
HOPF-LAX FORMULAS
AND RELATED PROBLEMS

PAOLA LORETI

Abstract. This note summarizes several talks I gave on this subject in
the last two years (IHP Paris 2007, Waseda Tokyo 2007, Sapienza Rome
2008, Paul Sebatier Toulouse 2008, Arlington Texas 2008, Imperial Col-
lege London 2009), and it is based on several works in collaboration with
A. Avantaggiati. I will give a complete reference in the bibliography.

1. A brief remaind on Hopf-Lax formula

We assume H smooth, convex, coercive, u0 ∈Lip(RN ), u0 ∈ B(RN ) (B
reads bounded).

H∗(x) = max
y
{xy −H(y)}

As a reference to this part we may refer to L.C. Evans’s book [11], in which
the problem is split in three parts

• Variational Approach.

ũ(x, t) = inf
{ ∫ t

0
H∗(ζ̇(s))ds+ u0(y) : ζ(0) = y, ζ(t) = x

}
• PDEs.

Consider the Cauchy problem for the Hamilton-Jacobi equation

(1)

{
vt +H(Dv) = 0 in (0,+∞)× RN

v(0, x) = u0

• Hopf-Lax formula.

u(x, t) = min
y∈RN

{
tH∗

(
x− y

t

)
+ u0(y)

}
(Hopf − Lax formula)

1.1. Reminds on viscosity solutions. The notion of viscosity solution
was introduced by M. G. Crandall and P. L. Lions [7]. Let us recall their
notion using test function, as introduced in M.G. Crandall, L.C. Evans, and
P.-L. Lions [8], as a book reference we may give [2] and as an explaining paper
we refer to [16], although here we use, to simplify, the vanishing viscosity
method. The key point is that the notion gives a meaning to the solution
of the equation also if the solution has very weak property of regularity (for
example u is just a continuous function or even less).
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The equation to consider is{
uεt +H(Duε)− ε∆uε = 0 in (0,+∞)× RN

u(0, x) = u0

Fix ε > 0 and we consider a subsequence uεj , such that

uεj → u,

next, we consider φ ∈ C1 such that u − φ has a strict maximum at x0.
Assume that u is continuous and differerentiable at x0. Then there exists
φ ∈ C1 such that

u(x0) = φ(x0)

and u− φ has a strict maximum at x0. Since εj is small uεj − φ has a max
in (xεj , tεj ) with

(xεj , tεj ) → (x0, t0).

Moreover,

Duεj (xεj , tεj ) = Dφ(xεj , tεj )

ut(xεj , tεj ) = φt(xεj , tεj )

−∆uεj (xεj , tεj ) ≥ −∆φ(xεj , tεj )

φt(xεj , tεj ) +H(Dφt(xεj , tεj ) = ut(xεj , tεj ) +H(Dut(xεj , tεj ) =

ε∆uεj (xεj , tεj ) ≤ ε∆φ(xεj , tεj )

εj → 0, φ ∈ C1, H continuous...

φt(x0, t0) +H(Dφt(x0, t0) ≤ 0

Then, we are now ready to recall the definition using test function. We
say that u is a (viscosity) subsolution of (2.3) if for every φ ∈ C1. such that
u− φhas a max in x

φt +H(x, u(x), Dφ(x)) ≤ 0

We say that u is a viscosity supersolution if for every φ ∈ C1. such that
u− φ has a min in x

φt +H(x, u(x), Dφ(x)) ≥ 0

A viscosity solution of (2.3) is a viscosity subsolution and a viscosity super-
solution (of (2.3))
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1.2. Equivalence of the three problems. The three problems are equiv-
alent, that is the u = ũ = v (v being the unique viscosity solution of (2.3)).
We give the reference of the complete proof to [11], however here the rewrite
the equivalence between u and ũ to give an idea how to argue in this topic.
We define the trajectory

ζ(s) = y +
s

t
(x− y), 0 ≤ s ≤ t, ˙ ζ(s) =

x− y

t
By definition, for this trajectory

inf
{ ∫ t

0
H∗(ζ(s))ds+u0(y) : ζ(0) = y, ζ(t) = x

}
≤

∫ t

0
H∗(ζ̇(s))ds+u0(y) =∫ t

0
H∗

(
x− y

t

)
ds+ u0(y),

which immediately shows

(2) ũ(x, t) ≤ u(x, t)

Jensen’s inequality gives (H∗convex)

H∗
(

1
t

∫ t

0
ζ̇(s)ds

)
≤ 1
t

∫ t

0
H∗(ζ̇(s))ds

Since ∫ t

0
ζ̇(s)ds = ζ(t)− ζ(0) = x− y

tH∗
(
x− y

t

)
≤

∫ t

0
H∗(ζ̇(s))ds

tH∗
(
x− y

t

)
+ u0(y) ≤

∫ t

0
H∗(ζ̇(s))ds+ u0(y)

Passing to the inf

(3) u(x, t) ≤ ũ(x, t),

hence

(4) u(x, t) = ũ(x, t)

To give just an idea how to pass the equation, it is relevant to show a
property of u, showing a semigroup property.

