with respect to
the metric induced by the norm .

Recall
Complete: every Cauchy sequence is convergent in X
Complete: no ”points missing” from the set. The set of rational
numbers under the Euclidean metric is not complete: one can
construct a Cauchy sequence of rational numbers that converges
to a number 6∈ Q



The Fibonacci numbers, Fn, form a sequence, the Fibonacci
sequence, such that each number is the sum of the two preceding
ones, starting from 1 and 1.

F0 = 1, F1 = 1,

and
Fn = Fn−1 + Fn−2

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .



Exercise: Consider the sequence

xn =
Fn
Fn−1

Show that it is a Cauchy sequence of rational numbers. Indeed

|xn+1 − xn| = |Fn+1

Fn
− Fn

Fn−1
| =

|Fn+1Fn−1 − F 2
n

Fn−1Fn
|

Fn+1 = Fn + Fn−1 Fn = Fn−2 + Fn−1

|
FnFn−1 + F 2

n−1 − FnFn−2 − Fn−1Fn

F 2
n−1 + Fn−2Fn−1

|

Fn is increasing

F 2
n−1 + Fn−1Fn−2 > 2Fn−1Fn−2



|
FnFn−1 + F 2

n−1 − FnFn−2 − Fn−1Fn

F 2
n−1 + Fn−2Fn−1

| <

|
FnFn−1 + F 2

n−1 − FnFn−2 − Fn−1Fn

2Fn−1Fn−2
|

|
−FnFn−2 + F 2

n−1

2Fn−1Fn−2
| ≤ 1

2
| Fn
Fn−1

− Fn−1

Fn−2
| ≤ ....(

1

2

)n−2(F2

F1
− F1

F0

)



xn =
Fn
Fn−1

|xn+1 − xn| <
(

1

2

)n−2(F2

F1
− F1

F0

)
=

(
1

2

)n−2

example p = 3

|xn+3 − xn| = |xn+3 − xn+2 + xn+2 − xn+1 + xn+1 − xn|

|xn+p − xn| ≤ |xn+p − xn+p−1|+ |xn+p−1− xn+p−2|+ . . . |xn+1− xn|

|xn+p − xn| ≤(
1

2

)n−2+p−1

+

(
1

2

)n−2+p−2

+ ...+

(
1

2

)n−2

=

p−1∑
k=0

(
1

2

)n−2+k

=

(
1

2

)n−2 p−1∑
k=0

(
1

2

)k

<

(
1

2

)n−3



Exercise. Show that

lim
n→∞

Fn+1

Fn
= ϕ

with ϕ the golden ratio.

Fn+1 = Fn + Fn−1

Fn + Fn−1

Fn
= 1 +

Fn−1

Fn
.

ϕ = lim
n→∞

Fn+1

Fn
= lim

n→∞
1 +

Fn−1

Fn
= 1 +

1

ϕ

xn → ϕ =
1

2
(1 +

√
5)

Golden ratio: square root of prime is irrational. Thus is a Cauchy
sequence of rational numbers which converges to a number which
is not in Q



Golden ratio: ϕ2 = 1 + ϕ The successive powers of ϕ obey the
Fibonacci recurrence:

ϕn+1 = ϕn + ϕn−1.

It appears in some patterns in nature.



Recall: it is not sufficient for each term to become arbitrarily close
to the preceding term to get a Cauchy sequence.
Take

an =
√
n,

the consecutive terms become arbitrarily close to each other:

an+1 − an =
√
n + 1−

√
n =

1√
n + 1 +

√
n
<

1

2
√
n
.

However, with growing values of the index n, the terms become
arbitrarily large. For any index n and γ > 0, there exists an index
m large enough such that am − an > γ. (Take m > (

√
n + γ)2.)

Hence, despite how far one goes, the remaining terms of the
sequence never get close to each other. The sequence is not a
Cauchy sequence.



f : X → X fixed point x : f (x) = x Any continuous function
f : [0, 1]→ [0, 1] admits a fixed point. Apply the intermediate
value theorem to

g(x) = x − f (x)

taking into account g(0) ≤ 0 e g(1) ≥ 0.

Definition
Let (X , d) a complete metric space. A contraction mapping is an
application T : X → X verifying the property

d(T (x),T (y)) ≤ Ld(x , y),

with L real, positive and strictly less than 1:

0 < L < 1



The Banach-Caccioppoli fixed-point theorem is a well-known
theorem in the theory of metric spaces: it gives the existence and
uniqueness of fixed points of certain self-maps of metric spaces.
Moreover it provides an iterative method to find it.

Theorem
Banach-Caccioppoli Theorem.
Let (X , d) be a complete metric space and let T : X → X be a
contraction mapping. Then T has a unique fixed point x̂ :

T (x̂) = x̂



Exercise

f (x) =

{
x log x − x x > 0

0 x = 0

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

1

2

3

f ′(x) = ln x + 1− 1 = 0 ⇐⇒ x = 1 f (1) = −1 f (0) = 0,
f (a) = a(ln a− 1)

max
[0.a]

f (x) =

{
0 0 ≤ a ≤ e

a ln a− a a > e



Example

A metric space is the set of continuous functions in a closed and
bounded set [a, b] with the metric

d(f , g) = max
[a,b]
|f (x)− g(x)|



In [0, e] we consider

f (x) =

{
x log x x > 0

0 x = 0

Set g(x) = x .
Compute d(f , g).

h(x) = |x ln x − x |,

find the maximum in [0, e].



1. Show that

xy ≤ x2

2
+

y2

2
, for all x , y ∈ R

2. Show that

xy ≤ εx2 +
y2

4ε
, for all x , y ∈ R, ε > 0

3. Show that

‖x + y‖2 = ‖x‖2 + 2x · y + ‖y‖2 for all x , y ∈ RN ,

4. From Holder inequality, show Cauchy-Schwartz inequality

|x · y | ≤ ‖x‖‖y‖ for all x , y ∈ RN ,

5. Show

|x · y | ≤ ‖y‖∞‖x‖1 for all x , y ∈ RN ,



Topology with the metric.
A ball with centrum x0 and ray r is defined as

Br (x0) := {x ∈ Rm : d(x , x0) < r}.

A set A ⊂ RN is open if every point of A is the centrum of a ball
⊂ A. This means

∀x0 ∈ A ∃r > 0 : Br (x0) ⊂ A.

The set of all open sets gives the topology generated by the metric.

Proposition

In a metric space any ball is an open set, every
⋃

of open set is an
open set, the

⋂
of two open set is an open set.



Proof.
Indeed ∀x ∈ Br (x0) ∃r1 : Br1(x) ⊂ Br (x0). We fix

r1 = r − d(x , x0).

Take y ∈ Br1(x) then d(y , x) < r1 =⇒

d(y , x0) ≤ d(y , x) + d(x , x0) <

r − d(x , x0) + d(x , x0) = r

this means y ∈ Br (x0). Let us show now that every
⋃

of open set
is an open set. We consider a class of set Ai of open set. Let
x ∈ ∪Ai . x ∈ ∪Ai =⇒ ∃i such that x ∈ Ai . Since Ai is an open
set ∃r > 0 such that

Br (x) ⊂ Ai ⊆ ∪Ai

The
⋂

of two open set is an open set: take the minimum of the
rays.



Sequence in Rm and convergence in norms

Proposition

Let (xn)(yn) two sequences with xn, yn ∈ Rmand (λn) ⊂ R.

I The limit of a convergent sequence is unique : if xn → a and
xn → b, then a = b.

I If xn → a,then xnk → a for any subsequence (xnk ) of the
sequence (xn).

I If xn → a and yn → b, then xn + yn → a + b.

I If λn → λ (in R) and xn → a (in Rm), then λnxn → λa (in
Rm).

I If xn → a (in Rm), then ‖xn‖ → ‖a‖ (in R).



Definition
A sequence (xn) xn ∈ Rm is bounded if there exists L ∈ R such
that ‖xn‖ < L ∀n.

All converging sequence are bounded and

Theorem
(Bolzano–Weierstrass) Any bounded sequence of Rm admits a
converging subsequence

Example

I If m = 1 we have the usual definition of convergence of
sequences for real numbers



Interior, Exterior, Boundary of Sets.
Let X ⊂ Rm and x ∈ Rm.

I x is an interior point of the set X if there exists r > 0 such
that Br (x) ⊂ X .

I x is an exterior point of the set X if there exists r > 0 such
that Br (x) ⊂ Rm \ X .

I x is a boundary point of the set X if

Br (x) ∩ X 6= ∅

and
Br (x) ∩ (Rm \ X ) 6= ∅

for any r > 0:

I The set of interior points : int(X )

I The set of exterior points : ext(X )

I The set of boundary points : ∂X



Let X ⊂ Rm.

I The sets int(X ), ext(X ), ∂X are a partition of Rm: they are
disjoint and their union gives Rm.

Let X ⊂ Rm and x ∈ Rm.

Definition
x ∈ X if the ball Br (x) ∩ X 6= ∅ for any r > 0.

Let X ⊂ Rm. X is an open set if ∀x ∈ X there exists r > 0 such
that Br (x) ⊂ X

I The union of any number of open sets, or infinitely many
open sets, is open.

I The intersection of a finite number of open sets is open.
Observe: the intersection of an infinite number of open sets is
not an open set: example (− 1

n ,
1
n ). The intersection is {0}: a

closed set.

Definition
A complement of an open set (relative to the space that the
topology is defined on) is called a closed set.



Definition
X bounded ⇐⇒ there exists a real positive constant L such that

‖x‖ < L ∀x ∈ X

The diameter of X

diam(X ) = sup{d(x , y), x , y ∈ X}.

Definition
If diam(X ) = +∞ then X is unbounded

Definition
X is the smallest closed set such that X ⊂ X

Proposition

Let X ⊂ Rm and x ∈ Rm, then

x ∈ X ⇐⇒ ∃ (xn) ⊂ X and xn → x



Definition
X is a sequentially compact set ∀(xn) ⊂ X there exists a
subsequence (xnk ) with lim xnk ∈ X

Theorem
(Heine-Borel Theorem) X is a compact set of the space Rm

⇐⇒ X is closed and bounded



Harmonic Function: Definition in R2

A function f is harmonic in an open set A of R2 if it is twice
continuously differentiable and it satisfies the following partial
differential equation:

fxx(x , y) + fyy (x , y) = 0 ∀(x , y) ∈ A

The above equation is called Laplace’s equation. A function is
harmonic if it satisfies Laplace’s equation.
The operator ∆ = ∇2 is called the Laplacian ∆f = ∇2f the
laplacian of f . Constant functions and linear functions are
harmonic functions. Many other functions satisfy the equation.



Exercise.
In all the space R2 the following functions are harmonic

f (x , y) = x2 − y2

f (x , y) = ex sin y

f (x , y) = ex cos y

Recall
ez = ex cos y + iex sin y .

From complex analysis we have
Let z = x + iy and f (z) = u(x , y) + iv(x , y).
If f (z) = u(x , y) + iv(x , y) satisfies the Cauchy-Riemann equations
on a region A then both u and v are harmonic functions on A. This
is a consequence of the Cauchy-Riemann equations. Since ux = vy
we have uxx = vyx . Likewise, uy = −vx implies uyy = −vxy . Since
we assume vxy = vyx we have uxx + uyy = 0. Therefore u is
harmonic. Similarly for v .
As example we may consider ez = ex cos y + iex sin y .



Hessian matrix f ∈ C 2

Hf =

(
fxx(x0, y0) fxy (x0, y0)
fxy (x0, y0) fyy (x0, y0)

)

Tr(H) = ∆f



Partial Derivatives Partial Derivative f in x

Definition

fxi (x) = lim
h→0

f (x1, . . . , x i + h, . . . , xn)− f (x1, . . . , x i , . . . , xn)

h
,

if the limit exists and it is finite.

Recall

Definition
Ω open set

f ∈ C 2(Ω) ∩ C (Ω)

∆f =
n∑

i=1

fxixi



Exercise
(Exercise 08/03).
Compute Df

i) f (x) = ‖x‖2

ii) x 6= 0 f (x) = ‖x‖
iii) n ≥ 3 x 6= 0 f (x) = ‖x‖2−n

i) f (x) = ‖x‖2

‖x‖2 = x2
1 + x2

2 + · · ·+ x2
n

fxi = 2xi
ii) f (x) = ‖x‖

‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

n = (x2
1 + x2

2 + · · ·+ x2
n )

1
2

x 6= 0 fxi =
1

2

2xi
‖x‖

=
xi
‖x‖

iii) For n ≥ 3 x 6= 0 f (x) = ‖x‖2−n

fxi = (2− n) ‖x‖1−n xi
‖x‖

=

(2− n)
xi
‖x‖n



Laplace operator

i) f (x) = ‖x‖2

ii) x 6= 0 f(x)=‖x‖
iii) n ≥ 3 x 6= 0 f (x) = ‖x‖2−n

i) f (x) = ‖x‖2 fxi = 2xi fxixi = 2 ∆ ‖x‖2 = 2n

ii) x 6= 0 f (x) = ‖x‖ fxi = 1
2

2xi
‖x‖ = xi

‖x‖

fxixi =
1

‖x‖
−

x2
i

‖x‖3

∆ ‖x‖ = n
1

‖x‖
− 1

‖x‖



iii)
n ≥ 3 x 6= 0 f (x) = ‖x‖2−n

fxi = (2− n) ‖x‖1−n xi
‖x‖

=

(2− n)
xi
‖x‖n

fxixi = (2− n)
1

‖x‖n
− n(2− n)x2

i ‖x‖
−n−2

∆ ‖x‖2−n = (2− n)n
1

‖x‖n
− (2− n)n

1

‖x‖n
= 0



Poisson formula in the circle.
We consider the Laplace’s equation in the circle x2 + y2 < R2,
with a prescribed function at the boundary x2 + y2 = R2.{

fxx(x , y) + fyy (x , y) = 0 x2 + y2 < R2,

f (x , y) = g(x , y) x2 + y2 = R2.

This is a boundary value problem on a circle of radius: Dirichlet
problem for the Laplace equation in the circle.



Since we are looking for the solution in the circle we consider polar
coordinates
F (r , θ) = f (r cos θ, r sin θ)
Solving in polar coordinates we get

Frr (r , θ) +
1

r
Fr (r , θ) +

1

r2
Fθθ(r , θ) = 0,

0 ≤ r < R 0 ≤ θ ≤ 2π

F (R, θ) = G (θ) = g(R cos θ,R sin θ)

0 ≤ θ ≤ 2π



We assume that the solution may be obtained as a product of two
functions, one depending on r and the other one on θ.

F (r , θ) = H(r)K (θ)

K is bounded and 2πperiodic, and H bounded.



H ′′(r)K (θ) +
1

r
H ′(r)K (θ) +

1

r2
H(r)K ′′(θ) = 0

1

H(r)K (θ)
H ′′(r)K (θ) +

1

H(r)K (θ)

1

r
H ′(r)K (θ)+

1

H(r)K (θ)

1

r2
H(r)K ′′(θ) = 0

1

H(r)
r2H ′′(r) + r

1

H(r)
H ′(r) =

− 1

K (θ)
K ′′(θ) = m2

K ′′(θ) + m2K (θ) = 0



Why m2? K is 2πperiodic

K ′′(θ) + λK (θ) = 0

I
λ < 0 =⇒ K = Ae−

√
λθ + Be

√
λθ

However, it must be a 2πperiodic function: This function
cannot be 2πperiodic unless A = B = 0

I
λ = 0 =⇒ K = Aθ + B

where A and B are constants. This is not possible unless
A = 0.

I λ = m2

K ′′(θ) + m2K (θ) = 0

K (θ) = am cos(mθ) + bm sin(mθ)



By substitution since K is assumed bounded and 2πperiodic, we
have
(i) K ′′(θ) = −m2K (θ)

K (θ) = am cos(mθ) + bm sin(mθ)

(ii) r2H ′′(r) + rH ′(r)−m2H(r) = 0



r2H ′′(r) + rH ′(r)−m2H(r) = 0

This is the most common Cauchy-Euler equation appearing in a
number of physics and engineering applications, such as when
solving Laplace’s equation in polar coordinates.
Assuming the solution of the form rα and substituting into the
equation
(ii) α(α− 1)rα + αrα −m2rα = 0



α2 −m2 = 0

.
In order for H to be well-defined at the center of the circle, we
obtain the solutions
Fm(r , θ) = rm(am cos(mθ) + bm sin(mθ)),
and, by linearity, the general solution is an arbitrary linear
combination of all the possible solutions obtained above, that is

F (r , θ) = a0 +
+∞∑
m=1

rm(am cos(mθ) + bm sin(mθ))



Now taking the Fourier expansion of G

G (θ) =
1

2
α0 +

+∞∑
m=1

(αm cos(mθ) + βm sin(mθ))

αm and βm are the Fourier coefficients of the function G

αm =
1

π

∫ 2π

0
G (φ) cos(mφ)dφ

βm =
1

π

∫ 2π

0
G (φ) sin(mφ)dφ



Observe that from F (R, θ) = G (θ). Hence we have the following

a0 =
1

2
α0 am = R−mαm bm = R−mβm



Substituting the Fourier coefficients into the F

F (r , θ) =
1

π

∫ 2π

0
G (φ)[

1

2
+

+∞∑
m=1

(
r

R

)m

cos(m(φ− θ))]dφ,



Next we observe

1

2
+

+∞∑
m=1

(
r

R

)m

e im(φ−θ) =

1

1− r
R e

i(φ−θ)
− 1 +

1

2
=

1

1− r
R e

i(φ−θ)
− 1

2
.

We have

1

1− r
R e

i(φ−θ)
=

R

R − r cos (φ− θ)− ir sin (φ− θ)



Then

R(R − r cos (φ− θ) + ir sin (φ− θ))

(R − r cos (φ− θ)− ir sin (φ− θ))(R − r cos (φ− θ) + ir sin (φ− θ))
=

R2 − rR cos (φ− θ) + iRr sin (φ− θ))

(R2 − 2Rr cos (φ− θ)) + r2

Observe that

(R−r cos (φ− θ)−ir sin (φ− θ))(R−r cos (φ− θ)+ir sin (φ− θ)) =

(R − r cos (φ− θ))2 + r2 sin2 (φ− θ) = R2 − 2Rr cos(φ− θ) + r2



Taking the real part of the above computation

F (r , θ) =
1

π

∫ 2π

0
G (φ)

(
R2 − rR cos (φ− θ)

R2 − 2Rr cos (φ− θ) + r2
− 1

2

)
dφ

Taking into account

R2 − rR cos (φ− θ)

R2 − 2Rr cos (φ− θ) + r2
− 1

2
=

2R2 − 2rR cos (φ− θ)− R2 + 2Rr cos (φ− θ)− r2

2(R2 − 2Rr cos (φ− θ) + r2)

F (r , θ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (φ− θ) + r2
G (φ)dφ

This is the Poisson formula for the Dirichlet problem of the
Laplacian in the circle.



The Weierstrass Theorem Karl Theodor Wilhelm Weierstrass
(German: Weierstrass 31 October 1815–19 February 1897) German
mathematician
Recall the Weierstrass Theorem N = 1.



The Weierstrass Theorem Weierstrass Theorem states that if a
real-valued function f is continuous on the bounded and closed
interval [a, b] then f attains a minimum and a maximum in [a, b].
This means that there exist numbers xm and xM in [a, b] such that

f (xm) ≤ f (x) ≤ f (xM) ∀x ∈ [a, b].

Theorem
Let K ⊂ RN a bounded and closed subspace and f : K → R
continuous. Then f attains a minimum and maximum on K .



Proof of the Weierstrass theorem
N = 1. Let f : [a, b]→ R continuous on [a, b].
We need to show that there exists xM such that f attains its
maximum. We know that the set of real numbers admits
sup{f (x) : x ∈ [a, b]}, and we set

M = sup{f (x) : x ∈ [a, b]}.



We need to construct a sequence such that, following its
subsequence, we are able to reach xM .
We consider an increasing sequence of point yn such that

yn < sup{f (x) : x ∈ [a, b]},

and
yn → sup{f (x) : x ∈ [a, b]}, n→ +∞

(if M is finite take yn = M − 1
n , if M = +∞ take yn = n).

Since yn < M, this show that there exists xn such that

f (xn) ≥ yn

(since yn is not a majorant (an upper bound) of the set
{f (x) : x ∈ K}.
The sequence (xn) is bounded. By Bolzano-Weierstrass theorem it
admits a convergent subsequence:

xnk → x0 x0 ∈ [a, b]



Then
ynk ≤ f (xnk ) < M,

and
lim

k→+∞
f (xnk ) = M

By the assumption of continuity

f (xnk )→ f (x0),

Hence f (x0) = M and xM = x0. Try to adapt the proof for the
minimum. Try to adapt to the multidimensional case.



