Exercize n. 1 Given the functions $g_{1}(x)=x-3, g_{2}(x)=-(x+2)^{3}$ find th set $\left\{x \in R: g_{1}(x) \leq 0\right.$ and $\left.g_{2}(x) \leq 0\right\}$.
Compute

$$
g_{1}^{+}(x)=\max \left\{0, g_{1}(x)\right\}
$$

and

$$
g_{2}^{+}(x)=\max \left\{0, g_{2}(x)\right\} .
$$

Study the regularity in $x=0$.
Compute

$$
g_{1}^{+}(x)^{2}, g_{2}^{+}(x)^{2}
$$

Study the regularity in $x=0$. Find $F(x)=g_{1}^{+}(x)+g_{2}^{+}(x)$
A is an ($\mathbf{n} \times \mathbf{n}$) symmetric matrix describing the coefficients of the quadratic terms.
$a \in \mathbb{R}^{n} \quad a \leq 0$ means $a_{i} \leq 0 \forall i=1, \ldots, n$
Exercize n. 2 Show the Cauchy-Shwarz inequality for the quadratic form

$$
|A \lambda \cdot \mu| \leq(\sqrt{A \lambda \cdot \lambda})(\sqrt{A \mu \cdot \mu})
$$

for any $\lambda, \mu \in \mathbb{R}^{n}$
where A is a symmetric, positive semidefinite matrix.
Hint: $A \lambda \cdot \mu=A \mu \cdot \lambda$ for any $\lambda, \mu \in \mathbb{R}^{n}$.
Exercize n.3. Let A a symmetric matrix. Consider the quadratic form $A x \cdot x$.
Compute the gradient of $F(x)=A x \cdot x, \quad x \in \mathbb{R}^{n}$,
Compute the Hessian matrix of $F(x)=A x \cdot x, \quad x \in \mathbb{R}^{n}$.
Exercize n.4. Quadratic Programming. Let A is a symmetric, positive definite matrix, $x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}$. Write the Karush-Kuhn-Tucker conditions for the QP minimization problem.

$$
\min \frac{1}{2} A x \cdot x+c x
$$

under the constraint $Q x \leq b, \quad b \in \mathbb{R}^{m} Q$ is an ($\mathrm{m} \times \mathrm{n}$) matrix.
Exercize n.5. Write the Karush-Kuhn-Tucker conditions for the minimization problem

$$
\min f(x) \quad x \geq 0
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R} f$ is a differentiable function.