(5) u(x, t) = min
y∈RN

{
(t− s)H∗

(
x− y

t− s

)
+ u(y, s)

}
Select x̂ such that

u(x, t) = tH∗
(
x− x̂

t

)
+ u0(x̂)

y =
s

t
x+ (1− s

t
)x̂
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x− y

t− s
=
x− x̂

t
=
y − x̂

s

(t− s)H∗
(
x− y

t− s

)
+ u(y, s) = (t− s)H∗

(
x− x̂

t

)
+ u(y, s) ≤

(t− s)H∗
(
x− x̂

t

)
+ sH∗

(
y − x̂

s

)
+ u0(x̂) =

tH∗
(
x− x̂

t

)
+ u0(x̂) = u(x, t)

Passing to the min

(6) min
y∈RN

{
(t− s)H∗

(
x− y

t− s

)
+ u(y, s)

}
≤ u(x, t)

Next, choose z ∈ RN

u(y, s) = sH∗
(
y − z

s

)
+ u0(z)

x− z

t
= (1− s

t
)
x− y

t− s
+
s

t

y − z

s
By the convexity of H∗

H∗
(
x− z

t

)
≤ (1− s

t
)H∗

(
x− y

t− s

)
+
s

t
H∗

(
y − z

s

)
Then

u(x, t) ≤

tH∗
(
x− z

t

)
+ u0(z) ≤ (t− s)H∗

(
x− y

t− s

)
+ sH∗

(
y − z

s

)
+ u0(z) =

(t− s)H∗
(
x− y

t− s

)
+ u(y, s)

The result follows since y can be chosen in arbitrary way.
Now the check how it is possibile to connect the problem to the PDEs,
assuming regularity for the function u and using the semigroup formula.
Fix q ∈ RN h > 0

u(x+ hq, t+ h) = min
y∈RN

{
(t− s)H∗

(
x+ hq − y

h

)
+ u(y, t)

}
≤

hH∗(q) + u(x, t)
From which we deduce that

u(x+ hq, t+ h)− u(x, t)
h

≤ H∗(q)

h→ 0+

qDu+ ut −H∗(q) ≤ 0,
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the inequality being true also for the max yields

ut +H(Du) ≤ 0.

We will not show the other inequality, refering to [11]

2. New Results

In two papers, jointly with Y. Fujita and H. Ishii [9], [10] we worked on
asymptotic questions for large time for the Cauchy problem
(7){

ut(x, t) + αxDu(x, t) +H(Du(x, t)) = f(x) in RN × (0,+∞)
u(x, 0) = u0,

and jointly with A. Avantaggiati, we considered the case f = 0, analyzing
other aspects as Hopf-Lax type formulas, hypercontractivity, entropy-energy
inequality, logarithmic-Sobolev inequalities. From now, we focus on this
subject:

(8)

{
ut(x, t) + αxDu(x, t) +H(Du(x, t)) = 0 in RN × (0,+∞)
u(x, 0) = u0,

As in [3] we begin our analysis considering the one dimensional case

H(p) =
1
2
|p|2 α ∈ R+

and we study{
ut(x, t) + αxux(x, t) + 1

2 |ux|
2 = 0 in R× (0,+∞)

u(0, x) = u0,

constructing the associate semigroup: this is the first step for the formula
which generalizes the well-known Hopf-Lax formula. Indeed the Hopf-Lax
formula can be obtained by the formula given here by limit as α→ 0+. Also
we give extension of known results by showing hypercontractivity, ultracon-
tractivity for the semigroup and by obtaining a class of Sobolev logarithimic
inequalities. In [4] we extend our analysis by considering the problem

ut(x, t) +
N∑
i=1

αixiuxi(x, t) + 1
2

∑N
i=1 |uxi(x, t)|2 = 0 in RN × (0,+∞)

u(0, x) = u0,

We study also the case in which some αi (1 ≤ i ≤ N) could vanish, and this
will give a mixed behaviour.{

ut(x, t) + αxDu(x, t) +H(Du(x, t)) = 0 in RN × (0,+∞)

u(x, 0) = u0,
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As a model of the latter case we may consider

H(s) =
1
p
|s|p

Our work is based on several papers by I. Gentil. A reference to this
arguments is S.G. Bobkov, I. Gentil, M. Ledoux

Three motivations
• Idempotent setting

A very recent theory of S. Maslov describes a new approach to
analysis, known as idempotent analysis, and the theory has recently
interested a large number of mathematicians.
This type of arguments are often used in the minimization process
in the analysis of Hopf-Lax type formulas ( [?]).
We consider the the semiring Rmin = R∪{+∞} with the operations

⊕ := min, � := +
where

0 = +∞, 1 = 0.
In Rmin the idempotent analog of integration on R is defined by the
formula

I(φ) =
∫ ⊕

R
φ(x)dx = inf

x∈R
φ(x),

An idempotent measure on Rmin is defined by the formula

mζ(Y ) = inf
x∈Y

ζ(x)

where ζ ∈ B(R,Rmin), and Y ⊂ R. Here B(R,Rmin) means the set
of functions which are usually bounded (from below) in Rmin, and∫ ⊕