Maximum Principle for harmonic functions
Let f : X → R and x0 ∈ X
f is continuous on X if it continuous in every point x0 ∈ X ,
∀ε > 0 ∃δ > 0 such that if x ∈ X and ‖x − x0‖ < δ, then

|f (x)− f (x0)| < ε



The following two properties are equivalent

(a) ∀ε > 0 ∃δ > 0 such that if x ∈ X and ‖x − x0‖ < δ, then

|f (x)− f (x0)| < ε

(b) (xn) xn ∈ X and xn → x0, then f (xn)→ f (x0).



Theorem
Let Ω an open and bounded set of Rn. Let f ∈ C 2(Ω) ∩ C (Ω) a
real valued harmonic function. Let

M = max{f (x), x ∈ ∂Ω}

m = min{f (x), x ∈ ∂Ω}

Then
m ≤ f (x) ≤ M x ∈ Ω.

It states that strict minimum and maximum are assumed on the
boundary.



To prove: f (x) ≤ M x ∈ Ω.
We introduce the function

gε(x) = f (x) + ε ‖x‖2 x ∈ Ω ε > 0

The function gε ∈ C 2(Ω) ∩ C (Ω). We may compute the laplacian
as sum of the laplacian of the function f and of the laplacian of
the function ε ‖x‖2.



We compute the
∆ε ‖x‖2 = ε∆ ‖x‖2 .

‖x‖2 = x2
1 + x2

2 + · · ·+ x2
n

‖x‖2
xi

= 2xi ‖x‖2
xixi

= 2 ∆ ‖x‖2 = 2n



Then, since
∆f = 0

2εn > 0

∆gε(x) = ∆f (x) + 2εn > 0.

gε is a continuous function in Ω (bounded and closed set). It
admits a maximum point.



We claim: the maximum points of gε do not belong to Ω.
Proof in the 2-dimensional case: Indeed assume, by contradiction,
that xε is a maximum point in Ω, then

Dgε(xε) = 0

In the 2-dimensional case we have

Det(D2gε(xε)) = gx1x1gx2x2−g2
x1x2
≥ 0 gx1x1 ≤ 0 gx2x2 ≤ 0

Then
∆gε(xε) = gx1x1 + gx2x2 ≤ 0.



Since
∆gε(x) > 0 ∀x ∈ Ω,

we proved that the maximum points xε of gε do not belong to Ω.



This is true in the n-dimensional case.
Then

xε ∈ ∂Ω

gε(x) ≤ max{f (x) + ε ‖x‖2 , x ∈ ∂Ω}.

Since Ω is bounded, there exists a positive real number L such that

‖x‖ ≤ L x ∈ Ω.

If x ∈ Ω

gε(x) ≤ max{f (x) + εL2, x ∈ ∂Ω} = M + εL2,

this means
f (x) + ε ‖x‖2 ≤ M + εL2.

Then the result follows as ε→ 0.



Try to adapt the proof to

m ≤ f (x) x ∈ Ω,

with

gε(x) = f (x)− ε ‖x‖2 x ∈ Ω.



Application: Uniqueness of the solution of Dirichlet Problem. Let
Ω an open and bounded set. f , g ∈ C 2(Ω) ∩ C (Ω)
The Dirichlet problem{

∆f (x) = 0 x ∈ Ω

f (x) = u(x) x ∈ ∂Ω
(2)

{
∆g(x) = 0 x ∈ Ω

g(x) = u(x) x ∈ ∂Ω
(3)



Then h = f − g verifies{
∆h(x) = 0 x ∈ Ω

h(x) = 0 x ∈ ∂Ω
(4)



Hence, by the maximum principle, h(x) = 0 in Ω , this means

f (x) = g(x) x ∈ Ω



Exercise
f : R4 → R Find the minimum and the maximum of the function

f (x1, x2, x3, x4) = x1x4 − x2x3

under the constraint

1 = x2
1 + x2

2 + x2
3 + x2

4



Observe
0 ≤ (x1 − x4)2 = x2

1 + x2
4 − 2x1x4

0 ≤ (x2 + x3)2 = x2
2 + x2

3 + 2x2x3

2x1x4 ≤ x2
1 + x2

4 ⇐⇒ x1x4 ≤
1

2
(x2

1 + x2
4 )

Similarly

−2x2x3 ≤ x2
2 + x2

3 ⇐⇒ −x2x3 ≤
1

2
(x2

2 + x2
3 )

Then

f (x1, x2, x3, x4) = x1x4 − x2x3 ≤
1

2
(x2

1 + x2
4 + x2

3 + x2
2 )

f (x1, x2, x3, x4) = x1x4 − x2x3 ≥ −
1

2
(x2

1 + x2
4 + x2

3 + x2
2 )



Hence the maximum is 1
2 and the minimum is −1

2 .

f (x1, x2, x3, x4) = x1x4 − x2x3

The maximizer points are

(
1

2
,

1

2
,−1

2
,

1

2
) (

1

2
,

1

2
,−1

2
,

1

2
)

(−1

2
,

1

2
,−1

2
,−1

2
) (−1

2
,−1

2
,

1

2
,−1

2
)

The minimizer points are

(−1

2
,

1

2
,

1

2
,

1

2
) (

1

2
,

1

2
,

1

2
,−1

2
)

(−1

2
,−1

2
,−1

2
,

1

2
) (

1

2
,−1

2
,−1

2
,−1

2
)



Exercise
f : R4 → R Find the minimum and the maximum of the function

f (x1, x2, x3, x4) = x1x4 + x2x3

under the constraint

1 = x2
1 + x2

2 + x2
3 + x2

4



Exercise
Find the minumum and the maximum of the function

f (x1, x2) = x1 + x2

on the circle x2
1 + x2

2 ≤ 2

Exercise
Find the minumum and the maximum of the function

f (x1, x2) = |x1|+ |x2|

on the circle x2
1 + x2

2 ≤ 2

Exercise
Let M > 0 given. Maximize the function

f (x1, x2) = x1x2

with the constraint x2
1 + x2

2 = M2, x1 ≥ 0 x2 ≥ 0.



2-d: f (x1, x2) = e−(x2
1 +x2

2 )

Compute
fx1(x) = −2x1e

−(x2
1 +x2

2 ) = 0

fx2(x) = −2x2e
−(x2

1 +x2
2 ) = 0

⇐⇒ (x1, x2) = (0, 0)

Compute
fx1,x1 = −2e−(x2

1 +x2
2 ) + 4x2

1 e
−(x2

1 +x2
2 )

fx2,x2 = −2e−(x2
1 +x2

2 ) + 4x2
2 e
−(x2

1 +x2
2 )



fx1,x2 = fx2,x1 = 4x1x2e
−(x2

1 +x2
2 )

Write the Hessian matrix(
−2e−(x2

1 +x2
2 ) + 4x2

1 e
−(x2

1 +x2
2 ) 4x1x2e

−(x2
1 +x2

2 )

4x1x2e
−(x2

1 +x2
2 ) −2e−(x2

1 +x2
2 ) + 4x2

2 e
−(x2

1 +x2
2 )

)



Observe that (0, 0) is a maximum point. Indeed(
−2 0
0 −2

)
has positive determinant (= 4) and negative first element (= −2).



Observe that the function is less than one in all R2.
For all x ∈ R2 we may compute the determinant of the matrix

e−2(x2
1 +x2

2 )

(
−2 + 4x2

1 4x1x2

4x1x2 −2 + 4x2
2

)



The computation gives

e−2(x2
1 +x2

2 )[(−2 + 4x2
1 )(−2 + 4x2

2 )− 16x2
1x

2
2 ] =

e−2(x2
1 +x2

2 )(4− 8(x2
1 + x2

2 ))



Q =

(
a b
b c

)
Given the associated quadratic form

ah2
1 + 2bh1h2 + ch2

2,,

This is equal to

a

(
h1 +

b

a
h2

)2

+
ac − b2

a
h2

2,



Definition
Assume f ∈ C 2(A). The Hessian matrix is (By Schwarz theorem it
is a symmetric matrix)

Hf (x0) = (fxixj (x0))i ,j=1,n



In 2− d the Hessian matrix is

(Hf )i ,j =
∂2f

∂xi∂xj
i , j = 1, 2

the symbol ∂xi∂xj means that we first we take the derivative with
respect to xi and then with respect to xj .

Hf =

(
fxx(x0, y0) fxy (x0, y0)
fxy (x0, y0) fyy (x0, y0)

)

fxx(x0, y0)

(
h1+

fxy (x0, y0)

fxx(x0, y0)
h2

)2

+
fxx(x0, y0)fyy (x0, y0)− fxy (x0, y0)2

fxx(x0, y0)
h2

2.



Lagrange Multiplier Method

First order necessary condition.

I 2− d : given a function f ∈ C 1(A), with an open set A ⊆ R2,
and (x0, y0) ∈ A we know that if (x0, y0) ∈ A is a relative
minimum and maximum point (extremum) then
∇f (x0, y0) = 0: this means fx(x0, y0) = 0 fy (x0, y0) = 0.

I The converse is false: ∇f (x0, y0) = 0 does not mean that x
minimizes or maximizes f . Such a point is actually a
stationary point, and could be a saddle point or a local
maximum of f , or a local minimum.∇f (x0, y0) = 0. is
necessary, but not sufficient for (x0, y0) to minimize or
maximize f .



Minimum and Maximum in compact sets Assume that f ∈ C 1(R2)
is a function of two variables and that K is a closed and bounded
subset of R2. On such set K , f attains its absolute minimum and
maximum.

I Find the critical points of f which lie inside the region K .

I Find the critical points of f on the boundary of the region K .

I Evaluate the function at all the points you found in the
previous steps to find the greatest and least values.



Lagrange multiplier method
Go back to step

I Find the critical points of f on the boundary of the region K .

This means that we consider a function F among points that lie on
some curve. The question is the following:

I Assume that f is computed along a regular curve

(x(t), y(t)), t ∈ [a, b],

F (t) = f (x(t), y(t)) t ∈ [a, b]

The question is to study first order necessary condition for
extremisers along the curve.



If (x0, y0) = (x(t0), y(t0)), t0 ∈ (a, b) is an extremum then

F ′(t0) = fx(x(t0), y(t0))x ′(t0) + fy (x(t0), y(t0))y ′(t0) = 0.

This means that ∇f is orthogonal (or normal, or perpendicular) to
the tangent line (or simply tangent) to the curve in the point.
If the parametric equation of the curve is (t, h(t)), the condition is

F ′(t0) = fx(x(t0), y(t0)) + fy (x(t0), y(t0))h′(t0) = 0.



Implicit Function Theorem

Theorem
Let A an open set ⊂ R2, let g ∈ C 1(A), let (x0, y0) ∈ A, assume
i) g(x0, y0) = 0;
ii) gy (x0, y0) 6= 0.
Then there exist two positive constant a and b and a function h

h : (x0 − a, x0 + a)→ (y0 − b, y0 + b),

such that

g(x , y) = 0 (x , y) ∈ (x0−a, x0+a)×(y0−b, y0+b) ⇐⇒ y = h(x).

Moreover h ∈ C 1(x0 − a, x0 + a) and

h′(x) = −gx(x , h(x))

gy (x , h(x))



Consider the function g : R2 → R given by g(x , y) = x2 + y2 − 1.
Choose a point (x0, y0) with g(x0, y0) = 0 but not x0 = −1 or
x0 = 1. Then there is an open interval in R (x0 − a, x0 + a) and an
open interval (y0 − b, y0 + b) with the property that if
x ∈ (x0 − a, x0 + a) then there is a unique y ∈ (y0 − b, y0 + b)
satisfying g(x , y) = 0. We can then define a function
h : (x0 − a, x0 + a)→ (y0 − b, y0 + b) for which g(x , h(x)) = 0.
In the example we are able to explicitly solve: take y > 0 then
y = h(x) =

√
1− x2.



Next, we observe that the regular curve may be given as the 0-level
set of a function g

V = {(x , y) : g(x , y) = 0}

Example

{(x , y) ∈ R2 : ax + by = 0} : line

Example

{(x , y) ∈ R2 : x2

a2 + y2

b2 − 1 = 0} : ellipse

V is the constraint



We go back to the condition

F ′(t0) = fx(t0, h(t0)) + fy (t0, h(t0))h′(t0) = 0.

Substituting the value of the derivative

F ′(t0) = fx(t0, h(t0)) + fy (t0, h(t0))
gx(t0, h(t0))

−gy (t0, h(t0))
= 0



Finally we get the condition

∇f (x0, y0) + λ∇g(x0, y0) = 0

λ is the Lagrange multiplier.
We define the Lagrangian

L(x , y , λ) = f (x , y) + λg(x , y).

f , g ∈ C 1 and ∇g(x0, y0) 6= 0.

If (x0, y0) is extremum (a minimum or a maximum point) of the
original constrained problem, then (x0, y0) is a stationary point for
the Lagrangian.



The approach of constructing the Lagrangians and setting its
gradient to zero is known as the method of Lagrange multipliers.
Observe that not all stationary points yield a solution of the
original problem, as the method of Lagrange multipliers yields only
a necessary condition. It only gives us candidate solutions.



Lagrange Multiplier method
Joseph-Louis Lagrange or Giuseppe Luigi Lagrangia
Torino 25 January 1736- Paris 10 April 1813.
The great advantage of the method is that it allows to solve
optimization problem without explicit parameterization in terms of
the constraints.

I Problem: Minimize (or Maximize) the objective function
under contraints. {

min (max)f (x)

g(x) = 0



Observe that the Lagrangian L depends on (x , y , λ) and that the
system to solve is 

Lx(x , y , λ) = 0

Ly (x , y , λ) = 0

Lλ(x , y , λ) = 0



The last equation is the constraint equation and the system is
Lx(x , y , λ) = fx(x , y) + λgx(x , y) = 0

Ly (x , y , λ) = fy (x , y) + λgy (x , y) = 0

g(x , y) = 0

Next, we solve an exercise following a previous method based on
parametric equation of the boundary and then we apply the
method of Lagrange multiplier.



Here we use the parametric equation of the curve.
Maxime f (x , y) = 4xy under the constraints

x2

a2
+

y2

b2
= 1 a > 0, b > 0

x ≥ 0, y ≥ 0

Observe that if x = 0 or y = 0 then f (x , y) = 0. Since we are
considering a maximization problem we consider positive x and y .



=

The parametric equation in (0, π/2).{
x(t) = a cos(t) t ∈ (0, π/2)

y(t) = b sin(t)

F (t) = 4ab cos(t) sin(t) = 2ab sin(2t) t ∈ [0, π/2]

F ′(t) = 0 ⇐⇒ cos(2t) = 0 2t =
π

2
+ kπ t0 =

π

4

x0 = x(t0) = a
√

2/2 y0 = y(t0) = b
√

2/2



Lagrange multiplier method: exercises
a > 0, b > 0 {

maxx ,y 4xy
x2

a2 + y2

b2 = 1

with x ≥ 0, y ≥ 0: this is a constraint with inequality: they will be
treated with the KKT (Karush-Kuhn-Tucker) conditions, Indeed
the method of Lagrange Multipliers is used to find the solution for
optimization problems constrained to one or more equalities. If the
constraints also have inequalities, we need to extend the method to
the KKT conditions.
Observe that if x = 0 or y = 0 then f (x , y) = 0. Since we are
considering a maximization problem we consider positive x and y .



L(x , y , λ) = 4xy + λ(
x2

a2
+

y2

b2
− 1)

We set

∇L = 0

4y + 2λx
a2 = 0

4x + 2λy
b2 = 0

x2

a2 + y2

b2 = 1



By the first equation

λ = −2a2y

x

substituting and making the computation
x2

a2 = y2

b2

x2

a2 + y2

b2 = 1

x2 =
a2

2
,

The positive solution is

x =
a√
2
.

Then

x =
a√
2

y =
b√
2



a, b, c > 0. Maximize

f (x , y , z) = 8xyz ,

with constraint
x2

a2
+

y2

b2
+

z2

c2
= 1

x ≥ 0, y ≥ 0, z ≥ 0.
Observe that if x = 0 or y = 0 or z = 0 then f (x , y , z) = 0. Since
we are considering a maximization problem we consider positive x ,
y and z .

L(x , y , z , λ) = 8xyz + λ(
x2

a2
+

y2

b2
+

z2

c2
− 1)




8yz + 2λx

a2 = 0

8xz + 2λy
b2 = 0

8xy + 2λz
c2 = 0

x2

a2 + y2

b2 + z2

c2 = 1



From the first equation

λ = −4a2yz

x
8x2zb2 − 8a2y2z = 0

8x2yc2 − 8yz2a2 = 0
x2

a2 + y2

b2 + z2

c2 = 1



Simplify 
x2

a2 = y2

b2

x2

a2 = z2

c2

x2

a2 + y2

b2 + z2

c2 = 1

x2 =
a2

3
,

Then
x =

a√
3
.



Hence

x =
a√
3

y =
b√
3

z =
c√
3
.



Let ai > 0 ∀i = 1, . . . ,N. Maximize

f (x1, x2, . . . , xN) = 2N
N∏
i=1

xi ,

under the constraint

N∑
i=1

x2
i

a2
i

= 1, xi ≥ 0 ∀i = 1, . . . ,N

Observe that if xi = 0 for some index i then f (x1, x2, . . . , xN) = 0.
Since we are considering a maximization problem we consider
positive xi for all i = 1, . . . ,N.



L(x1, x2, . . . , xN , λ) = 2N
N∏
i=1

xi + λ(
N∑
i=1

x2
i

a2
i

− 1)

∂L(x1, x2, . . . , xN , λ)

∂xk
= 2N

N∏
i=1,i 6=k

xi +
2λxk
a2
k

= 0 k = 1, . . . ,N



From the first equation (k = 1)

λ = −
2N−1a2

1

∏N
i=2 xi

x1

Substituting in the other equations

2Na2
kx

2
1

N∏
i=2,i 6=k

xi − 2Nxka
2
1

N∏
i=2

xi = 0 k = 2, . . . ,N



Simplify
a2
kx

2
1 − x2

k a
2
1 = 0 k = 2, . . . ,N

Hence

x2
1

a2
1

=
x2

2

a2
2

x2
1

a2
1

=
x2

3

a2
3

. . .
x2

1

a2
1

=
x2
N

a2
N

∑N
i=1

x2
i

a2
i

= 1.



x2
1 =

a2
1

N
,

whose positive solution is

xi =
ai√
N
.



Taylor’s Theorem
Optimization without constraints
Optimization means we are trying to find a maximum or minimum
value. Any constraints appears.

I Local Extrema. If a point is a maximum or minimum relative
to the other points in its neighborhood, then it is a local
maximum or local minimum.

I Global Extrema. If a point is a maximum or minimum relative
to all the other points on the function, then it is a global
maximum or global minimum.



Definition
Let A an open subset ⊆ Rn and f : A→ R, x0 ∈ A. Assume that
there exists r > 0 such that for all x ∈ A ∩ Br (x0) we have
f (x) ≥ f (x0), then x0 is a local minimum point and f (x0) is the
local minimum.

Definition
Let A an open subset ⊆ Rn and f : A→ R, x0 ∈ A. Assume that
there exists r > 0 such that for all x ∈ A ∩ Br (x0) we have
f (x) ≤ f (x0), then x0 is a local maximum point and f (x0) is the
local maximum



Taylor’s Theorem (Lagrange form of the remainder)

Theorem
Assume f ∈ C 2(A). x , x + h ∈ A, x + th in A with t ∈ [0, 1], h
sufficiently small. There exists θ ∈ (0, 1) such that

f (x + h) = f (x) +
n∑

i=1

fxi (x)hi +
1

2

n∑
i ,j=1

fxixj (x + θh)hihj



From x(t) = x + th with h ∈ Rn t ∈ [0, 1] with h small such that
x + th ∈ A. We set

F (t) = f (x + th).

Applying the rule the chain rule (it is the formula to compute the
derivative of a composite function) with x(t) = x + th, we get

F ′(t) =
n∑

i=1

fxi (x + th)hi ,

and

F ′′(t) =
n∑

i ,j=1

fxixj (x + th)hihj ,



Applying Taylor’s formula for 1− d

F (1) = F (0) + F ′(0) +
1

2
F ′′(θ)

with θ ∈ (0, 1).
Putting in F (t) = f (x + th) we obtain

F (1) = f (x + h) F (0) = f (x)

F ′(0) =
n∑

i=1

fxi (x)hi F ′′(θ) =
n∑

i ,j=1

fxixj (x + θh)hihj ,

f (x + h) = f (x) +
n∑

i=1

fxi (x)hi +
1

2

n∑
i ,j=1

fxixj (x + θh)hihj



Taylor’s Theorem (Peano form of the remainder)
The Frobenius norm of the matrix A is defined as

‖A‖ =

√√√√ n∑
i ,j=1

|ai ,j |2

We will need the following inequality

Proposition

Assume A a matrix n × n. Assume h in Rn. Then

‖Ah‖ ≤ ‖A‖ ‖h‖



A =


a11 a12 a13 ...... a1n

.... ..... .... ..... ...
an1 an2 an3 ...... ann



Ah =


a11h1 + a12h2 + a13h3 + ......+ a1nhn

an1h1 + an2h2 + an3h3 + ......+ annhn





The Ah norm is

‖Ah‖ =

√√√√ n∑
i=1

(ai1h1 + ai2h2 + ai3h3 + ......+ ainhn)2

‖Ah‖ ≤

√√√√ n∑
i=1

n∑
j=1

a2
ij ‖h‖ = ‖A‖ ‖h‖



Then
|Ah · h| ≤ ‖Ah‖ ‖h‖ ≤ ‖A‖ ‖h‖2

We show the Taylor formula in Rn (Peano form of the remainder)

f (x +h) = f (x)+
n∑

i=1

fxi (x)hi +
1

2

n∑
i ,j=1

fxixj (x)hihj +o(‖h‖2) h→ 0



We need to show

n∑
i ,j=1

fxixj (x + θh)hihj =
n∑

i ,j=1

fxixj (x)hihj + o(‖h‖2) h→ 0

n∑
i ,j=1

(fxixj (x + θh)− fxixj (x))hihj = o(‖h‖2)



Thanks to the previous inequality (with
A = D2f (x + θh)− D2f (x)))

∣∣∣∑n
i ,j=1(fxixj (x + θh)− fxixj (x))hihj

∣∣∣
‖h‖2

≤
∥∥D2f (x + θh)− D2f (x)

∥∥



Since f ∈ C 2(A) then

lim
h→0

∥∥D2f (x + θh)− D2f (x)
∥∥ = 0

Then we state

Theorem
Assume f ∈ C 2(A). x , x + h ∈ A x + th in A with t ∈ [0, 1], h
sufficiently small. then

f (x +h) = f (x)+
n∑

i=1

fxi (x)hi +
1

2

n∑
i ,j=1

fxixj (x)hihj +o(‖h‖2) h→ 0



f (x , y) = cos x + sin y

Find local minima and maxima points.

{
∂
∂x f (x , y) = 0
∂
∂y f (x , y) = 0

⇐⇒

{
− sin x = 0

cos y = 0
⇐⇒

{
x = kπ k ∈ Z
y = π

2 + jπ j ∈ Z



Hessian matrix

H(x , y) =

(
− cos x 0

0 − sin y

)
.

H
(
kπ,

π

2
+ jπ

)
=

(
(−1)k+1 0

0 (−1)j+1

)
det(H) = (−1)j+k

. Hence if k and j both are odd or both are even
det(H) = (−1)j+k= 1 > 0



To study the extrema we consider

(−1)k+1

If k is even then (kπ, π2 + jπ
)

local max
if k is odd then (kπ, π2 + jπ

)
local min



Then if k and j are both even (kπ, π2 + jπ
)

local max. If k and j
are both odd then (kπ, π2 + jπ

)
local min.



f (x , y) = x3 + y3 − (1 + x + y)3

Verify that A = (−1
3 ,−

1
3 ) is a local maximum point.{

∂f
∂x = 3x2 − 3(1 + x + y)2 = 0
∂f
∂y = 3y2 − 3(1 + x + y)2 = 0



Df (−1

3
,−1

3
) = 0

The Hessian matrix

H =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)

∂2f

∂x2
= 6x − 6(1 + x + y)

∂2f

∂y2
= 6y − 6(1 + x + y)

∂2f

∂x∂y
= −6(1 + x + y)

fxx(x , y)fyy (x , y)− fxy (x , y)2 =

= (6x − 6(1 + x + y))(6y − 6(1 + x + y))− 36(1 + x + y)2 =

36[(x − (1 + x + y))(y − (1 + x + y))− (1 + x + y)2]



det(H) = 36

∣∣∣∣x − (1 + x + y) −(1 + x + y)
−(1 + x + y) y − (1 + x + y)

∣∣∣∣ =

A = (−1
3 ,−

1
3 )

36

∣∣∣∣−2/3 −1/3
−1/3 −2/3

∣∣∣∣ > 0

∂2f

∂x2
(−1

3
,−1

3
) < 0

(−1
3 ,−

1
3 ) is a local maximum point



Hessian Matrix
Q matrix

Q =

(
q11 q12

q21 q22

)



q12 = q21

hTQh = q11h
2
1 + 2q12h1h2 + q22h

2
2,,

Definition
We say Q positive semi-definite, if the quadratic form hTQh is
positive semi-definite, this means

hTQh =
2∑

i ,j=1

qi ,jhihj ≥ 0 ,∀h ∈ R2,

and there exists h 6= 0 ∈ R2 such that hTQh = 0



Example

Q =

(
0 0
0 2

)

Definition
We say Q is positive definite if the quadratic form hTQh is positive
definite, this means

hTQh =
2∑

i ,j=1

qi ,jhihj > 0 ,∀h 6= 0 ∈ R2,



Definition
We say Q is negative semi-definite if the quadratic form hTQh is
negative semi-definite, this means

hTQh =
2∑

i ,j=1

qi ,jhihj ≤ 0 ,∀h ∈ R2,

and there exists h 6= 0 ∈ R2 such that hTQh = 0



Definition
We say Q is negative definite if the quadratic form hTQh is
negative definite, this means

hTQh =
2∑

i ,j=1

qi ,jhihj < 0 ,∀h 6= 0 ∈ R2,



A matrix Q is called indefinite if there exist h e ĥ tali che

n∑
i ,j=1

qi ,jhihj > 0
n∑

i ,j=1

qi ,j ĥi ĥj < 0

Exercise
Find examples of positive definite matrices, positive semi-definite
matrices, negative definite matrices, negative semi-definite
matrices, indefinite matrices.



Let

Q =

(
q11 q12

q21 q22

)
a symmetric matrix.

|Q| = detQ = q11q22 − (q12)2.

Then

|Q| > 0 and q11 > 0, =⇒ Q is positive definite



|Q| > 0 and q11 < 0, =⇒ Q is negative definite

If detQ < 0, then Q is indefinite.

Q =

(
a b
b c

)
Given the associated quadratic form

ah2
1 + 2bh1h2 + ch2

2,,

This is equal to

a

(
h1 +

b

a
h2

)2

+
ac − b2

a
h2

2,

hence the result.



Definition
Assume f ∈ C 2(A). The Hessian matrix is (By Schwarz theorem it
is a symmetric matrix)

Hf (x0) = (fxixj (x0))i ,j=1,n

In 2− d the Hessian matrix is

(Hf )i ,j =
∂2f

∂xi∂xj
i , j = 1, 2

the symbol ∂xi∂xj means that we first we take the derivative with
respect to xi and then with respect to xj .



Hf =

(
fxx(x0, y0) fxy (x0, y0)
fxy (x0, y0) fyy (x0, y0)

)



Go back to the n dimensional case . If x0 is a stationary point
Df (x0) = 0, the Taylor formula gives

f (x0 + h) = f (x0) +
1

2
D2f (x0)h · h + o(‖h‖2), h→ 0

If D2f (x0)h · h > 0 then locally (in a neighborhood of x0)

f (x) ≥ f (x0).

Then x0 is a local minimum point



If D2f (x0)h · h < 0 then locally (in a neighborhood of x0)

f (x) ≤ f (x0).

Then x0 is a local maximum point



Theorem
Sufficient second order condition.
Let A an open set. Let f ∈ C 2(A). If x0 is a stationary point
(Df (x0) = 0) and the Hessian matrix in x0 is definite positive
(negative) then x0 is a local minimum (maximum) point.



Quadratic Form
A quadratic form is a polynomial with terms all of degree two.

q(h) =
n∑

i ,j=1

ai ,jhihj = s
n∑

i=1

ai ,ih
2
i +

n∑
i 6=j

ai ,jhihj

A = (ai ,j) symmetric matrix.
Scalar product

q(h) = Ah · h

A is a symmetric n × n matrix, h is n × 1, and · denotes the scalar
product between vectors.



Example

q(h1, h2, h3) = h2
1 + 3h2

2 + h2
3 − 24h1h2 − 6h1h3 + 2h2h3

The symmetric matrix A 1 −12 −3
−12 3 1
−3 1 1


Let A be a be a square symmetric matrix of order n. A is called
positive (negative) definite if hTAh is positive (negative) definite

hTAh =
n∑

i ,j=1

qi ,jhihj > 0 (hTAh < 0)∀h ∈ Rn, h 6= 0.



Problem

I How to show that A is positive definite or negative definite?

Let A be a square matrix of order n and let λ be a scalar quantity.
Then

det(A− λI )

is called the characteristic polynomial of A: it is an n degree
polynomial in λ and det(A− λI ) = 0 gives the eigenvalues of A.



A polynomial of n degree may have complex roots. For symmetric
matrices we have

Theorem
The eigenvalues of symmetric matrices are real.



Eigenvalues Test

Theorem
Let m be the smallest eigenvalues and let M be the largest
eigenvalues of the symmetric matrix of n order A. Then

m ‖h‖2 ≤ Ah · h ≤ M ‖h‖2 ∀h ∈ Rn



We consider

F (h) = Ah · h =
n∑

i ,j=1

aijhihj ,

in the set
K = {h ∈ Rn : ‖h‖ = 1}.

F is a continuous function on the compact set K , by Weierstrass
theorem the function F admits a global minimum m and a global
maximum M on K .



Let hm be global minimum point in K and let hM be global
maximum point in K . This means

‖hm‖ = 1 ‖hM‖ = 1

F (hm) = m F (hM) = M

∀h ∈ Rn : ‖h‖ = 1

we have

F (hm) ≤
n∑

i ,j=1

aijhihj ≤ F (hM)

Fix

µ =
h

‖h‖
, h 6= 0, h ∈ Rn

I
‖µ‖ = 1, µ ∈ K



m ≤
n∑

i ,j=1

aijµiµj ≤ M

n∑
i ,j=1

aijµiµj =
n∑

i ,j=1

aij
hihj

‖h‖2
=

1

‖h‖2

n∑
i ,j=1

aijhihj

m ≤
n∑

i ,j=1

aijµiµj =
1

‖h‖2

n∑
i ,j=1

aijhihj ≤ M



We set

G (h) =
1

‖h‖2

n∑
i ,j=1

aijhihj , h 6= 0,

Since
m ≤ G (h) ≤ M h 6= 0,

hm is minimum point for the function G , hM maximum point for
the function G .



We compute the first partial derivatives of G and we will set

∂G

∂hi
(hm) = 0 i = 1 . . . n

∂G

∂hi
(hM) = 0 i = 1 . . . n

From this we will find that m, M are eigenvalues of the matrix A.



∂G

∂hi
=

(
Ah · h ∂

∂hi

1

‖h‖2
+

1

‖h‖2

∂

∂hi
Ah · h

)
=

We compute

∂

∂hi

(
1

‖h‖2

)
=

∂

∂hi

(
1

h2
1 + h2

2 + . . . h2
n

)
= − 2hi

(h2
1 + h2

2 + . . . h2
n)2

=

− 2hi

‖h‖4



Next, we compute
∂

∂hi
Ah · h

We have

A =



a11 a12 a13 . . . a1i . . . a1n

a21 a22 a23 . . . a2i . . . a2n

... ... ..... . . . .... . . . ......
ai1 ai2 ai3 . . . aii . . . ain
... ... ..... . . . .... . . . ......
an1 an2 an3 . . . ani . . . ann





Ah =



a11h1 + a12h2 + a13h3 + · · ·+ a1ihi + · · ·+ a1nhn
a21h1 + a22h2 + a23h3 + · · ·+ a2ihi + · · ·+ a2nhn

........... . . . .... . . . .....
ai1h1 + ai2h2 + ai3h3 + · · ·+ aiihi + · · ·+ ainhn

.......... . . . . . . ......
an1h1 + an2h2 + an3h3 + · · ·+ anihi + · · ·+ annhn





Ah · h = (a11h
2
1 + a12h1h2 + a13h1h3 + · · ·+ a1ih1hi + · · ·+ a1nh1hn) +

(a21h1h2 + a22h
2
2 + a23h3h2 + · · ·+ a2ihih2 + · · ·+ a2nhnh2) +

........... . . . .... . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ai1h1hi + ai2h2hi + ai3h3hi + · · ·+ aiih
2
i + · · ·+ ainhnhi ) +

.......... . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(an1h1hn + an2h2hn + an3h3hn + · · ·+ anihihn + · · ·+ annh
2
n)



∂

∂hi

( n∑
i ,j=1

ai ,jhihj

)
= 2a1ih1 + 2a2ih2 + · · ·+ 2aiihi + · · ·+ 2anihn

Since A is a symmetric matrix

∂

∂hi

( n∑
i ,j=1

ai ,jhihj

)
= 2

n∑
j=1

aj ,ihj .

Hence
∂G

∂hi
=

2

‖h‖2

( n∑
j=1

aj ,ihj −
Ah · h
‖h‖2

hi

)



Denoting by DG the gradient of the function G from the previous
computation we have

DG (hm) = 0 ⇐⇒ Ahm − G (hm)hm = 0

DG (hM) = 0 ⇐⇒ AhM − G (hM)hM = 0,

then G (hm) = m and G (hM) = M are eigenvalues of A.



If ρ is such that Ahρ − ρhρ = 0 then

m ≤ G (hρ) =
1

‖hρ‖2
Ahρ · hρ ≤ M

Ahρ · hρ = ρhρ · hρ = ρ ‖hρ‖2 ,

m ≤ ρ ≤ M

m,M are the smallest and the largest eigenvalues of A.



m ≤ G (h) =
1

‖h‖2

n∑
i ,j=1

aijhihj ≤ M, h 6= 0,

m ‖h‖2 ≤ Ah · h ≤ M ‖h‖2 ∀h ∈ Rn



Corollary

Let A be a symmetric matrix of n order. A is positive definite
⇐⇒ all the eigenvalues are positive.

Corollary

Let A be a symmetric matrix of n order. A is negative definite
⇐⇒ all the eigenvalues are negative.

The proof follows from the previous theorem.



f (x , y , z) = x2 + z2y + zy

Compute the gradient of f and set it = 0. Find the points.

fx = 2x = 0

fy = z2 + z = z(z + 1) = 0

fz = 2zy + y = y(2z + 1) = 0



P0 = (0, 0, 0),

P1 = (0, 0,−1),

Compute the Hessian matrix

fxx = 2 fyy = 0 fzz = 2y

fxy = 0 fyz = 2z + 1 fxz = 0

H(x , y , z) =

2 0 0
0 0 2z + 1
0 2z + 1 2y





Classify the points (0, 0,−1) and (0, 0, 0)

H(0, 0,−1) =

2 0 0
0 0 −1
0 −1 0





H(0, 0, 0) =

2 0 0
0 0 1
0 1 0



H(0, 0, 0)− λI =

2− λ 0 0
0 −λ 1
0 1 −λ


|H(0, 0,−1)− λI | = |H(0, 0, 0)− λI | = (2− λ)(λ2 − 1)

Saddle points



Eigenvalues of A
Find the eigenvalues of A.The n degree polynomial in λ and

det(A− λI ) = 0

gives the eigenvalues of A.



I Fundamental theorem of algebra:
Every non-zero, single-variable, degree n polynomial with
complex coefficients has, counted with multiplicity, exactly n
complex roots.

I The Abel-Ruffini theorem states that there is no solution in
radicals to general polynomial equations of degree five or
higher with arbitrary coefficients.



Solving cubics

λ3 − 5λ2 − 2λ+ 24 = 0

It helps if we know one root: λ = −2 is a solution of this equation:

(−2)3 − 5(−2)2 + 4 + 24 = −8− 20 + 4 + 24 = 0

Factor Theorem

(λ+2)(λ2 +bλ+c) = (λ+2)(λ2−7λ+12) = (λ+2)(λ−3)(λ−4)



Descartes’ rule of signs.
Order the terms of a single-variable polynomial with real
coefficients by descending variable exponent

P(λ) = +λ3 − 5λ2 − 2λ+ 24 = 0

The number of positive roots of the polynomial is either equal to
the number of sign differences between consecutive nonzero
coefficients, or is less than it by an even number.
Multiple roots of the same value should be counted separately.

P(λ) = +λ3 − 5λ2 − 2λ+ 24 = 0

2 changes of sign: in the example two positive solutions. Solution
for λ (−2, 3, 4)



In a cubic no sign change means no real positive root, one change
means one real positive root, two sign changes means two real
positive roots or none, three changes means three positive roots or
one.

P(λ) = +λ3 + 5λ2 + 2λ+ 24 = 0

no real positive root. Solution for λ ≈
(−5.44271, 0.22136 + i2.0882, 0.22136− i2.0882)

P(λ) = +λ3 + 5λ2 + 2λ− 24 = 0

one real positive root. Solutions for λ ≈
(1.744,−3.372 + i1.54633,−3.372− i1.54633)

P(λ) = +λ3 − 5λ2 + 2λ− 24 = 0

three positive roots or one. Solutions for λ ≈:
(5.44271,−0.22136 + i2.0882,−0.22136− i2.0882)



Real positive solutions.
Necessary condition to get real positive solutions.
Sharaf al-Tusi (Tus, 1135-Baghdad, 1213) .
a, b > 0. Real postive λ.

λ3 + a = bλ

λ1 positive solution

λ3
1 < λ3

1 + a = bλ1

hence
λ1 <

√
b

On the other hand bλ−λ3 has a max in the point λ =
√
b/3 Then

a ≤ b
√

b/3− (
√

b/3)3 =
2b

3

√
b/3

Hence
a2

4
≤ b3

27



Formula
Gerolamo Cardano (1501-1576).
Tartaglia (1500-1557)
Ludovico Ferrari (1522-1565): fourth order equation.

x3 + bx2 + cx + d = 0

x = y + k

First reduction: find the value of k to make 0 the coefficient of y2.

x3 + bx2 + cx + d = 0

(y + k)3 + b(y + k)2 + c(y + k) + d = 0

y3 + 3ky2 + 3k2y + k3 + by2 + 2bky + bk2 + cy + ck + d = 0

y3 + (3k + b)y2 + (3k2 + 2bk + c)y + k3 + bk2 + ck + d = 0



Then

3k + b = 0 k = −b

3

3k2 + 2bk + c = 3
b2

9
− 2

b2

3
+ c = −b2

3
+ c

k3 + bk2 + ck + d = −b3

27
+

b3

9
− c

b

3
+ d =

2b3

27
− c

b

3
+ d



We substitute

x = y − b/3

into the equation

y3 + (−b2

3
+ c)y +

2b3

27
− c

b

3
+ d = 0

p = −b2/3 + c

q = 2b3/27− bc/3 + d

Hence

y3 + py + q = 0



Second reduction: try to find y as the sum of the two unknown u
and v .

y = u + v

Substituting inside the equation

y3+py+q = (u+v)3+p(u+v)+q = u3+v3+(3uv+p)(u+v)+q = 0

Then
u3 + v3 = −q

u3v3 = −p3/27

We have the sum and the product of u3 and v3: we may construct
the second order equation:
Recall z2- sum z+ product =0

z2 + qz − p3/27 = 0



z1,2 =
−q ±

√
q2 + 4p3/27

2
= −q

2
±
√

q2

4
+

p3

27
= −q

2
±
√

∆

Assume
∆ ≥ 0,

then we get a real solution

y = 3
√
z1 + 3

√
z2.



To find the other solutions in the case

∆ ≥ 0,

we recall that the cube roots of 1

1, −1

2
+

√
3

2
i , −1

2
−
√

3

2
i

A cube root of a number x is a number y such that y3 = x . All
nonzero real numbers, have exactly one real cube root and a pair
of complex conjugate cube roots. For example, the real cube root
of 8, denoted 3

√
x , is 2, because 23 = 8, while the other cube roots

of 8 are −1 + i
√

3 and −1− i
√

3.