R
φ(x)dmζ =

∫ ⊕

R
φ(x)� ζ(x)dx = inf

x∈R
(φ(x)� ζ(x))

Let us recall the semigroup associated to Ornstein-Uhlenbeck oper-
ator

Ttu0(x) =
∫

R
u0(e−αtx+

√
1− e−2αty)dµ(y)

where the measure µ is given by

µ(x) =
1√
2π
e−

αx2

2 dx

ut − uxx + αxux(x) = 0, u0(x) = u0

What is the idempotent analog ? Which measure?
Candidate of the form∫ ⊕

R
u0(e−αtx+

√
1− e−2αty)dmψ

dmψ invariant measure
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∫ ⊕

R
u0(e−αtx+

√
1− e−2αty)dmψ =∫ ⊕

R
(u0(e−αtx+

√
1− e−2αty)� ψ(y)) =

min
y∈R

(u0(e−αtx+
√

1− e−2αty) + ψ(y))

Definition. dψα(x) is idempotent invariant with respect to the semi-
group Qt if∫ ⊕

R
v(x)�Qtu0(x)dψα(x) =

∫ ⊕

R
u0(x)�Qtv(x)dψα(x)

Theorem 2.1. The measure dψα(x) = αx2 is idempotent invariant
with respect to the semigroup Qt.

∫ ⊕

R
v(x)�Qtu0(x)dψα(x) =∫ ⊕

R
v(x)�min

y
{u0(e−αtx+

√
1− e−2αty) + αy2}dψα(x) =

min
x

{
v(x) + min

y
{u0(e−αtx+

√
1− e−2αty + αy2}+ αx2

}
=

min
x,y
{v(x) + u0(e−αtx+

√
1− e−2αty + α(y2 + x2)} =

We consider the change of variable{√
1− e−2αtx− e−αty = ζ

e−αtx+
√

1− e−2αty = η

This is a linear invertible trasformation{√
1− e−2αtζ + e−αtη = x

e−αtζ +
√

1− e−2αtη = y

Squaring and adding,

ζ2 + η2 = x2 + y2,

min
ζ,η
{v(e−αtη +

√
1− e−2αtζ) + u0(η) + α(ζ2 + η2)} =

min
η
{u0(η) + min

ζ
{v(e−αtη +

√
1− e−2αtζ)}+ αη2} =

= min
η

∫ ⊕

R
v(e−αtη +

√
1− e−2αtζ)dψα(ζ) + u0(η) + αη2} =∫ ⊕

R
u(η)�

∫ ⊕

R
v(e−αtη +

√
1− e−2αtζ)dψα(ζ)dψα(η) =



8 PAOLA LORETI∫ ⊕

R
u0(y)�Qtv(y)dψα(y).

• Ornstein-Ulhenbeck operator We recall the definition of the
Ornstein-Uhlenbeck operator L.

Definition. Given Q = (ai,j)i,j=1,....,n a symmetric and positive def-
inite matrix, and B = (bi,j)i,j=1....n a non null matrix, the Ornstein-
Uhlenbeck operator is Lf(x) =

∑
i,j ai,jDiDjf(x) +BxDf,

The semigroup associated is given by

Ttu0(x) =
∫

Rn

kt(etBx− y)u0(y)dy,

where

kt(x) =
1

(4π)
1
2 (detQt)

1
2

exp(−1
4
Q−1
t x, x),

and

Qt =
∫ t

0
esBQesB

∗
ds{

ut − ε(∆u+ x∇u) + αx∇u+ 1
2 |∇u|

2 = 0 in (0,+∞)× R
u(0, x) = u0 = e−

u0(x)
2ε

Using the Hopf-Cole trasform, we arrive to the solution of{
vt − ε(∆v + x∇v) + αx∇v = 0 in (0,+∞)× R
v(0, x) = v0 = e−

u0(x)
2ε

ε is a small, positive parameter. Solution in the form

v(x, t, ε) = C

∫
R

[
w(z, x, t, ε)]

1
2εdz,

where C does not modify the value of the limit as ε→ 0 and

w(z, x, t, ε) = exp
[
−u0(z)−

(α− ε)
(1− e−2(α−ε)t)

(z − e−(α−ε)tx)2
]

The limit to compute is

lim
ε→0

2ε log
∫

R
[w(z, x, t, ε]

1
2εdz = lim

ε→0
log

[ ∫
R
w(z, x, t, ε)

1
2εdz]2ε

w0(z, x, t) = lim
ε→0

w(z, x, t, ε) = exp
[
−u0(z)−

α

1− e−2αt
(e−αtx− z)2

]
.