Roots

u0 = 3

√
−q

2
+
√

∆ u1 = u0(−1

2
+

√
3

2
i) u2 = u0(−1

2
−
√

3

2
i)

v0 = 3

√
−q

2
−
√

∆, v1 = v0(−1

2
+

√
3

2
i), v2 = v0(−1

2
−
√

3

2
i)



Then, recalling
uivj ∈ R

u0 + v0 = 3

√
−q

2
+
√

∆ + 3

√
−q

2
−
√

∆

u1+v2 = u0(−1

2
+

√
3

2
i)+v0(−1

2
−
√

3

2
i) = −(u0+v0)

1

2
+

√
3

2
(u0−v0)i

u2+v1 = u0(−1

2
−
√

3

2
i)+v0(−1

2
+

√
3

2
i) = −(u0+v0)

1

2
−
√

3

2
(u0−v0)i



Function
f (x) = x3 + bx2 + cx + d

lim
x→+∞

x3 + bx2 + cx + d = +∞

lim
x→−∞

x3 + bx2 + cx + d = −∞

Three real roots: ∆ < 0.
Example

x3 − x = 0 x(x − 1)(x + 1) = 0

Recall y3 + py + q = 0 then p = −1, q = 0

∆ =
q2

4
+

p3

27
= − 1

27
< 0

y = u + v , u3 + v3 = 0 u3v3 = 1/27

z2 + 1/27 = 0 z = ± 1√
27

i



z = ± 1√
27

i

To find the solutions in the case

∆ < 0,

we recall that the cube roots of i and −i
√

3

2
+

i

2
, −

√
3

2
+

i

2
, −i

√
3

2
− i

2
, −

√
3

2
− i

2
, i



Roots

u0 =
1√
3

(√
3

2
+

i

2

)
u1 =

1√
3

(
−
√

3

2
+

i

2

)
u2 = − 1√

3
i

v0 =
1√
3
i v1 =

1√
3

(
−
√

3

2
− i

2

)
v2 =

1√
3

(√
3

2
− i

2

)



Linear Regression

Relationship between two variables
by fitting a linear equation to observed data. Given n points n > 2
of R2 xj 6= xi find the line minimizing the error

F (a0, a1) =
n∑

j=1

(a1xj + a0 − yj)
2 =

a2
1

n∑
j=1

x2
j + na2

0 +
n∑

j=1

y2
j + 2a0a1

n∑
j=1

xj − 2a0

n∑
j=1

yj − 2a1

n∑
j=1

xjyj



Linear regression: model the relationship between two variables by
fitting a linear equation to observed data.
Function of two variable a0, and a1.{

∂F
∂a0

= 2
∑n

j=1(a1xj + a0 − yj) = 0
∂F
∂a1

= 2
∑n

j=1 xj(a1xj + a0 − yj) = 0



We write {
a0n + a1

(∑n
j=1 xj

)
=
∑n

j=1 yj

a0

(∑n
j=1 xj

)
+ a1

(∑n
j=1 x

2
j

)
=
∑n

j=1 xjyj



D =

∣∣∣∣ n
∑n

j=1 xj∑n
j=1 xj

∑n
j=1 x

2
j

∣∣∣∣ = n
( n∑
j=1

x2
j

)
−
( n∑
j=1

xj
)2



Exercise
xj 6= xi with i 6= j i , j = 1, . . . , n then

( n∑
j=1

xj
)2
< n

n∑
j=1

x2
j , n ∈ N, n ≥ 2



The inequality is true per n = 2. Assuming the inequality true at n
step we need to show

( n+1∑
j=1

xj
)2
< (n + 1)

n+1∑
j=1

x2
j .

( n+1∑
j=1

xj
)2

=
( n∑
j=1

xj + xn+1

)2

( n∑
j=1

xj
)2

+ x2
n+1 + 2xn+1

n∑
j=1

xj <



n
n∑

j=1

x2
j + x2

n+1 + 2xn+1

n∑
j=1

xj =

(n+1)
n∑

j=1

x2
j +nx2

n+1+x2
n+1−(x2

n+1 + . . . x2
n+1︸ ︷︷ ︸

n

)−
n∑

j=1

x2
j +2xn+1

n∑
j=1

xj =

(n + 1)
n+1∑
j=1

x2
j −

n∑
j=1

(
xj − xn+1)2 < (n + 1)

n+1∑
j=1

x2
j .



Solution.

det(D) 6= 0

In this case the solution is

a0 =

∣∣∣∣ ∑n
j=1 yj

∑n
j=1 xj∑n

j=1 xjyj
∑n

j=1 x
2
j

∣∣∣∣∣∣∣∣ n
∑n

j=1 xj∑n
j=1 xj

∑n
j=1 x

2
j

∣∣∣∣

a1 =

∣∣∣∣ n
∑n

j=1 yj∑n
j=1 xj

∑n
j=1 xjyj

∣∣∣∣∣∣∣∣ n
∑n

j=1 xj∑n
j=1 xj

∑n
j=1 x

2
j

∣∣∣∣



The Hessian matrix is

H(a0, a1) =

(
2n 2

∑n
j=1 xj

2
∑n

j=1 xj 2
∑n

j=1 x
2
j

)
.

det(D) > 0. 2n > 0 minimum point.



Exercise
Find an example and apply the method: find a table to compute
the price of an intermediate stop of the bus once we fixed the
prices in preliminary stops by computing a0 and a1.

Exercise
Function of three variables a0, a1, a2.

F (a0, a1, a2) =
n∑

j=1

(a2x
2
j + a1xj + a0 − yj)

2

In particular case xi = i discuss the problem to find solution.



 N
∑N

i=1 xi
∑N

i=1 x
2
i∑N

i=1 xi
∑N

i=1 x
2
i

∑N
i=1 x

3
i∑N

i=1 x
2
i

∑N
i=1 x

3
i

∑N
i=1 x

4
i


a0

a1

a2

 =


∑N

i=1 yi∑N
i=1 xiyi∑N
i=1 x

2
i yi





A =

 N
∑N

i=1 xi
∑N

i=1 x
2
i∑N

i=1 xi
∑N

i=1 x
2
i

∑N
i=1 x

3
i∑N

i=1 x
2
i

∑N
i=1 x

3
i

∑N
i=1 x

4
i





Study the determinant of A in the case

xi = i , i = 1, . . .N

|A| = N

∣∣∣∣∣
∑N

i=1 x
2
i

∑N
i=1 x

3
i∑N

i=1 x
3
i

∑N
i=1 x

4
i

∣∣∣∣∣−
N∑
i=1

xi

∣∣∣∣∣
∑N

i=1 xi
∑N

i=1 x
3
i∑N

i=1 x
2
i

∑N
i=1 x

4
i

∣∣∣∣∣+
N∑
i=1

x2
i

∣∣∣∣∣
∑N

i=1 xi
∑N

i=1 x
2
i∑N

i=1 x
2
i

∑N
i=1 x

3
i

∣∣∣∣∣



|A| = 2
N∑
i=1

xi

N∑
i=1

x2
i

N∑
i=1

x3
i +

N∑
i=1

x4
i

(
N

N∑
i=1

x2 −
( N∑
i=1

xi
)2)− ( N∑

i=1

x2
i

)3 − N
( N∑
i=1

x3
i

)2



I If
xi = i ,

then
N∑
i=1

i =
1

2
N(1 + N)

N∑
i=1

i2 =
1

6
N(1 + N)(2N + 1)

N∑
i=1

i3 =
1

4
N2(1 + N)2

N∑
i=1

i4 =
1

30
N(1 + N)(2N + 1)(−1 + 3N + 3N2)

|A| =
1

2160
N3(−4 + N2)(−1 + N2)2



Inf-Sup Convolution: examples
Given a function f : RN → R, f ∈ C (RN) the Inf Convolution of f
denoted by fε and the Sup Convolution of f denoted by f ε, with
ε > 0

fε(x) = inf
y∈RN

(
f (y) +

‖x − y‖2

2ε

)
(5)

and

f ε(x) = sup
y∈RN

(
f (y)− ‖x − y‖2

2ε

)
(6)

We discuss the definition of inf-convolution finding fε in three
examples.



First example. We consider

f (x) = ‖x‖2 = x2
1 + · · ·+ x2

N .

f ∈ C 2(RN).

The function assumes a minimum point at x = 0. Next, we
compute the inf-convolution.

fε(x) = inf
y∈RN

[ N∑
k=1

y2
k +

1

2ε

N∑
k=1

(xk − yk)2

]
.



Fix x . We set

Fε(y) =
N∑

k=1

y2
k +

1

2ε

N∑
k=1

(xk − yk)2

To find minimum point we set

∂Fε
∂yj

= 2yj −
1

ε
(xj − yj) = 0. j = 1, . . . ,N



Hence

yj =
1

2ε+ 1
xj , j = 1, . . . ,N

Substituting we have

fε(x) =

[( N∑
k=1

1

(2ε+ 1)2
x2
k

)
+

1

2ε

N∑
k=1

(2ε
1

2ε+ 1
xk)2

]
.

1

(2ε+ 1)2
+

2ε

(2ε+ 1)2
=

1

(2ε+ 1)



In conclusion

fε(x) =
1

2ε+ 1

N∑
k=1

x2
k .



Second example.
Consider

f (x) = ‖x‖ =
√

x2
1 + . . . x2

N .

f ∈ C (RN). It does not admit first partial derivatives at x = 0.
We compute

fε(x) = inf
y∈RN

[( N∑
k=1

y2
k

) 1
2

+
1

2ε

N∑
k=1

(xk − yk)2

]
.

We first consider

I
‖x‖ ≤ ε,



We have

‖y − x‖2 = (y1 − x1)2 + · · ·+ (yN − xN)2 = ‖y‖2 + ‖x‖2 − 2x · y

Fix x such that ‖x‖ ≤ ε

Fε(y) =

( N∑
k=1

y2
k

) 1
2

+
1

2ε

N∑
k=1

(xk − yk)2 = ‖y‖+
1

2ε
‖y − x‖2 =

‖y‖+
1

2ε
(‖y‖2 + ‖x‖2 − 2x · y) ≥

‖y‖+
1

2ε
(‖y‖2 + ‖x‖2− 2‖x‖‖y‖) = ‖y‖(1− ‖x‖

ε
) +
‖y‖2

2ε
+
‖x‖2

2ε



Hence if ‖x‖ ≤ ε,

‖y‖+
1

2ε
‖y − x‖2 ≥ ‖x‖

2

2ε
.

The value of Fε in y = 0 gives

Fε(0) =
1

2ε

N∑
k=1

x2
k ,

then 0 is a local minimum.



If ‖x‖ ≤ ε then

fε(x) =
1

2ε

N∑
k=1

x2
k .

I
‖x‖ > ε,

ε > 0



Next, assume y 6= 0, we compute gradient

yk
‖y‖
− 1

ε
(xk − yk) ∀k = 1 . . .N.

yk
‖y‖
− 1

ε
(xk − yk) = 0 ∀k = 1 . . .N.



Making the square

ε2 y2
k

‖y‖2
= (xk − yk)2,

and taking the sum on k

‖x − y‖2 = ε2.



Also from

yk
‖y‖
− 1

ε
(xk − yk) = 0 ∀k = 1 . . .N.

yk(‖y‖+ ε) = ‖y‖xk ∀k = 1 . . .N.

Making the square and taking the sum on k

‖y‖2(‖y‖+ ε)2 = ‖y‖2‖x‖2.



Hence
‖y‖ = ‖x‖ − ε,

And from the previous computations

‖x − y‖2 = ε2

‖y‖ = ‖x‖ − ε,



Substituting the value of y ,

fε(x) = ‖x‖ − ε+
1

2ε
ε2.

In conclusion

fε(x) =

{
‖x‖2

2ε ‖x‖ ≤ ε
‖x‖ − ε

2 ‖x‖ > ε.

Exercise
Make a graph in 1− d



Third example
We consider a discontinuous function.

f (x) =

{
−1 x ≤ 0

1 x > 0



We compute

fε(x) = inf
y∈R

(
f (y) +

‖x − y‖2

2ε

)



fε(x) = min

[
inf
y≤0

(
f (y) +

|x − y |2

2ε

)
, inf
y>0

(
f (y) +

|x − y |2

2ε

)]

fε(x) = min

[
inf
y≤0

(
− 1 +

|x − y |2

2ε

)
, inf
y>0

(
1 +
|x − y |2

2ε

)]



fε(x) =

−1 x ≤ 0

min

[(
− 1 + x2

2ε

)
, 1

]
x > 0



min

[(
− 1 +

x2

2ε

)
, 1

]
= −1 +

x2

2ε
− 1 +

x2

2ε
≤ 1

−1 +
x2

2ε
≤ 1 ⇐⇒ x2 ≤ 4ε ⇐⇒ |x | ≤ 2

√
ε



fε(x) =


−1 x ≤ 0

−1 + x2

2ε 0 < x ≤ 2
√
ε

1 x > 2
√
ε



Convex functions and Jensen’s Discrete inequality
Convex Set

Definition
Ω ⊂ RN is a convex set if for any x and y ∈ Ω,

λx + (1− λ)y ∈ Ω for any λ ∈ [0, 1].

If x , y ∈ Ω then [x , y ] ∈ Ω: any two points, the set contains the
whole line segment that joins them
2-d: Br (a) is a convex set.



N-d: Br (a) :=
{
x ∈ RN : ‖x − a‖ < r

}
is a convex set.

Indeed x , y ∈ Br (a) then if λ ∈ [0, 1] we have

‖λx + (1− λ)y − a‖ = ‖λ(x − a) + (1− λ)(y − a)‖ ≤

λ ‖(x − a)‖+ (1− λ) ‖y − a)‖ < λr + (1− λ)r = r

Annulus is an example of non convex set.

Exercise
Prove that the intersection of two convex sets is a convex set



I p 6= 0. Closed convex sets are convex sets that contain all
their limit points. Iperplane (closed set)

H = {x ∈ RN : pT x = α},

I p 6= 0.
Halfspace (closed set)

H+ = {x ∈ RN : pT x ≥ α},

H− = {x ∈ Rn : pT x ≤ α},



The convex hull co(Ω) is the intersection of all convex sets
containing a given subset of a Euclidean space Ω: it is the smallest
convex set containing Ω. An equivalent formulation, co(Ω) is the
set of all convex combinations of points in the subset.



Convex Functions

Definition
Let C be an open convex set. f : C → R is convex if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) ∀x , y ∈ C , λ ∈ [0, 1].
(7)

Definition
f is a strictly convex function if in (8) we have strict inequality for
x 6= y and λ ∈ (0, 1).

Definition
f is a concave function if −f is convex

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y) ∀x , y ∈ C , λ ∈ [0, 1].



In 1-d an affine function is a function composed of a linear
function plus a constant and its graph is a straight line. Affine
function in RN are aT x + c , they are convex and concave, an
example of convex function is f (x) = ‖x‖, an example of strictly
convex function is f (x) = ‖x‖2.
The function f : R→ R

f (x) =

{
|x |2 , x ≥ 0,

|x | x < 0

is convex in R, not strictly convex in R.



Let x > 0. The log function is a concave function in R+. Given
p > 1, p ∈ R and q such that

1

p
+

1

q
= 1.

From the concavity follow Young’s inequality: Given a > 0 and
b > 0, and p > 1, q such that 1

p + 1
q = 1. we have

ab ≤ ap

p
+

bq

q
,

Indeed λ = 1
p 1− 1

p = 1
q x = ap y = bq

log(
1

p
ap +

1

q
bq) ≥ 1

p
log ap +

1

q
log bq = log a + log b = log(ab)

The inequality follows passing to exp.



Jensen’s Discrete Inequality

Theorem
Let f : C → R be a convex function on a convex set C . Given k
points with k ≥ 2

x1, x2, . . . , xk ∈ C

we have

1

k

k∑
i=1

xi ∈ C

and

f
(1

k

k∑
i=1

xi
)
≤ 1

k

k∑
i=1

f (xi )



Let k = 2 then x1
2 + x2

2 ∈ C . It follows by the definition of set
convexity. Also by the assumption of the convexity of f .

f
(x1

2
+

x2

2

)
≤ 1

2

(
f (x1) + f (x2)

)
We assume the induction assumption at step k , this is

1

k

k∑
i=1

xi ∈ C and f
(1

k

k∑
i=1

xi
)
≤ 1

k

k∑
i=1

f (xi )

Next, we need to show that

1

k + 1

k+1∑
i=1

xi ∈ C and f
( 1

k + 1

k+1∑
i=1

xi
)
≤ 1

k + 1

k+1∑
i=1

f (xi )

We set

λ =
k

k + 1
1− λ = 1− k

k + 1
=

1

k + 1
,

then

1

k + 1

k+1∑
i=1

xi = λ
1

k

k∑
i=1

xi + (1− λ)xk+1 ∈ C



We have

f
( 1

k + 1

k+1∑
i=1

xi
)

= f
( 1

k + 1

k∑
i=1

xi +
1

k + 1
xk+1

)
=

f
(
λ

1

k

k∑
i=1

xi +
1

k + 1
xk+1

)
≤

(by the convexity of f )

λf
(1

k

k∑
i=1

xi
)

+ (1− λ)f (xk+1) ≤

(by the induction assumption at step k)



λ
1

k

k∑
i=1

f (xi ) + (1− λ)f (xk+1) =

1

k + 1

( k∑
i=1

f (xi ) + f (xk+1)
)

=
1

k + 1

k+1∑
i=1

f (xi )



The geometric mean is a type of average: while the arithmetic
mean adds items, the geometric mean multiplies items. We can
get the following inequality for positive numbers yi .

(y1y2 . . . yk)1/k ≤ y1 + y2 · · ·+ yk
k

.

Next, we obtain the inequality by the previous result: exp is a
convex function in R, then

exp
(1

k

k∑
i=1

xi
)
≤ 1

k

k∑
i=1

exp(xi ).



We consider

exp
(1

k

k∑
i=1

xi
)

= exp
(x1

k
+

x2

k
+ . . .

xk
k

)
= exp

x1

k
. . . exp

xk
k

Set
yi = exi ,

we get the well-known inequality between arithmetic mean and
geometric mean:

(y1y2 . . . yk)1/k ≤ y1 + y2 · · ·+ yk
k

.



We show a generalization of the previous theorem

Theorem
Let f : C → R be a convex function on a convex set C - Given k
points with k ≥ 2

x1, x2, . . . , xk ∈ C ,

λ1, λ2, . . . , λk ∈ R, λi ≥ 0, i = 1, . . . , k
k∑

i=1

λi = 1

we have
k∑

i=1

λixi ∈ C

and

f
( k∑
i=1

λixi
)
≤

k∑
i=1

λi f (xi )



By induction. The result is true for k = 2. Let

λ1, λ2, . . . , λk+1 ∈ R, λi ≥ 0, i = 1, . . . , k + 1
k+1∑
i=1

λi = 1



We assume λk+1 < 1.

k+1∑
i=1

λixi =
k∑

i=1

λixi + λk+1xk+1 =

(1− λk+1)
k∑

i=1

λi
1− λk+1

xi + λk+1xk+1



We set

θi =
λi

1− λk+1
θi ≥ 0

k∑
i=1

θi = 1

Using the induction hypothesis at step k , we get

k+1∑
i=1

λixi ∈ C .

Moreover

f (
k+1∑
i=1

λixi ) = f (
k∑

i=1

λixi + λk+1xk+1) =

f ((1− λk+1)
k∑

i=1

λi
1− λk+1

xi + λk+1xk+1)

(by the convexity of f )



≤ (1− λk+1)f (
k∑

i=1

λi
1− λk+1

xi ) + λk+1f (xk+1)

(by the induction assumption at step k)

≤ (1− λk+1)
k∑

i=1

λi
1− λk+1

f (xi )+

λk+1f (xk+1) =
k+1∑
i=1

λi f (xi )



Application

λ1, λ2, . . . , λk ∈ R, λi ≥ 0, i = 1, . . . , k
k∑

i=1

λi = 1

exp
( k∑
i=1

λixi
)
≤

k∑
i=1

λi exp(xi )

Set yi = exi , then we get the generalized inequality between
arithmetic mean and geometric mean:

(y1)λ1(y2)λ2 . . . (yk)λk ≤ λ1y1 + λ2y2 · · ·+ λkyk .



Legendre-Fenchel Transform
Let f : RN → R. The Legendre-Fenchel Transform of f

f ∗(x) = sup
y∈RN

[
x · y − f (y)

]
x ∈ RN



Let p > 1, and q such that 1
p + 1

q = 1

f (x) =
1

p
‖x‖p

‖x‖p = (x2
1 + x2

2 + · · ·+ x2
n )

p
2

Then

f ∗(x) =
1

q
‖x‖q .



We compute the gradient of

F (y) = x · y − f (y) = x · y − 1

p
‖y‖p

∂F

∂yj
= xj − ‖y‖p−1 yj

‖y‖
= 0 ⇐⇒ xj − ‖y‖p−2 yj = 0

Then, setting ŷ such that xj − ‖ŷ‖p−2 ŷj = 0



‖ŷ‖p−1 = ‖x‖ hence ‖ŷ‖ = ‖x‖
1

p−1 .

And, since xj − ‖ŷ‖p−2 ŷj = 0

ŷj = xj ‖x‖−
p−2
p−1 j = 1, . . . ,N



Substituting the value

f ∗(x) =
∑
j

xj ŷj −
1

p
‖ŷ‖p =

∑
j

xjxj ‖x‖−
p−2
p−1 − 1

p
‖x‖

p
p−1 = ‖x‖2 ‖x‖−

p−2
p−1 − 1

p
‖x‖

p
p−1 =

‖x‖
p

p−1 − 1

p
‖x‖

p
p−1 =

1

q
‖x‖q



Definition
Let f: RN → R. A positively homogeneous function of degree p is
one with multiplicative scaling behavior: if all its arguments are
multiplied by a factor λ > 0 , then its value is multiplied by power
p of this factor

f (λx) = λpf (x)



Proposition

f: RN → R. Assume that f is a positively homogeneous function
of degree p > 1. Then f ∗ is positively homogeneous function of
degree q, with p and q such that 1/p + 1/q = 1.



Proof.
Let λ > 0

f ∗(λx) = sup
y∈RN

[
λx · y − f (y)

]
= sup

y∈RN

[
λq+1−qx · y − f (y)

]
=

λq sup
y∈RN

[
x · (λ1−q)y −λ−qf (y)

]
= λq sup

y∈RN

[
x · (λ1−qy)− f (λ−

q
p y)
]

We observe
q

p
= q − 1, −q

p
= 1− q

we set ξ = λ1−qy we obtain

f ∗(λx) = λq sup
ξ∈RN

[
x · ξ − f (ξ)

]
= λqf ∗(x)



Convex Functions and smoothness

Definition
Ω ⊂ RN is a convex set if for any x and y ∈ Ω,

λx + (1− λ)y ∈ Ω for any λ ∈ [0, 1].

Definition
Let C be an open convex set. f : C → R is convex if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) ∀x , y ∈ C , λ ∈ [0, 1].
(8)

Definition
f is a strictly convex function if in (8) we have strict inequality for
x 6= y and λ ∈ (0, 1).



Definition
f is a concave function if −f is convex

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y) ∀x , y ∈ C , λ ∈ [0, 1].

Theorem
Let C be an open, convex subset of RN and f : C → R, assume
f ∈ C 1(C ). Then f is convex in C ⇐⇒

f (x) ≥ f (x0) + Df (x0) · (x − x0) ∀x , x0 ∈ C .

f ∈ C 1(C ), f concave in C ⇐⇒
f (x) ≤ f (x0) + Df (x0) · (x − x0) ∀x , x0 ∈ C



f ∈ C 1(C ) and convex in the set C =⇒

f (x) ≥ f (x0) + Df (x0) · (x − x0) ∀x , x0 ∈ C .

By the assumption of convexity

f (λx + (1− λ)x0) = f (x0 + λ(x − x0)) ≤ λf (x) + (1− λ)f (x0).

This means

f (x0 + λ(x − x0))− f (x0) ≤ λf (x)− λf (x0),

λ > 0

f (x0 + λ(x − x0))− f (x0)

λ
≤ λf (x)− λf (x0)

λ



Then sending λ→ 0+ we get the result:

f (x0) + Df (x0) · (x − x0) ≤ f (x).

Next we assume f (x) ≥ f (x0) + Df (x0) · (x − x0) ∀x , x0 ∈ C . We
show that f is convex
Change x0 with x0 + λ(x − x0) in f (x) ≥ f (x0) + Df (x0) · (x − x0).

f (x) ≥ f (x0 +λ(x−x0))+Df (x0 +λ(x−x0)) ·(x−(x0 +λ(x−x0)))

f (x) ≥ f (x0 +λ(x − x0)) +Df (x0 +λ(x − x0)) · (x − x0−λ(x − x0))



Then

f (x) ≥ f (x0 + λ(x − x0)) + (1− λ)Df (x0 + λ(x − x0)) · (x − x0)

λf (x) ≥ λf (x0+λ(x−x0))+λ(1−λ)Df (x0+λ(x−x0))·(x−x0) (9)



We go back to

f (x) ≥ f (x0) + Df (x0) · (x − x0) ∀x , x0 ∈ C .

Change x with x0 and change x0 with x0 + λ(x − x0) in the
inequality above.

f (x0) ≥ f (x0 + λ(x − x0))− λDf (x0 + λ(x − x0)) · (x − x0)



This means

(1−λ)f (x0) ≥ (1−λ)f (x0+λ(x−x0))−(1−λ)λDf (x0+λ(x−x0))·(x−x0)
(10)

Adding (9) and (10)

λf (x) + (1− λ)f (x0) ≥ f (x0 + λ(x − x0)).

This show the convexity of f .



Remark
We recall that Df (x0) = 0 is always a necessary condition for local
optimality in an unconstrained problem. The previous theorem
states that for convex problems, Df (x0) = 0 is not only necessary,
but also sufficient for local and global optimality (minimization
problem): from

f (x) ≥ f (x0) + Df (x0) · (x − x0) ∀x , x0 ∈ C .

we obtain
f (x) ≥ f (x0)



Strict convexity and uniqueness of optimal solutions. Let f a
strictly convex function in a convex set C . Assume that the
optimization problem {

minx∈C f (x)

f strictly convex

admits a solution x ∈ C , then it is unique.



Let x and y two points such that

I f (x) ≤ f (z) ∀z ∈ C

I f (y) ≤ f (z) ∀z ∈ C

I f (x) = f (y)

Fix z = 1
2x + 1

2y , then

f (z) = f (
1

2
x +

1

2
y) <

1

2
f (x) +

1

2
f (y) = f (x)

A contradiction.



Remark
Observe that the min problem

min
x∈R

ex

does not admit solution.

Theorem
Let C be an open, convex subset of RN and f : C → R, assume
f ∈ C 2(C ). Then f is convex in C ⇐⇒ ∀x ∈ C D2f (x) is
positive semidefinite (f is concave in C ⇐⇒ D2f (x) is negative
semidefinite)



Convexity is equivalent to convexity along all lines. f : C → R.
Assume f ∈ C 2(C ), and f convex.
Define, for x ∈ C , y ∈ RN : x + αy ∈ C

g(α) = f (x + αy)

g ′(α) = Df (x + αy) · y

g ′′(α) = D2f (x + αy)y · y

Next observe that g , as a function of α, is a convex function.



Indeed for λ ∈ [0, 1]

g(λα1 + (1− λ)α2) = f (x + (λα1 + (1− λ)α2)y) =

f (λ(x + α1y) + (1− λ)(x + α2y) ≤

λf (x + α1y) + (1− λ)f (x + α2y) = λg(α1) + (1− λ)g(α2)



For the convexity of g in 1− d

g ′′(α) ≥ 0.

In particular
g ′′(0) = D2f (x)y · y ≥ 0.

The other hand follows by Taylor expansion with Lagrange
remainder, there exists ζ such that

f (x) = f (x0) + Df (x0) · (x − x0) +
1

2
D2f (ζ)(x − x0) · (x − x0)



Hence
f (x) ≥ f (x0) + Df (x0) · (x − x0)



Convexity of quadratic form.
From the previous result. Given f (x) = xTAx with x ∈ RN ,
A = (ai ,j) with A symmetric: ai ,j = aj ,i ,then

D2f (x) = 2A

I f (x) = xTAx is convex in RN ⇐⇒ A is positive semidefinite.

I f (x) = xTAx is concave in RN ⇐⇒ A is negative
semidefinite.



Example

A symmetric of order n, b ∈ RN , c ∈ R.

f (x) = Ax · x + b · x + c

We have
f convex ⇐⇒ A is positive semidefinite.
and
A positive definite =⇒ f strictly convex



Exercise

f (x , y) =
x4

y2
x > 0, y > 0

It is strictly convex in x > 0, y > 0?

fx(x , y) = 4
x3

y2
fxx(x , y) = 12

x2

y2

fy (x , y) = −2
x4

y3
fyy (x , y) = 6

x4

y4
fyx(x , y) = −8

x3

y3

detH = 72
x6

y6
− 64

x6

y6
> 0, fxx(x , y) = 12

x2

y2
> 0



The graph of a convex function can have corners, so convex
functions need not to be C 1, however finite-valued convex
functions are continuous.
It is often useful to allow convex function to take the value +∞.
Show an example of convex function not finite-valued.



f ∗(x) = sup
y∈RN

[
x · y − f (y)

]
x ∈ RN

Assume that f is convex and f satisfies a super linear growth
condition, that is

lim
‖y‖→+∞

f (y)

‖y‖
= +∞,

then f ∗ is convex and

lim
‖x‖→+∞

f ∗(x)

‖x‖
= +∞



I f ∗ is convex.

f ∗(λx + (1− λ)x̂) = sup
y∈RN

[
(λx + (1− λ)x̂) · y − f (y)

]
=

sup
y∈RN

[
(λ(x · y − f (y)) + (1− λ)(x̂ · y − f (y))

]
≤ sup

y∈RN

[
(λ(x · y − f (y))] + sup

y∈RN

[
(1− λ)(x̂ · y − f (y))

]
= λf ∗(x) + (1− λ)f ∗(x̂)



I The Fenchel Young inequality holds

x · y ≤ f ∗(x) + f (y), ∀x , y ∈ RN

Hence fix x 6= 0, and for any M > 0, take y = M x
‖x‖ .

f ∗(x) ≥ Mx · x

‖x‖
− f
(
M

x

‖x‖
)

f ∗(x) ≥ Mx · x

‖x‖
− max
‖x‖≤M

f

f ∗(x)

‖x‖
≥ M − 1

‖x‖
max
‖x‖≤M

f

lim
‖x‖→+∞

f ∗(x)

‖x‖
= +∞



Take
N = 1, f (x) = |x |.

Compute
f ∗(x) = sup

y∈R

[
x · y − f (y)

]
x ∈ R

f ∗(x) = sup
y∈R

[
x · y − |y |

]
x ∈ R

f ∗(x) =

{
0 |x | ≤ 1

+∞ otherwise



From Young inequality show Holder inequality in integral version
(1/p + 1/q = 1).∫ b

a
|fg |dx ≤

(∫ b

a
|f |pdx

) 1
p
(∫ b

a
|g |qdx

) 1
q

By Young inequality:

|f (x)|
‖f ‖p

· |g(x)|
‖g‖q

≤ 1

p

(
|f (x)|
‖f ‖p

)p

+
1

q

(
|g(x)|
‖g‖q

)q

1

‖f ‖p‖g‖q

∫
Ω
|fg |dx ≤ ‖f ‖

p
p

p‖f ‖pp
+
‖g‖qq
q‖g‖qq

= 1



Rule north-west determinants.

Definition
A symmetric matrix of order n: the north-west submatrices are

A1 = (a11), . . .A2 =

(
a11 a12

a21 a22

)
. . . . . . ...

A3 =

( a11 a12 a13

a21 a22 a23

a31 a32 a33

)
. . . .. . . . . . .An = A



The following result holds true

Theorem
A symmetric matrix of order n.

I A positive definite ⇐⇒

detAk > 0, ∀k = 1, . . . , n.

I A negative definite ⇐⇒

(−1)kdetAk > 0, ∀k = 1, . . . , n

(det A1 < 0, detA2 > 0, det A3 < 0 . . . )



Exercise

A =

−3 1 2
1 −9 −5
2 −5 −8


Compute

|A1| = −3

|A2| = 26

|A3| = −117

A is negative definite.



Exercise

A =

10 −1 −3
−1 1 1
−3 1 4


Compute

|A1| = 10

|A2| = 9

|A3| = 23

A is positive definite.



Exercise
Given

f (x1, x2) = 4x2
1 + 2x2

2 + 2
√

2x1x2

the associated matrix is

A =

(
4
√

2√
2 2

)
Find the eigenvalues of A.

A− λI =

(
4− λ

√
2√

2 2− λ

)
|A− λI | = λ2 − 6λ+ 6 = 0

λ1,2 = 3±
√

3

A is positive definite.



Penalty and barrier functions
Penalty Method
Problem: min f under the constraint g(x) ≤ 0.
Consider the constraint g(x) ≤ 0. The idea of penalty is to have

P(x) =

{
0 g(x) ≤ 0

> 0 g(x) > 0



This can be achieved using the operation

max(0, g(x))

which returns the maximum of the two values. We can make the
penalty more regular by using

(max{g(x1, x2, . . . , xN), 0})2.

This is the quadratic penalty function.
In general

(max{g(x1, x2, . . . , xN), 0})p p ≥ 1

I p = 1 linear penalty function: this function may not be
differen-tiable at points where g(x) = 0.

I p = 2. This is the most common penalty function.



Given a function g+(x1, . . . , xN) = max{g(x1, x2, . . . , xN), 0} with
g ∈ C 1 then φ(x) = (max{g(x), 0})2 is C 1 and

Dφ(x) =

{
2g(x)Dg(x) if g(x) > 0

0 if g(x) ≤ 0

Hence
Dφ(x) = 2g+(x)Dg(x).



Penalty method
Penalty method replaces a constrained optimization problem by an
unconstrained problems whose solutions ideally converge to the
solution of the original constrained problem. First we have
converted the constraints into penalty functions, then we add all
the penalty functions on to the original objective function and
minimize from there: minimize

Fk(x) = f (x) +
k

2
(max{g(x), 0})2

We multiply the quadratic penalty function by k
2 . The factor k > 0

controls how severe the penalty is for violating the constraint.



Solve the minimum problem under the constraint g ≤ 0

min f (x1, x2) = ‖x‖2 x = (x1, x2) ∈ R2

g(x) = x1 + x2 − 2 ≤ 0



We consider

g+(x1, x2) =

{
x1 + x2 − 2 x1 + x2 − 2 > 0

0 x1 + x2 ≤ 2
(11)



Introduce an artificial penalty for violating the constraint: we are
trying to minimize f hence we add value when the constraint is
violated.

Fk(x) = f (x) +
k

2
(g+(x))2 , k = 1, 2, . . .

Fk(x) = x2
1 + x2

2 +
k

2

(
max((x1 + x2 − 2), 0)

)2

k=1,2,. . .



Making the gradient{
∂Fk
∂x1

= 2x1 + k
(

max((x1 + x2 − 2), 0)
)

= 0
∂Fk
∂x2

= 2x2 + k
(

max((x1 + x2 − 2), 0)
)

= 0



x2 = x1

x1 = −k max(x1 − 1, 0) =

{
−k(x1 − 1) x1 − 1 > 0

0 x1 − 1 ≤ 0

x2 = −k max(x2 − 1, 0) k = 1, 2, . . .



I Assume x1 − 1 > 0, x2 − 1 > 0 then (1 + k)x1 = k
x1 = x2 = k

1+k (not admissible since we assume x1 − 1 > 0,
x2 − 1 > 0 )

I Assume x1 − 1 ≤ 0, x2 − 1 ≤ 0 then x1 = x2 = 0

The solution is
x1 = x2 = 0



Solve the minimum problem under the constraint g ≤ 0

min f (x1, x2) = (x1 − 1)2 + (x2 − 1)2

g(x) = x1 + x2 − 2 ≤ 0

Fk(x) = f (x) +
k

2
(g+(x))2

Fk(x) = (x1 − 1)2 + (x2 − 1)2 +
k

2

(
max((x1 + x2 − 2), 0)

)2

k=1,2,. . .



{
∂Fk
∂x1

= 2(x1 − 1) + k
(

max((x1 + x2 − 2), 0)
)

= 0
∂Fk
∂x2

= 2(x2 − 1) + k
(

max((x1 + x2 − 2), 0)
)

= 0



x2 = x1

x1 − 1 = −k max(x1 − 1, 0) =

{
−k(x1 − 1) x1 − 1 > 0

0 x1 − 1 ≤ 0

x2 − 1 = −k max(x2 − 1, 0) k = 1, 2, . . .



I Assume x1 − 1 > 0, x2 − 1 > 0 then x1 = x2 = 1 (not possible
since we assume x1 − 1 > 0, x2 − 1 > 0)

I Assume x1 − 1 ≤ 0, x2 − 1 ≤ 0 then x1 = x2 = 1.

The solution is
x1 = x2 = 1

.



Solve the minimum problem under the constraint g ≤ 0

min f (x1, x2) = (x1 − 1)2 + (x2 − 2)2

g(x) = x1 + x2 − 2 ≤ 0

Fk(x) = f (x) +
k

2
(g+(x))2

Fk(x) = (x1 − 1)2 + (x2 − 2)2 +
k

2

(
max((x1 + x2 − 2), 0)

)2



{
∂Fk
∂x1

= 2(x1 − 1) + k
(

max((x1 + x2 − 2), 0)
)

= 0
∂Fk
∂x2

= 2(x2 − 2) + k
(

max((x1 + x2 − 2), 0)
)

= 0



x2 − 2 = x1 − 1

x1 − 1 = −k

2
max(2x1 − 1, 0)

x2 − 2 = −k

2
max(2x2 − 3, 0)

x1 − 1 + k
2 (2x1 − 1) = 0 (1 + k)x1 = 1 + k

2

x1 =
1 + k

2

1 + k
x2 =

3k
2 + 2

k + 1

k → +∞

x1 =
1

2
x2 =

3

2



More generally, f : RN → R penalty method for minK f with
K : gi (x) ≤ 0, i = 1, . . .M is
Set

P(x) =
∑

i=1,...,M

max{0, gi (x)}2

and minimize

min[f (x) +
k

2
P(x) x ∈ Rn k ∈ N]



Barrier functions.
In a constrained optimization a barrier function is a continuous
function whose value on a point increases to infinity as the point
approaches the boundary of the feasible region of an optimization
problem. They are used to replace inequality constraints by a
penalizing term in the objective function that is easier to handle.
Assumption: The set of strictly feasible points,
{x : gi (x) < 0, i = 1, ...m} is nonempty.

φ(x) =
M∑
i=1

log(−gi (x))

∇φ(x) =
M∑
i=1

1

gi (x)
∇(gi (x))



We consider

min f (x) +
M∑
i=1

Igi (x)≤0(x)

Igi (x) =

{
+∞ gi (x) > 0

0 gi (x) ≤ 0

and the approximation by adding the log barrier function

Fθ(x) = f (x)− 1

θ

M∑
i=1

log(−gi (x))

with θ a positive large number.



The idea in a barrier method is to avoid that points approach the
boundary of the feasible region.



Next, we consider the minimization problem

min[f (x)− 1

θ

M∑
i=1

log(−gi (x))],

gi (x) < 0, i = 1, . . .M

whose stationary condition is

θ∇f (x)−
M∑
i=1

1

gi (x)
∇(gi (x)) = 0,

with condition
gi (x) < 0, i = 1, . . .M

c ∈ R different from 0. We consider the minimization problem

min
K

(cx + cy),

x + y ≤ 1, x ≥ 0, y ≥ 0.



We have M = 3
g1(x , y) = x + y − 1 ≤ 0

g2(x , y) = −x ≤ 0

g3(x , y) = −y ≤ 0

The domain K is described by the constraints x + y ≤ 1, x ≥ 0,
y ≥ 0.



This is the feasible set.

f (x , y) = cx + cy

We have f (0, 0) = 0 f (0, 1) = c f (1, 0) = c f (x , y) = c if
x + y = 1.
If c > 0 f (0, 0) = 0.
If c < 0 f (x , y) = c with x + y = 1.



c ∈ Rn.

min[cT x − 1

θ

M∑
i=1

log(−gi (x))],

with gi linear functions.
Fix c ∈ R. We consider the minimization problem

min
K

(cx + cy),

and its approximation, θ > 0

min[(cx + cy)− 1

θ
(log(−x − y + 1) + log(x) + log(y)),

x + y < 1, x > 0, y > 0.

Fθ(x , y) = (cx + cy)− 1

θ
(log(−x − y + 1) + log(x) + log(y))



Discuss the approximate problem.

Fθ(x , y) = (cx + cy)− 1

θ
(log(−x − y + 1) + log(x) + log(y))

Making the gradient

θc − 1

x + y − 1
− 1

x
= 0

θc − 1

x + y − 1
− 1

y
= 0.

θcx(x + y − 1)− x − x − y + 1 = 0

θcy(x + y − 1)− y − x − y + 1 = 0



Hence
θcx2 − (θc(1− y) + 2)x + 1− y = 0,

θcy2 − (θc(1− x) + 2)y + 1− x = 0.

Fix
θc = t .

Recall that θ is a positive large number

x2 − ((1− y) +
2

t
)x +

1− y

t
= 0,

y2 − ((1− x) +
2

t
)y +

1− x

t
= 0.



First we consider

x2 − ((1− y) +
2

t
)x +

1− y

t
= 0,

∆ = ((1− y) +
2

t
)2 − 4

1− y

t
= (1− y)2 +

4

t2

√
∆ =

√
(1− y)2 +

4

t2
= |1− y |

√
1 +

4

t2(1− y)2



For x small √
1 + x ≈ 1 +

1

2
x√

1 +
4

t2(1− y)2
≈ 1 +

2

t2(1− y)2

x1,2 ≈
1

2
[(1− y) +

2

t
± (1− y)]

x1,2 ≈

{
(1− y) + 1

t
1
t



Finally we get {
x + y ≈ 1 + 1

θc c < 0 θ large.

x = y ≈ 1
θc c > 0 θ large.



Go back to Lagrange multiplier method.