Theorem 2.2.

lim
ε→0

2ε log
∫

R
[w(z, x, t, ε]

1
2εdz = log ‖w0(z, x, t)‖L∞

where

‖w0(z, x, t)‖L∞ = sup
z∈R

exp
[
− u0(z)−

α

1− e−2αt
(e−αtx− z)2

]
=
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exp
[
−min

z∈R
[u0(z) +

α

1− e−2αt
(e−αtx− z)2]

]
For the proof we refer to [3]

• 1-d: Hopf-Lax type formulas We take u0 ∈ Lip(R) and we denote
by Lu0 the Lipschitz constant of u0. Generalization of the Hopf-Lax formula

u(x, t) = min
z∈R

[
u0(z) +

α

1− e−2αt
(e−αtx− z)2

]
= Qtu0(x),

which is the Lipschitz solution, in the viscosity sense, to the Hamilton-
Jacobi problem{

ut + αx∇u+ 1
2 |∇u|

2 = 0 in (0,+∞)× R
u(0, x) = u0

Let us observe that there are equivalent representations. For instance, we
can rewrite as

u(x, t) = min
z∈R

[
u0(z) + α

1− e−αt

1 + e−αt

(
e−αtx− z

1− e−αt

)2]
,

Moreover, if we set

y =
z − e−αtx√

1− e−αt
,

we have the following

u(x, t) = min
z∈R

[
u0(e−αtx+

√
1− e−2αtz) + αz2

]
.

We set

Qtu0(x) = min
z∈R

[
u0(e−αtx+

√
1− e−2αtz) + αz2

]
,

Corollary 2.3. The formula holds

u(x, t) = min
y∈R

{
u(y, s) + α

1− e−α(t−s)

1 + e−α(t−s)

(
y − e−α(t−s)x

1− e−α(t−s)

)2}
and we wish to show

Theorem 2.4. For any s and t ∈ (0,+∞)

Qt+s = Qt(Qs), lim
t→0

Qt = I.

Since

Qsu0(x) = min
w∈R

[
u0(e−αsx+

√
1− e−2αsz) + αz2

]
,

we have

Qt(Qsf)(x) = min
z∈R

{
min
w∈R

[
f(e−αs(xe−αt+√

1− e−2αtz) +
√

1− e−2αsw) + αw2

]
+ αz2

}
=
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min
z∈R

{
min
w∈R

[
f(e−α(s+t)x+ e−αs

√
1− e−2αtx+

√
1− e−2αsw) + αw2

]
+ αz2

}
We consider the change of variable{

e−αs
√

1− e−2αtz +
√

1− e−2αsw =
√

1− e−2α(s+t)u

−
√

1− e−2αsz + e−αs
√

1− e−2αtw = v

This is a linear invertible trasformation of R2: (z, w) → (u, v) whose coeffi-
cients determinant is∣∣∣∣ e−αs

√
1− e−2αt

√
1− e−2αs

−
√

1− e−2αs e−αs
√

1− e−2αt

∣∣∣∣ = 1− e−2α(t+s)

Squaring and adding,

(1− e−2α(t+s))(z2 + w2) = (1− e−2α(s+t))u2 + v2,

which gives

z2 + w2 = u2 +
1

1− e−2α(s+t)
v2

Since

min
z∈R

{
min
w∈R

[
f(e−α(s+t)x+e−αs

√
1− e−2αtx+

√
1− e−2αsw)+αw2

]
+αz2

}
=

min
u∈R

{
min
v∈R

[
f(e−α(s+t)x+

√
1− e−2α(t+s)u) + αu2

]
+

α

1− e−2α(t+s)
v2

}
Now, we observe that the sum of the first two terms is constant with

respect to v, hence the minimum with respect to v is attained at v = 0, and,
in conclusion,

min
z∈R

{
min
w∈R

[
f(e−α(s+t)x+e−αs

√
1− e−2αtx+

√
1− e−2αsw)+αw2

]
+αz2

}
=

min
u∈R

[
f(e−α(s+t)x+

√
1− e−2α(t+s)u) + αu2

]
which ends the first part of the proof.

To conclude we consider the representation formula

u(x, t) = Qtu0(x) = min
z∈R

[
u0(z) + α

1− e−αt

1 + e−αt

(
e−αtx− z

1− e−αt

)2]
,

We take z = x, then

u(x, t) ≤ u0(x) + α
1− e−αt

1 + e−αt
x2

u(x, t)− u0(x) ≤ α(1− e−αt)M2 ∀x ∈ [−M,M ],
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where M is any fixed positive number. On the other hand,

min
z∈R

[
u0(z) + α

1− e−αt

1 + e−αt

(
e−αtx− z

1− e−αt

)2]
=

u0(e−αtx) + min
z∈R

[
u0(z)− u0(e−αtx) + α

1− e−αt

1 + e−αt

(
e−αtx− z

1− e−αt

)2]
≥

u0(e−αtx) + min
z∈R

[
−|u0(z)− u0(e−αtx)|+ α

1− e−αt

1 + e−αt

(
e−αtx− z

1− e−αt

)2]
=

u0(e−αtx)−max
z∈R

[
|u0(z)− u0(e−αtx)| − α

1− e−αt

1 + e−αt

(
e−αtx− z

1− e−αt

)2]
=

We set

y =
e−αtx− z

1− e−αt
,

then

u(x, t) ≥ u0(e−αtx)−max
y∈R

{
Lu0 |y| −

α

1 + e−αt
|y|2

}
(1− e−αt)