The problem is the following Given f : RN → R, h : RN → RP , find

min{f (x) : x ∈ RNs.t.hi (x) = 0, i = 1, . . . ,P} (12)



Fritz-John Necessary Conditions:

Theorem
Let I an open subset of RN , f : I → R, h : I → RP , functions
∈ C 1(I ) and x0 ∈ I . If there exists an open neighborhood U of an
admissible point x0 of RN such that

f (x0) ≤ f (x) ∀x ∈ U ∩ {x ∈ I : h(x) = 0}

then there exist λ0 and µ = (µ1, . . . , µP) such thatλ0
∂f
∂xi

(x0) +
∑P

j=1 µj
∂hj
∂xi

(x0) = 0, i = 1, . . . ,N

(λ0, µ) 6= 0, h(x0) = 0



For the proof:

Fk(x) = f (x) +
1

2
‖x − x0‖2 +

k

2

P∑
i=1

(hi (x))2

Take the minimum in a closed ball of centrum x0 and radius δ.
Then, say xk the sequence of minimum points,

F(xk) = f (xk) +
1

2
‖xk − x0‖2 +

k

2

P∑
i=1

(hi (xk))2 ≤ F(x0) = f (x0)



Hence k
2

∑P
i=1(hi (xk))2 is bounded and

lim
k→+∞

hi (xk) = 0 ∀i = 1, . . .P.

Using the Bolzano-Weierstrass theorem we may select a
subsequence such that

lim
k→+∞

xk = x̂ hi (x̂) = 0

Moreover

f (x̂) +
1

2
‖x̂ − x0‖2 ≤ f (x0)

that is
x̂ = x0

.



For k large, by Fermat’s theorem, recalling

Fk(x) = f (x) +
1

2
‖x − x0‖2 +

k

2

P∑
i=1

(hi (x))2

∂Fk

∂xi
(xk) =

∂f

∂xi
(xk) + (xk,i − x0,i ) +

P∑
j=1

khj(xk)
∂hj
∂xi

(xk) = 0,

i=1,. . . ,N



∂Fk

∂xi
(xk) =

∂f

∂xi
(xk) + (xk,i − x0,i ) +

P∑
j=1

khj(xk)
∂hj
∂xi

(xk) = 0,

i=1,. . . ,N

Define Lk , µk ∈ RP

Lk =

1 +
P∑
j=1

(khj(xk))2

 1
2

,

λk0 =
1

Lk
, µki =

khi (xk)

Lk

then

||(λk0 , µk)||2 =

(
1

Lk

)2

+
P∑
j=1

(
khj(xk)

Lk

)2

=

=

(
1

Lk

)2
1 +

p∑
j=1

(khj(xk))2

 = 1



By compactness the sequence

(λk0 , µ
k)k∈N

converges, up to a subsequence, for k → +∞ to (λ0, µ), such that
||(λ0, µ)|| = 1. Hence dividing by Lk , we get

λk0
∂f

∂xi
(xk) +

(xk,i − x0,i )

Lk
+ +

P∑
j=1

µkj
∂hj
∂xi

(xk) = 0

and recalling that, up to a subsequence, xk → x0, and
(λk0 , µ

k)→ (λ0, µ) we get the first order condition.



Maximizing Entropy

Probem: find the discrete probability distribution

{p1, p2, . . . , pn}

with maximal information entropy.
In other words, we wish to maximize the Shannon entropy:

e(p1, p2, . . . , pn) = −
n∑

j=1

pj log2 pj .

(ignore the positivity constraints ≥ 0: it will be satisfied
automatically



For this to be a probability distribution the sum of the probabilities
pi must equal 1, so our constraint is:

e(p1, p2, . . . , pn) =
n∑

j=1

pj = 1.

We use Lagrange multipliers to find the point of maximum entropy,
p ∗, across all discrete probability distributions p. We require that:

∂

∂p
(f + λ(e − 1))

∣∣∣∣
p=p ∗

= 0,

,



This gives a system of n equations:

∂

∂pk

−
 n∑

j=1

pj log2 pj

+ λ

 n∑
j=1

pj − 1


∣∣∣∣∣∣
pk=p∗k

= 0.



Carrying out the differentiation of these n equations, we get

−
(

1

ln 2
+ log2 p

∗
k

)
+ λ = 0.

This shows that all p∗k are equal . By using the constraint we find

p∗k =
1

n
.

Hence, the uniform distribution is the distribution maximizes the
entropy.



Fluid Equilibria M. Levi SIAM News 2020
Water levels equalize in communicating vessels.

We have n different shaped containers connected with small tubes
at their bases with valves closed. We see that the level of water in
the container k is xk . Let ak(y) the cross sectional area of the
container k . The volume of the water within is∫ xk

0
a(y)dy ,

with potential energy given by∫ xk

0
ya(y)dy ,

and total potential energy given by

n∑
k=1

∫ xk

0
ya(y)dy



Now open the valves: the total potential energy settles to its least
value preserving the total volume (corresponding to equal levels).
From an optimization point of view we have to minimize

F (x1, x2, . . . xk) =
n∑

k=1

∫ xk

0
ya(y)dy ,

under the constraints

n∑
k=1

∫ xk

0
a(y)dy = V

L(x1, x2, . . . xk) =
n∑

k=1

∫ xk

0
ya(y)dy + λ

( n∑
k=1

∫ xk

0
a(y)dy − V

)
Carrying out the differentiation, we see that the Lagrange
multiplier λ is (minus) the common water level.



Optimization techniques.
Optimization with constraints. Next we consider a generalization
for problem with unilateral constraints of the Lagrange Multipliers
Method.
The problem is the following Given f : RN → R and
g : RN → RM , h : RN → RP , find

min {f (x) : x ∈ RNs.t. gi (x) ≤ 0, i = 1, . . . ,M,
hi (x) = 0, i = 1, . . . ,P} (13)



I Linear programming: affine constraints and a linear objective
function. The goal of linear programming is to find the values
of the variables that maximize or minimize the objective
function.

I Non Linear programming. Non linear programming includes
I quadratic programming: objective function f is quadratic and

the constraints are affine functions,
I convex optimization: minimizing convex functions over convex

sets. Example of a convex optimization problem

f (x) =
1

2
xTAx ,

over RN convex set, with A a symmetric of order N definite
positive matrix.



The standard convex problem is f : I → R, f convex g : I → RM ,
g convex h : I → RP h affine

g = (g1, g2, . . . , gM) h = (h1, h2, . . . , hP)

min f (x), under the constraints g(x) ≤ 0, h(x) = 0.
Observe that if gi is convex then the set Ki = {x : gi (x) ≤ 0} is a
convex set since x , y ∈ Ki , λ ∈ [0, 1]

gi (λx + (1− λ)y) ≤ λgi (x) + (1− λ)gi (y) ≤ 0,

and
∩i=1,...,MKi

is convex.



Constraints: affine functions.
Consider the constraint gi (x) ≤ 0 with gi linear function Take for
example the constraint domain K described x + y ≤ 1, x ≥ 0,
y ≥ 0.



Then we add a constraint x ≤ 1/2

Add a new constraint such that the feasible set is not empty and
draw the feasible set



A closed half-space can be written as a linear inequality:

a1x1 + a2x2 + · · ·+ aNxN ≤ b

where N is the dimension of the space. We are interested to closed
convex sets regarded as the set of solutions to the system of linear
inequalities (these inequality can produce an unbounded set as
well):

a11x1 + a12x2 + · · ·+ a1NxN ≤ b1

a21x1 + a22x2 + · · ·+ a2NxN ≤ b2

...
...

...
...

aM1x1 + aM2x2 + · · ·+ aMNxN ≤ bM

where M is the number of half-spaces defining the set where

Ax ≤ b

where A is an M × N matrix, x is an N × 1 column vector of
variables, and b is an M × 1 column vector of constants.



A polyhedron in RN is the intersection of a finite number of half
spaces.
It is often written as K = {Ax ≤ b}, where A is an M × N matrix
of constants, x is an N × 1 column vector of variables , b is an
M × 1 column vector of constants.



In the picture in the plane we have a bounded closed convex set: if
the objective function is linear the optima are not in the interior
region: the occur at the corners or vertices of the feasible polygonal
region. The optimum is not necessarily uniquely assumed: it is
possible that a set of optimal solutions cover an edge.



Consider the linear optimization problem

min cT x subject to x ∈ K

with
K = {x ∈ RN : Ax ≤ b}.

If K describes a bounded set and x∗ is an optimal solution to the
problem, then x∗ is either an extreme point (vertex) of K or lies on
a face F ⊂ K of optimal solutions.



Karush-Kuhn-Tucker conditions
The Karush-Kuhn-Tucker (KKT) conditions are first-order
necessary conditions for a solution to be optimal.
x0 = arg minx f (x) such that g(x) ≤ 0, h(x) = 0 The Lagrangian
L : RN × RM

+ × RP associated to the optimization problem

L(x , λ, µ) = f (x) +
∑

i=1,...,M

λigi (x) +
∑

i=1,...,P

µihi (x),

with λ, µ ∈ RM
+ × RP .



A point (x0, λ
0, µ0) is a KKT point if

∂L
∂xi

(x0, λ
0, µ0) = 0, i = 1, . . . ,N

g(x0) ≤ 0, h(x0) = 0, λ0
i ≥ 0, i = 1, . . . ,M,

λ0
i gi (x0) = 0, i = 1, . . . ,M,



We refer to λi as the Lagrange multiplier associated with the ith
inequality constraint gi (x) ≤ 0; we refer to µ as the Lagrange
multiplier associated with the i-th equality constraint hi (x) = 0.
The vectors λ and µ are called Lagrange multiplier vectors
associated with the problem or the dual variables.



Karush-Kuhn-Tucker conditions

min f (x1, x2) = (x1 − 1)2 + (x2 − 2)2

g(x) = x1 + x2 − 2 ≤ 0



I Lagrangian

L(x1, x2, λ) = (x1 − 1)2 + (x2 − 2)2 + λ(x1 + x2 − 2)

I Stationary condition

∂L
∂x1

=
∂

∂x1
((x1 − 1)2 + (x2 − 2)2) + λ

∂

∂x1
(x1 + x2 − 2) = 0

∂L
∂x2

=
∂

∂x2
((x1 − 1)2 + (x2 − 2)2) + λ

∂

∂x2
(x1 + x2 − 2) = 0

I Admissibility (feasible) condition

x1 + x2 − 2 ≤ 0

I Multiplier sign: non negativity of the multiplier

λ ≥ 0

I Complementary slackness condition

λ(x1 + x2 − 2) = 0.



Find the solution. By the complementary slackness condition

λ(x1 + x2 − 2) = 0,

we have that λ = 0 or x1 + x2 − 2 = 0.
If λ = 0 then L(x1, x2, 0) = (x1 − 1)2 + (x2 − 2)2, and

DL(x1, x2, 0) = (2(x1 − 1), 2(x2 − 2)),

whose stationary point is (1, 2). This is not an admissible point.



Let x1 + x2 − 2 = 0 then x2 = 2− x1,

Dx1L = 2(x1 − 1) + λ = 0

Dx2L = 2(x2 − 2) + λ = 0,

then x2 = 2− x1 and x1 − 1 = x2 − 2

x1 =
1

2
, x2 =

3

2
λ = 1



Fritz John Conditions
Fritz John (Berlin, 14 June 1910 -New Rochelle,10 February 1994)
Optimization with constraints.
The problem is the following Given f : RN → R and
g : RN → RM , h : RN → RP , find

min {f (x) : x ∈ RNs.t. gi (x) ≤ 0, i = 1, . . . ,M,
hi (x) = 0, i = 1, . . . ,P} (14)



Necessary Conditions: Fritz John Theorem.

Theorem
Let I an open subset of RN , f : I → R, g : I → RM , h : I → RP ,
functions ∈ C 1(I ) and x0 ∈ I . If there exists an open neighborhood
U of an admissible point x0 of RN such that

f (x0) ≤ f (x) ∀x ∈ U ∩ {x ∈ I : g(x) ≤ 0, h(x) = 0}

then there exist λ0, λ = (λ1, . . . , λM) and µ = (µ1, . . . , µP) such
that

i)
λ0

∂f
∂xi

(x0) +
∑M

j=1 λj
∂gj
∂xi

(x0) +
∑P

j=1 µj
∂hj
∂xi

(x0) = 0, i = 1, . . . ,N

λigi (x0) = 0, i = 1, . . . ,M, (λ0, λ) ≥ 0, (λ0, λ, µ) 6= 0

g(x0) ≤ 0, h(x0) = 0

(15)



Fk(x) = f (x) +
1

2
‖x − x0‖2 +

k

2

(
M∑
i=1

g+
i (x)2 +

P∑
i=1

hi (x)2

)

Remark
Assume that f has a local minimum point in x = x0 then

F(x) = f (x) +
1

2
‖x − x0‖2

has a local strict minimum point in x = x0.

F(x0) = f (x0).

Locally, for x 6= x0

F(x) = f (x) +
1

2
‖x − x0‖2 ≥ f (x0) +

1

2
‖x − x0‖2 > f (x0) = F(x0)



By the definition of constrained minimum point and the continuity
of f ,g and h we can consider δ > 0 such that
x ∈ B(x0, δ) ∩ {x ∈ I : g(x) ≤ 0, h(x) = 0}

f (x0) ≤ f (x)

gi (x) < 0 if gi (x0) < 0



Then we consider

Fk(x) = f (x) +
1

2
‖x − x0‖2 +

k

2

(
M∑
i=1

g+
i (x)2 +

P∑
i=1

hi (x)2

)

where g2
i (x)+ = (max{gi (x), 0})2 is a C 1 function with gradient

2g+
i (x)Dgi (x).



By Weierstrass theorem, there exists xk minimum point of Fk in
B(x0, δ).
In particular we have

Fk(xk) ≤ Fk(x0) = f (x0) (16)

(since gi (x0) ≤ 0 and hi (x0) = 0).



Moreover, by compactness, the sequence {xk}k∈Nconverges up to
a subsequence to a point x∗ belonging to the set. We are going to
show that

x∗ = x0

First we show the admissibility of x∗

gi (x
∗) ≤ 0, i = 1, . . . ,M, and hi (x

∗) = 0, i = 1, . . . ,P. (17)



From (16)

M∑
i=1

g+
i (xk)2 +

P∑
i=1

hi (xk)2 ≤ 2

k

(
f (x0)− f (xk)− 1

2
‖xk − x0‖2

)
and by the continuity of gi , hi we have as k →∞

M∑
i=1

g+
i (x∗)2 +

P∑
i=1

hi (x
∗)2 ≤ 0

hence since

gi (x)+ =

{
gi (x) gi (x) > 0

0 gi (x) ≤ 0

gi (x
∗) ≤ 0, i = 1, . . . ,M, and hi (x

∗) = 0, i = 1, . . . ,P. (18)



Moreover from (16), we have

f (xk) +
1

2
‖xk − x0‖2 ≤ Fk(xk) ≤ f (x0)

and passing to the limit as k →∞

f (x∗) +
1

2
‖x∗ − x0‖2 ≤ f (x0). (19)

From (18), x∗ ∈ {x ∈ I : g(x) ≤ 0, h(x) = 0} hence
f (x∗) ≥ f (x0). By (19)

f (x∗) ≥ f (x0) ≥ f (x∗) +
1

2
‖x∗ − x0‖2.



It follows

f (x∗) ≥ f (x∗) +
1

2
‖x∗ − x0‖2.

Then
‖x∗ − x0‖2 = 0

hence
x∗ = x0.

Since xk → x0, we have that as k is large enough xk ∈ B(x0, δ)
then, by Fermat’s theorem, recalling

Fk(x) = f (x) +
1

2
‖x − x0‖2 +

k

2

(
M∑
i=1

g+
i (x)2 +

P∑
i=1

hi (x)2

)

where g2
i (x)+ = (max{gi (x), 0})2 is a C 1 function with gradient

2g+
i (x)Dgi (x) we get



∂Fk

∂xi
(xk) =

∂f

∂xi
(xk) + (xk,i − x0,i ) +

M∑
j=1

kg+
j (xk)

∂gj
∂xi

(xk)

+
P∑
j=1

khj(xk)
∂hj
∂xi

(xk) = 0, i = 1, . . . ,N

(20)



Define Lk , λk0 ∈ R, λk ∈ RM , µk ∈ RP

Lk =

1 +
M∑
j=1

(kg+
j (xk))2 +

P∑
j=1

(khj(xk))2

 1
2

, (21)

λk0 =
1

Lk
, λki =

kg+
i (xk)

Lk
, µki =

khi (xk)

Lk
(22)



then

||(λk0 , λk , µk)||2 =

(
1

Lk

)2

+
M∑
j=1

(
kg+

j (xk)

Lk

)2

+

p∑
j=1

(
khj(xk)

Lk

)2

=

=

(
1

Lk

)2
1 +

M∑
j=1

(
kg+

j (xk)
)2

+

p∑
j=1

(khj(xk))2

 = 1



By compactness the sequence

(λk0 , λ
k , µk)k∈N

converges, up to a subsequence, for k → +∞ to (λ0, λ, µ), such
that ||(λ0, λ, µ)|| = 1. Hence dividing by Lk , we get



λk0
∂f

∂xi
(xk) +

(xk,i − x0,i )

Lk
+

M∑
j=1

λkj
∂gj
∂xi

(xk) +
P∑
j=1

µkj
∂hj
∂xi

(xk) = 0

(23)
and recalling that, up to a subsequence, xk → x0, and
(λk0 , λ

k , µk)→ (λ0, λ, µ) we get the first condition in (15).



From (21) passing to the limit, since λk0 , λ
k ≥ 0, we get λ0, λ ≥ 0.

Lei i such that gi (x0) < 0, then gi (xk) < 0. We have
max{gi (xk), 0} = 0 hence λki = 0. We conclude since if gi (x0) < 0,
we have

λigi (x0) = 0.

Similarly for other i , hence we get λigi (x0) = 0 for any
i = 1, . . . ,M getting the condition in (15).



Karush-Kuhn-Tucker conditions
W. Karush, Minima of Functions of Several Variables with
Inequalities as Side Constraints - M.Sc. Dissertation, Dept. of
Mathematics, Univ. of Chicago, Chicago, Illinois, 1939.
Kuhn, H. W.; Tucker, A. W., Nonlinear programming -
Proceedings of 2nd Berkeley Symposium, Berkeley, University of
California Press, 1951, pp. 481-492.



Karush-Kuhn-Tucker conditions
The Karush-Kuhn-Tucker (KKT) conditions are first-order
necessary conditions for a solution to be optimal.
x0 = arg minx f (x) such that g(x) ≤ 0, h(x) = 0 The Lagrangian
L : RN × RM

+ × RP associated to the optimization problem

L(x , λ, µ) = f (x) +
∑

i=1,...,M

λigi (x) +
∑

i=1,...,P

µihi (x),

with λ, µ ∈ RM
+ × RP .



A point (x0, λ
0, µ0) is a KKT point if

∂L
∂xi

(x0, λ
0, µ0) = 0, i = 1, . . . ,N

g(x0) ≤ 0, h(x0) = 0, λ0
i ≥ 0, i = 1, . . . ,M,

λ0
i gi (x0) = 0, i = 1, . . . ,M,

λi : the Lagrange multiplier associated with the ith inequality
constraint gi (x) ≤ 0;
µ: Lagrange multiplier associated with the i-th equality constraint
hi (x) = 0.
The vectors λ and µ are called Lagrange multiplier vectors
associated with the problem or the dual variables.



Non negativity constraints We consider the following class of
problems

min{f (x) : x ∈ RNsuch that xi ≥ 0, i = 1, . . . ,N} (24)

(x ≥ 0 means xi ≥ 0 i = 1, . . . ,N).



We obtain

Df (x0)− λ = 0

x0 ≥ 0, λ ≥ 0, λx0 = 0

hence λi = ∂f
∂xi

(x0) and

∂f

∂xi
(x0) ≥ 0 if x0,i = 0

∂f

∂xi
(x0) = 0 if x0,i > 0



box constraints.
Consider the following class of problems

min{f (x) : x ∈ RNsuch that ai ≤ xi ≤ bi , i = 1, . . . ,N}

where a, b ∈ RN with ai < bi . We consider the Lagrangian

L(x , λ) = f (x) + λ0(a− x) + λ1(x − b)

We obtain

Df (x0)− λ0 + λ1 = 0

a ≤ x0 ≤ b

(a− x0)λ0 = 0, (x0 − b)λ1 = 0, (λ0, λ1) ≥ 0



We set

Ja = {j : x0,j = aj}, Jb = {j : x0,j = bj}, J0 = {j : aj < x0,j < bj}

If j ∈ Ja, and x0,j < bj , then λ1,j = 0. It follows

∂f

∂xj
(x0) = λ0,j ≥ 0.

Similarly, if j ∈ Jb, and x0,j > aj then λ0,j = 0 and

∂f

∂xj
(x0) = −λ1,j ≤ 0.

If j ∈ J0, then λ0,j = λ1,j = 0 hence

∂f

∂xj
(x0) = 0



The necessary conditions are

∂f

∂xj
(x0) ≥ 0 if x0,j = aj

∂f

∂xj
(x0) ≤ 0 if x0,j = bj

∂f

∂xj
(x0) = 0 if aj < x0,j < bj .



λ0 6= 0: constraints qualification

Corollary

Under the same assumption of the Fritz John Theorem, we define
the set of active indices I ∗(x0) = {i ∈ {1, . . . ,M} : g(x0) = 0}
(active constraints) and we assume that the #(I ∗(x0) + P) vectors
{Dgi (x0), i ∈ I ∗(x0)}, {Dhi (x0), i = 1, . . . ,P} are linearly
independent. Then there exists λ = (λ1, . . . , λM) and
µ = (µ1, . . . , µP) such that

∂f
∂xi

(x0) +
∑m

j=1 λj
∂gj
∂xi

(x0) +
∑p

j=1 µj
∂hj
∂xi

(x0) = 0, i = 1, . . . ,N

λigi (x0) = 0, i = 1, . . . ,M,

g(x0) ≤ 0, h(x0) = 0, λ ≥ 0

(25)



From Fritz John theorem we know that there exist λ0, λ and µ,
not all 0, such that the Fritz John conditions hold true. We wish
to show that λ0 6= 0. For sake of contradiction assume λ0 = 0,
then recalling that λi = 0 if gi (x0) < 0, we get

∑
j∈I∗(x0)

λj
∂gj
∂xi

(x0) +

p∑
j=1

µj
∂hj
∂xi

(x0) = 0 i = 1, . . . ,N.

By the linear independence of the vectors we get λ = 0 and µ = 0.
This is not possible. Then λ0 6= 0 and we may divide by λ0 in the
first Fritz John condition and we obtain (25).



Convex Optimization and Slater’s constraint qualification
The interior of a convex set may be empty. For example, line
segments in RN have no interior points when n ≥ 2: the closed line
segment [0, 1] in the two-dimensional space R2 has no interior
points, if we consider the line segment as a subset of a line in R,
then it has interior points and its interior is equal to the
corresponding open line segment ]0, 1[.
In RN : if C is given by the set of points (1− λ)x + λy for
x , y ∈ RN and λ ∈ [0, 1] (a line-segment), then relint(C ) is given
by the set of points(1− λ)x + λy , with λ ∈ (0, 1).

x ∈ relint(C ) ⇐⇒ ∀x ∈ C ,∃γ > 0 s.t. x + γ(x − x) ∈ C .

I From the theory on convex set: every nonempty convex of RN

set has a nonempty relative interior.



Slater condition: Convex case f : RN → R convex and g are
convex functions and h = Ax − b.

C = ∩Mi=0 dom(gi )

There exists x∗ ∈ relint(C ) such that

I gi (x
∗) < 0, i = 1, . . . ,M

I Ax∗ = b.



Jacobian Matrix.
Given f : I ⊂ RN → RM the jacobian matrix of the function f in x
is given by

J f =


∂f1
∂x1

· · · ∂f1
∂xN

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xN

, (J f )ij =
∂fi (x)

∂xj
.

If M = N, then f is a function from RN to itself and the Jacobian
matrix is a square matrix: we may compute its determinant, the
Jacobian determinant.



Sufficient Condition. Assume f and gi , i = 1 . . . ,M C 1 and
convex functions and h(x) = Ax − b. Assume KKT conditions
hold true. Then x0 solves the minimum constrained problem.



Indeed λ ≥ 0 for any x ∈ {x ∈ I : g(x) ≤ 0, h(x) = 0},

f (x) ≥ f (x) + λg(x) + µh(x).

By the assumption on h,

h(x) = h(x0) + Jh(x0)(x − x0)

By the assumption of convexity of gi

g(x) ≥ g(x0) + Jg(x0)(x − x0)

Since λ ≥ 0 we have

h(x) = h(x0) + Jh(x0)(x − x0)

f (x) ≥ f (x0) + Df (x0)(x − x0)

λg(x) ≥ λg(x0) + λJg(x0)(x − x0)



f (x) ≥ f (x) + λg(x) + µh(x) ≥ f (x0) + Df (x0)(x − x0)

+λg(x0) + λJg(x0)(x − x0) + µh(x0) + µJh(x0)(x − x0)

≥ f (x0) +
(
Df (x0) + Jg(x0)Tλ+ Jh(x0)Tµ

)
(x − x0) = f (x0)

Hence x0 is a minimum point.



Duality.
Lagrange Dual Function

L(x , λ, µ) = f (x) + λg(x) + µh(x),

For each pair (λ, µ) with λ ≥ 0, the Lagrange dual function

G(λ, µ) = inf
x
L(x , λ, µ) = inf

x
{f (x) + λg(x) + µh(x)},

subject to λ ≥ 0. This problem is called the Lagrange dual
problem associated with the primal problem.



The Lagrange dual problem is a convex optimization problem,
since the objective to be maximized is concave and the constraint
is convex: indeed the dual function is the pointwise infimum of a
family of affine functions of (λ, µ), hence it is concave.
If the Lagrangian L is unbounded below in the variable x , the dual
function takes on the value −∞.



It gives us a lower bound on the optimal value p∗ of the primal
optimization problem.
p∗ = minx f (x) such that
gi (x

∗) ≤ 0, i = 1, . . . ,M; hi (x
∗) = 0, i = 1, . . . ,P

Indeed assume that x∗ is a feasible point, this means

{gi (x∗) ≤ 0, i = 1, . . . ,M; hi (x
∗) = 0, i = 1, . . . ,P}



Then ∑
i=1,...,M

λigi (x
∗) +

∑
i=1,...,P

µihi (x
∗) ≤ 0

By the previous inequality

L(x∗, λ, µ) ≤ f (x∗)

Hence
G(λ, µ) ≤ f (x∗),

for any x∗ feasible point.



We have to solve the following problem

max
λ,µ
G(λ, µ)

under the constraint λ ≥ 0 and (λ, µ) such that G(λ, µ) > −∞ .
The term dual feasible for the dual problem stands to describe a
pair (λ, µ) subject to λ ≥ 0 and G(λ, µ) > −∞ .



We refer to (λ∗, µ∗) as dual optimal or optimal Lagrange
multipliers if they are optimal for the dual problem
The optimal value of the Lagrange dual problem, which we denote
d∗, is, by definition, the best lower bound on p∗ that can be
obtained from the Lagrange dual function.
Generally the weak duality property hold

d∗ ≤ p∗



γ = p∗ − d∗

This is the optimal duality gap of the original problem. The
optimal duality gap is always nonnegative.
It is the gap between the optimal value of the primal problem and
the best (greatest) lower bound on it that can be obtained from
the Lagrange dual function.
The weak duality inequality holds when d∗ and p∗ are infinite.
Indeed if the primal problem is unbounded below, p∗ = −∞, then
d∗ = −∞, this means that the dual problem is infeasible.
Conversely, if the dual problem is unbounded above, so that
d∗ = +∞, we have p∗ = +∞, so that the primal problem is
infeasible.



Example.
Linear Programming I

{min cT x Ax = b, xi ≥ 0 i = 1, . . . ,N}

G(λ, µ) = inf
x
L(x , λ, µ) = inf

x
{cT x − λx + µT (Ax − b))}

= inf
x
{(c − λ+ ATµ)T x − bTµ)}

subject to λ ≥ 0.



Since a linear function is bounded below only when it is identically
zero, we obtain

G(λ, µ) =

{
−bTµ c − λ+ ATµ = 0

−∞ otherwise

If λ ≥ 0 and c − λ+ ATµ = 0 then −bTµ is a lower bound for the
optimal solution of the primal optimization problem p∗.



Thus we have a lower bound that depends on some parameters
λ, µ .

max−bTµ

c − λ+ ATµ = 0

λ ≥ 0

or

max−bTµ

c + ATµ ≥ 0



Linear Programming II

{min cT x Ax ≤ b, }



G(λ, µ) = inf
x
L(x , λ) = inf

x
{cT x + λT (Ax − b))}

= −bTλ+ inf
x
{(c + ATλ)T x)}

subject to λ ≥ 0. Since a linear function is bounded below only
when it is identically zero, we obtain

G(λ) =

{
−bTλ c + ATλ = 0

−∞ otherwise



The dual variable λ is dual feasible if λ ≥ 0 and c + ATλ = 0 If
λ ≥ 0 and c + ATλ = 0 then −bTλ is a lower bound for the
optimal solution of the primal optimization problem p∗.
Thus we have a lower bound that depends on some parameters λ .

max−bTλ

c + ATλ = 0

λ ≥ 0



A previous example: primal and dual problem

min f (x1, x2) = min[(x1 − 1)2 + (x2 − 2)2]

g(x) = x1 + x2 − 2 ≤ 0



I Lagrangian

L(x1, x2, λ) = (x1 − 1)2 + (x2 − 2)2 + λ(x1 + x2 − 2)

I Stationary condition

∂L
∂x1

=
∂

∂x1
((x1 − 1)2 + (x2 − 2)2) + λ

∂

∂x1
(x1 + x2 − 2) = 0

∂L
∂x2

=
∂

∂x2
((x1 − 1)2 + (x2 − 2)2) + λ

∂

∂x2
(x1 + x2 − 2) = 0

I Feasible condition
x1 + x2 − 2 ≤ 0

I Multiplier sign: non negativity of the multiplier

λ ≥ 0

I Complementary slackness condition

λ(x1 + x2 − 2) = 0.



Find the solution By the complementary slackness condition

λ(x1 + x2 − 2) = 0,

we have that λ = 0 or x1 + x2 − 2 = 0.
If λ = 0 then L(x1, x2) = (x1 − 1)2 + (x2 − 2)2, and

DL(x1, x2) = (2(x1 − 1), 2(x2 − 2)),

whose stationary point is (1, 2). This is not an admissible point.
Let x1 + x2 − 2 = 0 then x2 = 2− x1,

Dx1L = 2(x1 − 1) + λ = 0

Dx2L = 2(x2 − 2) + λ = 0,

then x2 = 2− x1 and x1 − 1 = x2 − 2

x1 =
1

2
, x2 =

3

2
λ = 1

The value

p∗ = f (
1

2
,

3

2
) =

1

2
(p primal )



For each pair (λ) with λ ≥ 0, the Lagrange dual function

G(λ) = min
x
L(x , λ) = min

x
{(x1 − 1)2 + (x2 − 2)2 + λ(x1 + x2 − 2)},

subject to λ ≥ 0. This problem is called the Lagrange dual
problem associated with the primal problem.



∂L
∂x1

=
∂

∂x1
((x1 − 1)2 + (x2 − 2)2) + λ

∂

∂x1
(x1 + x2 − 2) = 0

∂L
∂x2

=
∂

∂x2
((x1 − 1)2 + (x2 − 2)2) + λ

∂

∂x2
(x1 + x2 − 2) = 0

x1 − 1 = −λ
2

x2 − 2 = −λ
2

x1 + x2 − 2 = −λ+ 1

G(λ) =
λ2

2
− λ2 + λ = −λ

2

2
+ λ



G (λ) concave

d∗ = max
λ≥0

G (λ) =
1

2

(d dual)
d∗ = p∗

Strong duality: d∗ = p∗



Duality in Linear Programming
KKT conditions
Healthy Diet.
A healthy diet contains m different nutrients in quantities at least
equal to b1 , . . . , bM .
We choose nonnegative quantities x1, . . . ,xN of N different
foods. One unit quantity of food j contains an amount aij of
nutrient i , and has a cost of cj .

I The goal is to determine the cheapest diet that satisfies the
nutritional requirements.



Linear Programming Primal Problem
minx c

T x ,

Ax ≥ b,

x ≥ 0

where c ∈ RN , b ∈ RM , x ∈ RN , and A is an M × N matrix.



N = 4, M = 2

Table: VITAMIN FOR UNIT

FOOD: 1 2 3 4
———————————–

A VITAMIN 0 2 3 1
C VITAMIN 1 1 3 0

Table: Global quantity of vitamine for survival

A VITAMIN 20
———————————–

C VITAMIN 15



Constraints: 

2x2 + 3x3 + x4 ≥ 20

x1 + x2 + 3x3 ≥ 15.

x1 ≥ 0,

x2 ≥ 0,

x3 ≥ 0,

x4 ≥ 0,

Matrix Form

A =


0 2 3 1

1 1 3 0



x1

x2

x3

x4

 ≥


20

15


Table: COST BY UNIT

FOOD 1 2 3 4
———————————–

COST 15 10 20 12



Minimize
15x1 + 10x2 + 20x3 + 12x4

under the constraints.
Primal Problem

min 15x1 + 10x2 + 20x3 + 12x4

2x2 + 3x3 + x4 ≥ 20

x1 + x2 + 3x3 ≥ 15.

x1 ≥ 0,

x2 ≥ 0,

x3 ≥ 0,

x4 ≥ 0,



Minimize
c1x1 + c2x2 + c3x3 + c4x4

with the constraints

a11x1 + a12x2 + a13x3 + a14x4 ≥ b1

a21x1 + a22x2 + a23x3 + +a24x4 ≥ b2.

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,



Primal-Dual Problems
min cT x

Ax ≥ b

x ≥ 0


max bTu

ATu ≤ c ,

u ≥ 0

Dual Problem.
The dual problem is the following

max bTu

ATu ≤ c,

u ≥ 0

Maximize
b1u1 + b2u2 = 20u1 + 15u2



Constraints

AT =


0 1
2 1
3 3
1 0



u1

u2

 ≤


15
10
20
12




u2 ≤ 15

2u1 + u2 ≤ 10

3u1 + 3u2 ≤ 20

u1 ≤ 12

u1 ≥ 0

u2 ≥ 0



Maximize
20u1 + 15u2

under the constraints

u2 ≤ 15

2u1 + u2 ≤ 10

3u1 + 3u2 ≤ 20

u1 ≤ 12.

u1 ≥ 0, u2 ≥ 0

Exercise
Draw the constrained set.

In general form

max
u

bTu, ATu ≤ c u ≥ 0

Theorem
Weak duality theorem. Let x∗ primal feasible and u∗ dual
feasible Then cT x∗ ≥ bTu∗



Gap
γ := p∗ − d∗ = min

x
cT x −max

u
bTu ≥ 0

Theorem
Let x∗ primal feasible and u∗ dual feasible If cT x∗ = bTu∗ then
cT x∗ = cT xmin and bTu∗ = bTumax

Proof.
Let x be primal feasible and u dual feasible. Then

cT x∗ = bTu∗ ≤ cT x

and
bTu∗ = cT x∗ ≥ bTu



KKT conditions.
The Lagrangian L : RN × RM

+ × RP associated to the optimization
is given by

L(x , λ, µ) = f (x) + λg(x) + µh(x), (26)

with λ, µ ∈ RM
+ × RP . The KKT conditions can be formulated as

follows 
∂L
∂xi

(x0, λ, µ) = 0, i = 1, . . . ,N

λigi (x0) = 0, i = 1, . . . ,M,

g(x0) ≤ 0, h(x0) = 0, λ ≥ 0



The following example shows that the KKT conditions are
necessary, but not sufficient for the existence of a minimizer.
Consider the minimum constrained optimization problem with

f (x1, x2) = x1x2 − 9
4

g1(x1, x2) = −x1 − x2 + 3 ≤ 0

g2(x1, x2) = −x2 + x1 ≤ 0.



−x1 − x2 + 3 ≤ 0 ⇐⇒ x2 ≥ −x1 + 3

−x2 + x1 ≤ 0 ⇐⇒ x2 ≥ x1

The Karush-Kuhn-Tucker conditions for x0 = (x1, x2) are

λ1 ≥ 0, λ2 ≥ 0

fx1(x0) + λ1g
1
x1

(x0) + λ2g
2
x1

(x0) = 0,

fx2(x0) + λ1g
1
x2

(x0) + λ2g
2
x2

(x0) = 0,

λ1g
1(x0) = 0

λ2g
2(x0) = 0

g1(x0) ≤ 0, g2(x0) ≤ 0



Since
g1
x1

(x1, x2) = −1 g1
x2

(x1, x2) = −1

g2
x1

(x1, x2) = 1 g2
x2

(x1, x2) = −1

and the conditions becomes

x0
2 − λ1 + λ2 = 0,

x0
1 − λ1 − λ2 = 0,

λ1(−x0
1 − x0

2 + 3) = 0

λ2(−x0
2 + x0

1 ) = 0

−x0
1 − x0

2 + 3 ≤ 0, −x0
2 + x0

1 ≤ 0

λ1 ≥ 0, λ2 ≥ 0

(27)



λ1, λ2 can not be both null, since x0
1 = x0

2 = 0 is not feasible.
If λ2 6= 0 and λ1 = 0 then −x0

2 + x0
1 = 0 x0

1 = x0
2 and{

x0
2 + λ2 = 0,

x0
1 − λ2 = 0,

x0
1 = −x0

2 Hence x0
1 = x0

2 = 0: this is not possible.



If λ1 6= 0 and λ2 = 0 then
−x0

1 − x0
2 + 3 = 0

x0
2 − λ1 = 0,

x0
1 − λ1 = 0

Hence

x0
1 = x0

2

−2x0
1 + 3 = 0

Finally

x0
1 = x0

2 =
3

2

which is not a local minimizer.



Exercise. Produce two examples of functions with local minima
and maxima in 3-d.



N=3. A open set. f ∈ C 2(A) P0 = (x0, y0, z0) ∈ A.

fx(x0, y0, z0) = 0 fy (x0, y0, z0) = 0 fz(x0, y0, z0) = 0

In P0 = (x0, y0, z0)

fxx > 0

∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ > 0

∣∣∣∣∣∣
fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

∣∣∣∣∣∣ > 0

then P0 = (x0, y0, z0) is a local minimum point.
In P0 = (x0, y0, z0)

fxx < 0

∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ > 0

∣∣∣∣∣∣
fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

∣∣∣∣∣∣ < 0

then P0 = (x0, y0, z0) is a local maximum point



Exercise. In the definition of strict convexity 1−d. Take
x ∈ (x1, x2) Take

λ =
x − x2

x1 − x2

Compute 1− λ.

1− λ =
x1 − x

x1 − x2

Find x
x = λx1 + (1− λ)x2

f (x) < f (x1) +
f (x2)− f (x1)

x2 − x1
(x − x1)

Exercise. Show that f (x) = c can not have three or more solutions



Exercise
f (x , y , z) = x2 + z2y + zy

I Compute the gradient of f

I Find the points verifying Df (x , y , z) = 0.

I Compute the Hessian matrix.

I Compute the Hessian matrix in the points verifying
Df (x , y , z) = 0

I Compute the eigenvalues

I Classify the points.

Exercise
f (x , y) = ex + ey x + y = 2

f (x , y) = x + 2y x2 + 4y2 = 1



f : A ⊂ Rn → R
I f differenziable in x if ∃p∈ Rn such that

lim
h→0

f (x + h)− f (x)− ph

‖h‖
= 0,

I p = Df (x). Indeed h = tei = (0, . . . , 0, 0, t, 0 . . . , 0)

lim
t→0

f (x + tei )− f (x)− tpi
|t|

= 0

We have

lim
t→0

f (x + tei )− f (x)− tpi
t

= 0

and

lim
t→0

f (x + tei )− f (x)

t
= pi

Then f admits partial derivatives and

pi = fxi



n=2

f (x , y)− f (x0, y0)− ∂f (x0,y0)
∂x (x − x0)− ∂f (x0,y0)

∂y (y − y0)√
(x − x0)2 + (y − y0)2

→ 0

as √
(x − x0)2 + (y − y0)2 → 0

f (x , y)− f (x0, y0) =

∂f (x0, y0)

∂x
(x−x0)+

∂f (x0, y0)

∂y
(y−y0)+o

(√
(x − x0)2 + (y − y0)2

)
I continuity lim(x ,y)→(x0,y0) f (x , y) = f (x0, y0)

A open set ⊂R2 and f : A→ R
f differentiable in (x , y)
I there exist first partial derivatives of f

I lim(h,k)→(0,0)
f (x+h,y+k)−f (x ,y)−fx (x ,y)h−fy (x ,y)k√

h2+k2
= 0

Give the definition n = 3



Directional derivatives
λ direction
(x = (x1, x2, . . . , xn))

∂f

∂λ
(x) = lim

t→0

f (x + tλ)− f (x)

t

In R2 λ = (α, β) (x , y) ∈ R2

∂f

∂λ
(x , y) = lim

t→0

f (x + tα, y + tβ)− f (x , y)

t

Give the definition in R3

Theorem. Assume f differentiable in x ∈ A ⊂ Rn. Then f admits
directional derivative in x with respect to the direction λ and

∂f

∂λ
(x) = Df (x) · λ



f (x , y) =

{
x2y

x2+y2 (x , y) 6= (0, 0)

0 (x , y) = (0, 0)

In (0, 0) λ = (α, β)

∂f

∂λ
(0, 0) = lim

t→0

f (tα, tβ)− f (0, 0)

t
=

t3α2β

t3(α2 + β2)
=

α2β

α2 + β2

fx(0, 0) = 0 fy (0, 0) = 0: the formula does not hold.
Differentiability in (0, 0) of f

f (h, k)− f (0, 0)√
h2 + k2

=
h2k

(h2 + k2)
√
h2 + k2

k = αh
αh2h

(h2 + α2h2)
√
h2 + α2h2

=
αh3

h2(1 + α2)|h|
√

1 + α2



Exercise. Study existence of the following limit, where β is a real
positive parameter.

lim
(x ,y ,z)→(0,0,0)

|xyz |β√
x2 + y2 + z2



Exercise. Study differentiability in (0, 0, 0) of

f (x , y , z) = |xyz |α,

where α is a real positive parameter.