Next, we set

C = max
|y|

{
Lu0 |y| −

α

1 + e−αt
|y|2

}
,

from which

u(x, t)−u0(x) ≥ u0(e−αtx)−u0(x)−C(1− e−αt) ≥ −(1− e−αt)[Lu0 |x| −C]

Hence in any bounded interval [−M,M ] there exists a constant K such
that

|u(x, t)− u0(x)| ≤ K(1− e−αt),
which ends the proof.
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2.1. Mixed case. We consider the following Cauchy problem{
ut(x, t) + 1

2 |Du(x, t)|
2 +

∑N
i=1 αixiuxi(x, t) = 0 in RN × (0,+∞)

u(0, x) = u0, in RN

We shall use the following assumptions:

u0 ∈ Lip(RN) i.e. |u0(x)− u0(y)| ≤ Lu0 |x− y| ∀x, y ∈ RN

α1, α2, . . . , αN ∈ R+.

We introduce the operator applied to a function f of one variable, xj , by

(Qαj

t f)(xj) = min
yj∈R

[
f(yj) +

αj
1− e−2αjt

(yj − e−αjtxj)2].

We proved that t→ Qtf has the semigroup properties. HenceQα1
t (x1), Qα2

t (x2),
Qα3
t (x3) . . . , Q

αN
t (xN ) are semigroups. Then we define (here α = (α1, α2, . . . , αN ))

(Qαt u0)(x1, . . . , xN ) := (Qα1
t . . . , QαN

t )u0(x1, . . . , xN )

Remark. By the permutability between Qα1
t , Qα2

t , . . . Qαt does not depend
on the order where Qαj

t appears in the formula.

Theorem 2.5. Then the following properties hold true

Qαt (Qαs u0)(x1, . . . , xN ) = (Qαs+tu0)(x1, . . . , xN )

For every compact set K of RN

lim
t→0+

Qαt u0(x1, . . . , xN ) = u0(x1, . . . , xN )

uniformly on K

Qαt (Qαs u0)(x1, . . . , xN ) = Qα1
t . . . , QαN

t Qα1
s , . . . , Q

αN
s (u0) =

(Qα1
t Q

α1
s )(Qα2

t Q
α2
s ) . . . (QαN

t QαN
s )(u0) = Qα1

s+tQ
α2
s+t . . . Q

αN
s+t = Qαs+tu0.

The property is proved. Neverthless it may be useful to give the following
direct proof:

(Qαs u0)(x1, . . . , , sN ) =

min
y∈RN

[
u0(e−α1sx1 +

√
1− e−2α1sy1, . . . ,

e−αNsxN +
√

1− e−2αNsyN ) +
N∑
i=1

αiy
2
i ]

Then
Qαt (Qαs u0)(x1, . . . , , xN ) =

min
z∈RN

{
min
y∈RN

[u0(e−α1s[e−α1tx1 +
√

1− e−2α1tz1] +
√

1− e−2α1sy1, . . . ,

e−αNs[e−αN txN+
√

1− e−2αN tzN ]+
√

1− e−2αNsyN )+
N∑
i=1

αiy
2
i ]+

N∑
i=1

αiz
2
i

}
=
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min
(z,y)∈R2N

{
u0(e−α1(s+t)x1 + e−α1s

√
1− e−2α1tz1 +

√
1− e−2α1sy1, . . . ,

e−αN (s+t)xN + e−αNs
√

1− e−2αN tzN +
√

1− e−2αNsyN ) +
N∑
i=1

αi(y2
i + z2

i )
}

We consider the change of variables{
e−αjs

√
1− e−2αjtzj +

√
1− e−2αjsyj =

√
1− e−2αj(s+t)uj

−
√

1− e−2αjszj + e−αjs
√

1− e−2αjtyj = vj

for j = 1, . . . , N .

u0(e−α1(s+t)x1 + e−α1s
√

1− e−2α1tz1 +
√

1− e−2α1sy1, . . . ,

e−αN (s+t)xN + e−αNs
√

1− e−2αN tzN +
√

1− e−2αN tyN ) +
N∑
i=1

αi(y2
i + z2

i ) =

u0(e−α1(s+t)x1 +
√

1− e−2α1(t+s)u1, . . . ,

e−αN (s+t)xN +
√

1− e−2αN (s+t)uN ) +
N∑
i=1

αiu
2
i +

N∑
i=1

αi

1− e−2α1(t+s)
v2
j

We call F (x, t, s, y, z) the function which appears on the left hand side and
Q(x, t, s, u, v) in the right one, the above equality reads

F (x, t, s, y, z) = Q(x, t, s, u, v)

The proof of the formula

min
(y,z)∈R2N

F (x, t, s, y, z) = min
(u,v)∈R2N

Q(x, t, s, u, v)

and
min

(y,z)∈R2N
F (x, t, s, y, z) = min

u∈RN

{
min
v∈RN

Q(x, t, s, u, v)
}
,

is trivial. From this observation, we see that the minimum is attained for
v = 0. Substituting this value inside the formula, we see that

Qαt (Qαs u0)(x1, . . . , xN ) =

= min
u∈RN

[u0(e−α1(s+t)x1 +
√

1− e−2α1(t+s)u1, . . . ,

e−αN (s+t)xN + e−αN (s+t)
√

1− e−2αNsuN ) +
N∑
i=1

αiu
2
i ] =

(Qαs+tu0)(x1, . . . , xN )

We fix N = n + m and we represent the N -ple of RN as (x, x′) ∈ Rn ×
Rm, x = (x1, . . . , xn); x′ = (x′1, . . . , x

′
m), and the function f defined in

RN = Rn×Rm, which we represent with the notation f(x, x′) = f(x1, . . . , xn, x
′
1, . . . , x

′
m).