Exercise. Study differentiability in (0, 0, 0) of

f (x , y , z) = (x − a)(y − b)(z − c),

where a, b, c are real parameters.



Super-differential, Sub-differential, Hamilton-Jacobi equations
Differential, Super-differential, Sub-differential f : A ⊂ RN → R
I Differential of f in x . f is differentiable in x if there exists

p ∈ RN such that

lim
h→0

f (x + h)− f (x)− ph

‖h‖
= 0,

I p = Df (x). Indeed take h = tei = (0, . . . , 0, 0, t, 0 . . . , 0)

lim
t→0

f (x + tei )− f (x)− tpi
|t|

= 0

Since

lim
t→0

f (x + tei )− f (x)− tpi
t

= 0

we have

lim
t→0

f (x + tei )− f (x)

t
= pi

Hence f admits partial derivatives and

pi = fxi



liminf limsup f : A→ R. x0 accumulation point. ε > 0

lim inf
x→x0

f (x) = lim
ε→0

(inf{f (x) : x ∈ A ∩ Bε(x0) \ {x0}}).

lim sup
x→x0

f (x) = lim
ε→0

(sup{f (x) : x ∈ A ∩ Bε(x0) \ {x0}}).

As ε shrinks, the infimum of the function over the ball is monotone
increasing,

lim inf
x→x0

f (x) = sup
ε>0

(inf{f (x) : x ∈ A ∩ Bε(x0) \ {x0}}).

As ε shrinks, the supremum of the function over the ball is
monotone decreasing,

lim sup
x→x0

f (x) = inf
ε>0

(sup{f (x) : x ∈ A ∩ Bε(x0) \ {x0}}).



Sub-differential and Super-differential Sets

Definition
A open set. f : A→ R and x ∈ A accumulation point.

I super-differential of f in x is the set

D+f (x) :=

{
p ∈ RN : lim sup

h→0

f (x + h)− f (x)− ph

‖h‖
≤ 0

}
,

I sub-differential of f in x is the set

D−f (x) :=

{
p ∈ RN : lim inf

h→0

f (x + h)− f (x)− ph

‖h‖
≥ 0

}
,



Definition
A set Ω ⊂ RN is said convex if for any x and y ∈ Ω,

λx + (1− λ)y ∈ Ω for any λ ∈ [0, 1].

Proposition

The sets D+f (x) and D−f (x) are convex sets.



D+f (x) :=

{
p ∈ RN : lim sup

h→0

f (x + h)− f (x)− ph

‖h‖
≤ 0

}
,

Take p1 ∈ D+f (x), and p2 ∈ D+f (x), we wish to show, for
λ ∈ [0, 1]

λp1 + (1− λ)p2 ∈ D+f (x).

Since

lim sup
h→0

f (x + h)− f (x)− p1h

‖h‖
≤ 0

and

lim sup
h→0

f (x + h)− f (x)− p2h

‖h‖
≤ 0



Then

lim sup
h→0

f (x + h)− f (x)− (λp1 + (1− λ)p2)h

‖h‖
=

lim sup
h→0

λ(f (x + h)− f (x)) + (1− λ)(f (x + h)− f (x))− (λp1 + (1− λ)p2)h

‖h‖
≤

λ lim sup
h→0

f (x + h)− f (x)− p1h

‖h‖
+(1−λ) lim sup

h→0

f (x + h)− f (x)− p2h

‖h‖
≤ 0



Proposition

The sets D+f (x) and D−f (x) are closed sets.

D+f (x) is closed ⇐⇒ C (D+f (x)) is open.
Let p ∈ C (D+f (x)) and xn → x such that

lim sup
h→0

f (xn + h)− f (xn)− ph

‖h‖
≥ δ > 0



We take p′ such that ‖p − p′‖ < ε
We compute

∣∣ f (xn + h)− f (xn)− p′h

‖h‖
− f (xn + h)− f (xn)− ph

‖h‖
∣∣ =

|(p − p′)h|
‖h‖

≤
∥∥p − p′

∥∥
Take ε = δ

2



f (xn + h)− f (xn)− p′h

‖h‖
≥ f (xn + h)− f (xn)− ph

‖h‖
−δ

2
≥ δ−δ

2
=
δ

2
> 0

Hence C (D+f (x)) is open.



Definition

1− d

I super-differential of f in x is the set

D+f (x) :=

{
p ∈ R : lim sup

h→0

f (x + h)− f (x)− ph

|h|
≤ 0

}
,

I sub-differential of f in x is the set

D−f (x) :=

{
p ∈ R : lim inf

h→0

f (x + h)− f (x)− ph

|h|
≥ 0

}
,



Dini’s derivatives

:

Λ−f (x) = lim sup
h→0−

f (x + h)− f (x)

h
, Λ+f (x) = lim sup

h→0+

f (x + h)− f (x)

h
,

λ−f (x) = lim inf
h→0−

f (x + h)− f (x)

h
, λ+f (x) = lim inf

h→0+

f (x + h)− f (x)

h
.



We have

λ+f (x) ≤ Λ+f (x) and λ−f (x) ≤ Λ−f (x),

and all Dini’s derivatives are equal to u′(x) if u is differentiable in
x .
Recall

lim sup
x→x0

−f (x) = − lim inf
x→x0

f (x)

Proposition

Then the super-differential of f in x is the set

D+f (x) = {p ∈ R : Λ+f (x) ≤ p ≤ λ−f (x)}

and the sub-differential of f in x is the set

D−f (x) = {p ∈ R : Λ−f (x) ≤ p ≤ λ+f (x)} .



Indeed let h > 0. p ∈ D+f (x)

lim sup
h→0+

f (x + h)− f (x)− ph

h
≤ 0

⇐⇒ lim sup
h→0+

f (x + h)− f (x)

h
≤ p ⇐⇒ p ≥ Λ+f (x)

Let h < 0. p ∈ D+f (x)

lim sup
h→0−

f (x + h)− f (x)− ph

−h
≤ 0 ⇐⇒ lim sup

h→0−

f (x + h)− f (x)

−h
≤ −p

⇐⇒ −p ≥ − lim inf
h→0−

f (x + h)− f (x)

h
⇐⇒ p ≤ λ−f (x)



Example Let us consider f : R→ R defined by f (x) = −|x | The
only point at which f is not differentiable is x = 0. At this point

D+f (0) = {p ∈ R : Λ+f (0) ≤ p ≤ λ−f (0)}

Λ+f (0) = lim
h→0+

−h
h

= −1

λ−f (0) = lim
h→0−

h

h
= 1

D+f (0) = [−1, 1]

D−f (0) = ∅



Example Let us consider f : R→ R defined by f (x) = |x | The only
point at which f is not differentiable is x = 0. At this point

D+f (0) = ∅

D−f (0) = [−1, 1]

Observe that the subdifferential at any point x < 0 is the singleton
set {−1}, while the subdifferential at any point x > 0 is the
singleton set {1}.



Generalization of the fact that the derivative of a function
differentiable at a local minimum or a local maximum is zero:
a) If u has a local maximum in x , then 0 ∈ D+u(x).
(b) If u has a local minimum in x , then 0 ∈ D−u(x).
Proof. If u has a local maximum in x , then u(x + h)− u(x) ≤ 0
for every h, close to zero. Hence

u(x + h) ≤ u(x) + 0 · h + o(h)

for h→ 0 and thus
0 ∈ D+u(x).

The other case is similar.



Examples of Hamilton-Jacobi equations
Examples of first order non linear PDEs Hamilton-Jacobi equations
The Eikonal Equation

|Du| = f (x),

related to geometric optics



Stationary Hamilton-Jacobi equation:

H(x , u,Du) = 0,

x ∈ Ω ⊂ RN , where H : Ω× R× RN → R is called Hamiltonian in
general convex in p (in the gradient-variable).



The Hamilton-Jacobi-Bellman equation: It is a particular
Hamilton-Jacobi equation important in control theory and
economics.In this case the Hamiltonian has the form:

H(x , u(x), p) := sup
a∈A
{λu − b(x , a) · p − f (x , a)},

where A is subset of RM . b (dynamic function ) and f (the cost
function) For any fixed λ > 0

λu + sup
a∈A
{−b(x , a) · p − f (x , a)},



Solutions of

λu + sup
a∈A
{−b(x , a) · p − f (x , a)} = 0,

u is known as the value function associated to the corresponding
control problem.



Lipschitz functions Let I = (a, b) ⊂ R→ R. f : I → R
Lipschitzian if there exists L > 0 such that

|f (x)− f (y)| ≤ L|x − y | ∀x , y ∈ I

I Lipschitz functions are continuous ( δ = ε
L).

I A derivable function with bounded derivative is Lipschitzian



Exercises

I If f and g are Lipschitz functions then f+g is a Lipschitz
function (show and find the Lipschitz constant)

I If f and g are Lipschitz and bounded functions then fg is a
Lipschitz function (show and find the Lipschitz constant)



Example of optimal control problem

A. Minimal exit time from an open set. Consider a physical
system satisfying the state equation

Ẋ (s) = α(s)

in the open interval Ω = (−1, 1), with the initial condition

X (0) = x .

We only consider bounded controls α:

|α(s)| ≤ 1 for all s.

Such a control is called admissibile.



Problem: find α such that the system attains the boundary of Ω in
the smallest possible time T (x).

Proposition

(a) We have T (x) = 1− |x | for all x ∈ [−1, 1].

(b) For each fixed x ∈ [−1, 1] an optimal control is the constant
function

α(s) = sign of x , 0 ≤ s ≤ T (x).



If 0 ≤ t < 1− |x |, then for every admissibile control α we have

|Xα
x (t)| =

∣∣∣x +

∫ t

0
α(s) ds

∣∣∣ ≤ |x |+ |t| < 1,

whence
T (x) ≥ 1− |x |

Moreover, for x 6= 0 we have equality in this estimate if and only if
t = 1− |x | and α(s) = sign of x for all 0 ≤ s ≤ t.



Remark

I The proof shows that for x 6= 0 the control is unique, and
depends on the time only via the system:

α(s) = sign of X (s).

Controls of this type, called feedback controls, have much
interest in the applications because they allow us to modify
the state of the system on the basis of the sole knowledge of
its actual state.

I In case x = 0 there are two optimal controls: the constant
functions α = 1 and α = −1.



The function T : [−1, 1]→ R satisfies the following conditions:

I T > 0 in (−1, 1) and T (−1) = T (1) = 0;

I T is Lipschitzian;

I |T ′(x)| − 1 = 0 in every point x ∈ (−1, 1) where T is
differentiable.



Next we observe ∣∣T ′(x)
∣∣ = 1

x ∈ (−1, 1) and T (−1) = T (1) = 0 (1-d version of
|Du(x)| − 1 = 0)



I By Rolle’s Theorem we see that there are not differentiable
solutions
If the real-valued function T is continuous on the closed
interval [−1, 1], differentiable on the open interval (−1, 1),
and T (−1) = T (1), then there exists at least one ζ in the
open interval (−1, 1) such that T ′(ζ) = 0
Hence |T ′(ζ)| 6= 1. Not possible.

I many solutions a.e.: they satisfy the equation almost
everywhere (at each of their points of differentiability).

I Select one solution.
It suffices to observe that in every point x 6= 0 we have

D+T (x) = D−T (x) = T ′(x) = ±1,

while in x = 0 we have already seen that

D+T (0) = [−1, 1] and D−T (0) = ∅;



It suggests a notion of weak solution. Consider a more general
case. By stationary Hamilton–Jacobi- equations we understand a
class of first-order nonlinear partial differential equations of the
type

H(x , u,Du(x)) = 0, (28)

Michael G. Crandall, P-L. Lions:
They introduced the notion of viscosity solutions: this has had an
effect on the theory of partial differential equations.
M. G. Crandall and P.-L. Lions, Viscosity solutions of
Hamilton-Jacobi Equations, Trans. Amer. Math. Soc. 277 (1983),
1-42.



Definition
u ∈ C (Ω) is a viscosity solution of (28) if

H(x0, u(x0), p) ≤ 0 for every x0 ∈ Ω and p ∈ D+u(x0),
(29)

and

H(x0, u(x0), p) ≥ 0 for every x0 ∈ Ω and p ∈ D−u(x0).
(30)



Remark

I If u is differentiable in a point x , then (29) and (30) are
equivalent to H(x , u(x),Du(x)) = 0.



Proposition

A. Exit time. The minimal exit time is a Lipschitzian viscosity
solution of the equation∣∣T ′(x)

∣∣ = 1 in (−1, 1).

Indeed in x = 0 we have already seen that

D+T (0) = [−1, 1] and D−T (0) = ∅;

hence
|p| ≤ 1 ∀p ∈ D+T (0)



Controlled evolution equation

Ẋ (s) = b(X (s), α(s)), X (0) = x ,

where b : RN × A→ RN .
α is the control function α : [0,+∞)→ A



u(x) = inf
α
J(x , α(·)) = inf

α

∫ +∞

0
f (X (s), α(s))e−λsds

Take n = 1 b(x , a) = 1, f (x , a) = x
Compute u. Show that u verifies

λu + sup
a∈A
{−b(x , a) · u′(x)− f (x , a)} = 0.



Subsolution
u ∈ C (Ω) is defined to be a subsolution of H(x , u(x),Du(x)) = 0
in the viscosity sense if for any point x0 ∈ Ω and any C 1 function
φ such that u − φ has a local max in x0 we have

H(x0, u(x0),Dφ(x0)) ≤ 0

Supersolution
u ∈ C (Ω) is defined to be a supersolution of H(x , u(x),Du(x)) = 0
in the viscosity sense if for any point x0 ∈ Ω and any C 1 function
φ such that u − φ has a local min in x0, we have

H(x0, u(x0),Dφ(x0)) ≥ 0

Viscosity solution
A continuous function u is a viscosity solution of the PDE if it is
both a supersolution and a subsolution.



Test functions. Show that the conditions for subsolution and
supersolution hold in x = 0.
First, assume that φ(x) is any function differentiable at x = 0 with
φ(0) = u(0) = 1 and φ(x) ≥ u(x) near x = 0. From these
assumptions, it follows that

φ(x)− φ(0) ≥ −|x |

. For positive x , this inequality implies

lim
x→0+

φ(x)− φ(0)

x
≥ −1.

On the other hand, for x < 0, we have that

lim
x→0−

φ(x)− φ(0)

x
≤ 1.

Since φ is differentiable, the left and right limits agree to φ′(0),
and we therefore conclude that

|φ′(0)| ≤ 1.

Thus, u is a subsolution. Moreover u is a supersolution. This
implies that u is a viscosity solution.



The dynamic programming principle
and the Hamilton-Jacobi-Bellman equation
A control problem may be described as a process to influence the
behavior of a dynamical system, in order to achieve a desired result.
If the goal is to minimize a cost function then we speak of an
optimal control problem. More generally, in the method of
dynamical programming we use the notions of the value function
and the optimal strategy.
The value function satisfies, at least formally, a first-order partial
differential equation, the so-called Hamilton-Jacobi-Bellman
equation. Under some hypotheses of regularity, we study how to
find the optimal strategy by using the value function.



u(x) = inf
α
J(x , α(·)) = inf

α

∫ +∞

0
f (X (s), α(s))e−λsds

Take n = 1 b(x , a) = 1, f (x , a) = x

X (s) = x + s

u =
x

λ
+

1

λ2

. Then u verifies

λu + sup
a∈A
{−b(x , a) · u′(x)− f (x , a)} = 0.

On the other hand
λv − v ′(x)− x = 0.

Solutions

v(x) =
x

λ
+

1

λ2
+ ceλx

Selection of the value function



Ordinary differential equations

Ẋ (s) = b(X (s), α(s)), X (0) = x ,

α is the control function, measurable in [0,+∞) that takes its
values in a compact set A. We make assumptions on b such that
for every given x ∈ RN , there exists a unique continuous function
X : [0,∞)→ RN :

Xα
x (t) = x +

∫ t

0
b(X (s), α(s)) ds, t ∈ [0,∞).



b : RN × A→ RN

. Assume that

I b(x , a) ∈ C (RN × A)

I b is Lipschitzian with respect to x ∈ RN for all a ∈ A with a
nonnegative real constant Lb∥∥b(x , a)− b(x ′, a)

∥∥ ≤ Lb
∥∥x − x ′

∥∥ ;

∀(x , a) ∈ RN × A, ∀(x ′, a) ∈ RN × A.

I there exists a nonnegative real constants Mb such that

‖b(x , s)‖ ≤ Mb

for all (x , a) ∈ RN × A.



The value function λ > 0

u(x) = inf
α

∫ +∞

0
f (Xα

x (s), α(s))e−λs ds

for any t > 0
f : RN × A→ R

. Assume that

I f (x , a) ∈ C (RN × A)

I f is Lipschitzian with respect to x ∈ RN for all a ∈ A with a
nonnegative real constant Lf∣∣f (x , a)− f (x ′, a)

∣∣ ≤ Lf
∥∥x − x ′

∥∥ ;

∀(x , a) ∈ RN × A, ∀(x ′, a) ∈ RN × A.

I there exists a nonnegative real constants Mf such that

|f (x , s)| ≤ Mf

for all (x , a) ∈ RN × A.



Example

Ẋ (s) = −X (s) · α(s), X (0) = x

with the constraint on the controls:

|α(s)| ≤ 1.

Xα
x (t) = xe−

∫ t
0 α(s) ds



In the example, take
f (x , a) = |x |

λ = 2

The value function

u(x) = inf
α

∫ ∞
0
|Xα

x (s)| e−2s ds,

where Xα
x (t) is the state.



Proposition

(a) u(x) = |x | /3 for any x ∈ R.

(b) The optimal control is the constant function α = 1.



For any admissible α we have

|Xα
x (t)| =

∣∣∣xe− ∫ t
0 α(s) ds

∣∣∣ ≥ |x | e−t , t ≥ 0

hence ∫ ∞
0
|Xα

x (t)| e−2t dt ≥
∫ ∞

0
|x | e−3t dt = |x | /3.

We have equality taking α(s) = 1 for any s.



The dynamic programming principle is

u(x) = inf
α

(∫ t

0
f (Xα

x (s), α(s))e−λsds + u(Xα
x (t))e−λt

)
for any t > 0.



The Hamilton-Jacobi-Bellman equation
Thanks to the dynamic programming principle we get that the
value function satisfies

λu + max
a∈A
{−Du(x) · b(x , a)− f (x , a)} = 0.

In what follows we assume regularity properties.
u ∈ C 1(RN).



From the Dynamic Programming Principle

u(x) = inf
α

(∫ t

0
f (Xα

x (s), α(s))e−λsds + u(Xα
x (t))e−λt

)
for any t > 0. Take

α(s) = a ∈ A,

with a ∈ A arbitrarily chosen.



u(x)− u(X a
x (t))e−λt

t
≤ 1

t

∫ t

0
f (X a

x (s), a)e−λsds



u(x)− u(X a
x (t))e−λt ± u(X a

x (t))

t
≤ 1

t

∫ t

0
f (X a

x (s), a)e−λsds

u(x)− u(X a
x (t)) + (1− e−λt)u(X a

x (t))

t
≤ 1

t

∫ t

0
f (X a

x (s), a)e−λsds



u(x)− u(X a
x (t))

t
+

(1− e−λt)u(X a
x (t))

t
≤ 1

t

∫ t

0
f (X a

x (s), a)e−λsds

As t → 0
u(x)− u(X a

x (t))

t
→ −Du(x) · b(x , a)

(1− e−λt)u(X a
x (t))

t
→ λu(x)

1

t

∫ t

0
f (X a

x (s), a)e−λsds → f (x , a)



Hence
λu − Du(x) · b(x , a)− f (x , a) ≤ 0,

for all a ∈ A and

λu + max
a∈A
{−Du(x) · b(x , a)− f (x , a)} ≤ 0,

It is possible to show also the reverse inequality (here we do not
give the proof)

λu + max
a∈A
{−Du(x) · b(x , a)− f (x , a)} ≥ 0,

Hence we have

λu + max
a∈A
{−Du(x) · b(x , a)− f (x , a)} = 0.
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