In a similar way we will use u(x, x′, t) = u(x1, . . . , xn, x
′
1, . . . , x

′
m, t), and we

will denote the gradient (D,D′) with respect to the variables in Rn × Rm,
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with the position D = (∂x1 , . . . , ∂xn) and D′ = (∂x′1 , . . . , ∂x′n) We will deal
with the Cauchy problem

ut(x, x′, t) + 1
2 |Du(x, x

′, t)|2+
1
2 |D

′u(x, x′, t)|2 +
∑n

i=1 αixiuxi(x, x
′, t) = 0 in RN × (0,+∞)

u(0, x, x′) = u0, in RN

A candidate function to be a solution is

u(x, x′, t) = min
(y,y′)∈RN

{
u0(y, y′)+

n∑
j=1

αj
1− e−2αjt

(yj−e−αjtxj)2+
1
2t
|x′−y′|2

}
.

We need to define together with the semigroup Qα1
t , . . . , Q

αn
t we introduced

above (from now denoted by Qα1
t,x1

, . . . , Qαn
t,xn

) the semigroup

Qα1
t,x1

, . . . , Qαn
t,xn

, Q0
t,x′1

, . . . , Q0
t,x′m

whereQ0
t,x1

is the usual Hopf-Lax semigroup applied to the variable xj , j =
1, . . . ,m

Q0
t,x′j

(f)(x′j) = min
y′j

{
f(y′j) +

1
2t

(y′j − x′j)
2
}
.

We observe that the one dimensional semigroups

Qα1
t,x1

, . . . , Qαn
t,xn

, Q0
t,x′1

, . . . , Q0
t,x′m

applied to functions of n + m variables x1, . . . , xn, x
′
1, . . . , x

′
m are pairwise

permutable. Then the function will be

u(x, x′, t) = Qα1
t,x1

, . . . , Qαn
t,xn

, Q0
t,x′1

, . . . , Q0
t,x′m

(u0)(x, x′),

and also

u(x, x′, t) = min
(z,z′)

{
u0(e−α1tx1 +

√
1− e−2α1tz1, . . . ,

e−αntxn +
√

1− e−2αntzn, x
′
1 +

√
tz′1, . . . , x

′
m +

√
tz′m) +

N∑
i=1

αiz
2
i +

1
2
|z′|2

}
,

obtained by the change of variables{
yj = e−αjtxj +

√
1− e−2αjtzj j = 1, . . . , n

y′l = x′l +
√
tz′l, l = 1, . . . ,m

In the following we shall use the notation

Q
(α,0)
t (u0)(x, x′) = u(x, x′, t)

It is not difficult to show that

Q
(α,0)
t Q(α,0)

s = Q
(α,0)
t+s ∀s, t ∈ R+.

Indeed we can use the pairwise permutability of the one dimensional semi-
groups. In a similar way from the Lipschitzianity of u0(x, x′) we deduce the
same property (with a different constant) for the function u(x, x′, t), and,
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also, the uniform convergence on compact subset to the initial datum as
t→ 0+.
The semigroup properties allow us to show tha u is viscosity solution of the
Cauchy problem. Moreover, denoting by

Q
(α,α′)
t = Qα1

t,x1
, . . . , Qαn

t,xn
, Q

α′1
t,x′1

, . . . , Q
α′n
t,x′m

the following holds

Theorem 2.6. If u0 ∈ Lip(Rn × Rm), then for any compact subset K of
Rn × Rm we have

lim
α′→0

Q
(α,α′)
t (u0)(x, x′) = Q

(α,0)
t (u0)(x, x′),

uniformly on K.
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2.2. General case α is real positive number. H? the conjugate of H,
i.e. the Legendre trasform of H, defined by

H?(ζ) = sup
x∈RN

{xζ −H(x)} ζ ∈ RN

As well known H? is non negative, convex function and positively homo-
geneous of degree q, where 1

p + 1
q = 1.

We introduce

Qtu0(x, t) = u(x, t) = min
y∈Rn

{
u0(y) +

(
αp

1− e−αpt

)q−1

H?(y − e−αtx)
}

=

min
z∈Rn

{
u0

(
e−αtx+

(
1− e−αpt

αp

) 1
p

z

)
+H?(z)

}
Then we have the following

Theorem 2.7. Under the assumptions
• (a1) H : RN → R is an even, non negative, convex function and

positively homogeneous of degree p, with p > 1.
• (a2) u0 (the initial data) are Lipschitz continuous, with Lipschitz

constant Lu0 ; α is a real positive number.
the application t→ Qt has the semigroup property

Qαt (Qαs u0)(x) = (Qαs+tu0)(x)
lim
t→0+

Qαt u0(x) = u0(x)

uniformly on the compact sets of RN .

Let us show that it is a viscosity solution

u(x, t) ≤ u(y, s) +
(

αp

1− e−pα(t−s)

)q−1

H?(y − e−αp(t−s)x),

for any y ∈ RN and s ∈ (0, t).
We fix φ ∈ C1(RN × R+) and we assume that (x0, t0) is a relative max-

imum point to u − φ, so we assume that there exists a neighborhood I0 of
(x0, t0) such that

u(x0, t0)− φ(x0, t0) ≥ u(x, t)− φ(x, t)

We have that for (y, s) ∈ I0, and s ∈ (0, t) :

φ(x0, t0)− φ(y, s) ≤ u(x0, t0)− u(y, s) ≤(
αp

1− e−pα(t0−s)

)q−1

H?(y − e−αp(t0−s)x)

We set
h = 1− e−α(t0−s) y − e−pα(t0−s)x0 = −hκ

from which
s = t0 −

1
α

log
1

1− h
y = x0 − h(x0 + κ)
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We have

φ(x0, t0)−φ(x0−h(x0 +κ), t0−
1
α

log
1

1− h
) ≤ h

(
αp

1− (1− h)p

)q−1

H?(hκ)

then

φ(x0, t0)− φ(x0 − h(x0 + κ), t0 − 1
α log 1

1−h)
h

≤
(

αph

1− (1− h)p

)q−1

H?(κ)

Taking into account

lim
h→0+

h(
1− (1− h)p

) =
1
p
,

sending h→ 0, we obtain that

Dφ(x0, t0)(x0 + κ) +
1
α
φt(x0, t0) ≤ αq−1H?(κ),

for any κ ∈ RN .

κDφ(x0, t0)− αq−1H?(κ) =
1
α

{
(καDφ(x0, t0)−H?(ακ)

}
Hence, using the Legendre trasform we finally get

φt(x0, t0) + αx0Dφ(x0, t0) +H(Dφ(x0, t0)) ≤ 0,

and u is a viscosity subsolution.
Next we show the u is a supersolution.
Now assume that u− χ has a local minimum point in (x0, t0).
By assumption there exists a neighbourhood I0 such that

u(x0, t0)− χ(x0, t0) ≤ u(x, t)− χ(x, t), ∀(x, t) ∈ I0
or

χ(x0, t0)− χ(x, t) ≥ u(x0, t0)− u(x, t), ∀(x, t) ∈ I0
We have to prove

χt(x0, t0) +H(Dχ(x0, t0)) + αx0Dχ(x0, t0) ≥ 0,

We argue by contradiction, and we assume that for all (x, t) in a neigh-
bourhood J of (x0, t0) and for some positive θ

χt(x, t) +H(Dχ(x0, t0)) + αx0Dχ(x, t) ≤ −θ < 0 ∀(x, t) ∈ J(x0,t0) ∩ I0,
We use the Legendre trasform, and we observe that (p(q − 1) = q)

1
α
H(Dχ(x, t)) = αq−1H

(
Dχ(x, t)
aq−1

)
≥ αq−1

{
κ

(
Dχ(x, t)
αq−1

−H?(κ)
}

=

κDχ(x, t)− αq−1H?(κ)
Then
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1
α
χt(x, t) + (x0 + κ)Dχ(x, t) ≤ − θ

α
+ αq−1H?(κ)

We have

χ(x0, t0)− χ(x, t) ≥ u(x0, t0)− u(x, t), ∀(x, t) ∈ I0
We take a neighbourhood J = I ∩ I0, For h positive and small enough we

fix y the point where the minimum is realized such that (y, s) ∈ J . Then we
set {

y = x1

s = t0 − 1
α log 1

1−h ,

and

u(x0, t0)− u
(
x1, t0 −

1
α

log
1

1− h

)
=(

αp

1− e−pα(t0−s)

)q−1

H?(x1 − e−αp(t0−s)x0) =

hαq−1H?(κ) + ho(1)
where

κ =
−x1 + (1− h)x0

h
, i.e. h(κ+ x0) = x0 − x1

On the other hand

χ(x0, t0)− χ
(
x1, t0 −

1
α

log
1

(1− h)
)

=∫ 1

0

d

ds
χ
(
x1 + s(x0 − x1), t0 + (s− 1)

1
α

log
1

(1− h)
)
ds =∫ 1

0
Dχ

(
x1 + s(x0 − x1), t0 + (s− 1)

1
α

log
1

(1− h)
)
(x0 − x1)ds+∫ s

0

1
α

log
1

(1− h)
χt

(
x1 + s(x0 − x1), t0 + (s− 1)

1
α

log
1

(1− h)
)
ds

We set {
x(s) = x1 + s(x0 − x1)
t(s) = t0 + (s− 1) 1

α log 1
(1−h) ,

Taking ω(h) := − log(1−h)
h , we have

χ(x0, t0)−χ
(
x1, t0−

1
α

log
1

(1− h)
)

= h

∫ 1

0
Dχ(x(s), t(s))(q+x0)+ω(h)

1
α
χt(x(s), t(s))ds

From which

χ(x0, t0)− χ
(
x1, t0 −

1
α

log
1

(1− h)
)

=

h

∫ 1

0

[
Dχ(x(s), t(s))(q + x0) +

1
α
χ(x(s), t(s))

]
ds+
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h(ω(h)− 1)
∫ 1

0

1
α
χt(x(s), t(s))ds

Hence,

χ(x0, t0)− χ
(
x1, t0 −

1
α

log
1

(1− h)
)
≤

h

∫ 1

0

(
αq−1H?(κ)− 1

α
θ

)
ds+ h(ω(h)− 1)

1
α

∫ 1

0
χt(x(s), t(s))ds =

hαq−1H?(κ)− h
θ

α
+ h(ω(h)− 1)

1
α

∫ 1

0
χt(x(s), t(s))ds

Finally

χ(x0, t0)− χ
(
x0 − h(x0 + κ), t0 −

1
α

log
1

(1− h)
)
≤

u(x0, t0)− u
(
x0 − h(x0 + κ, t0 −

1
α

log
1

(1− h)
)
− σ(h),

for h small enough

σ(h) = h
θ

α
− ho(1)− h

(ω(h)− 1))
α

∫ 1

0
χt(x(s), t(s))ds > 0

which contradicts the assumption that (x0, t0) is a relative mimimum point
to u− χ.
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2.3. Hypercontractivity.

Qtu0(x) = u(x, t) = min
y∈Rn

{
u0(y) +

(
αp

1− e−αpt

)q−1

H?(y − e−αtx)
}

We fix the numbers η and ω such that

0 < η ≤ ω,

and we set
a =

η

ω
e−αt

and we introduce the functions

u(x) = exp[ωeαt(Qtu0)(x)]; v(x) = exp[−γH?(x)];

w(x) = exp[ηu0

(ω
η
x
)
]

where γ has to be fixed later. u0 is an admissible function, this means that
u0 belong to a suitable functional space to justify the computation we are
going to do.

(u(x))a = exp
[
η(Qtu0)(x)] ≤ exp

{
η[u0(e−αtx+

(
1− e−αpt

αp

) 1
p

z)+H?(z)
]}

=

exp
{
η

(
u0

(ω
η

( η
ω
e−αtx+

η

ω

(
1− e−αpt

αp

) 1
p

z
))

+ ηH?(z)
}

Now we set
η

ω

(
1− e−αpt

αp

) 1
p

z =
(

1− η

ω
e−αt

)
y,

which means

z =
1− η

ωe
−αt

η
ω

(
1−e−αpt

ap

) 1
p

y

We have

(u(x))a(v(y))1−a ≤ exp
{
ηu0

[
ω

η
(ax+ (1− a)y

]
+

ηH?

(
ω

η

(αp)
1
p (1− a)

(1− e−αpt)
1
p

y

)
− γ(1− a)H?(y)

}
Then we select γ

γ =
ωq

ηq−1

(
(αp)(1− a)
(1− e−αpt)

)q−1

Since q
p = q − 1 and H? is q-homogeneous we have

(u(x))a(v(y))1−a ≤ exp
{
ηu0

[
ω

η
(ax+ (1− a)y)

]}
= w(ax+ (1− a)y)
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We apply the Brunn-Minkowski inequality, and we get( ∫
RN

u(x)dx
)a( ∫

RN

v(x)dx
)1−a

≤
∫

RN

w(x)dx.

Now we compute∫
RN

w(x)dx =
∫

RN

exp[ηu0(
ω

η
)x]dx =

( η
ω

)N ∫
RN

eηu0(x)dx∫
RN

v(x)dx =
∫

RN

exp[−γH?(x)]dx =
∫

RN

exp[−H?(γ
1
q x)]dx =

1

γ
N
q

∫
RN

e−H
?(x)dx

Finally we get
‖eQtu0‖Lωeαt (RN ) ≤ cα‖eu0‖Lη(RN )

cα =

( η
ω

)N
η( ∫

RN v(x)dx
) 1−a

η

=

( η
ω

)N
η γ

N
q

( 1
η
− 1

ωeαt )( ∫
RN e−H

?(x)dx

)( 1
η
− 1

ωeαt )
=

(
αp(ω − ηe−αt)

1− e−αpt

)N
p

( 1
η
− 1

ωeαt ) η
N( 1

ηq
+ 1

peαωt )

ω
N( 1

ηp
+ 1

ωqeαt )
( ∫

RN e−H
?(x)dx

)( 1
η
− 1

ωeαt )

As α goes to 0+ the constant goes to c0 where

c0 =
(
ω − η

t

)N
p

( 1
η
− 1

ω
) η

N( 1
ηq

+ 1
p
)

ω
N( 1

ηp
+ 1

ωq
)
( ∫

RN e−H
?(x)dx

)( 1
η
− 1

ω
)

and it is also the constant found by I. Gentil in the case of the Hopf-Lax
formula. To get strict hyperconctractivity, i.e. cα ≤ 1, we rewrite cα in the
following form

cα =
(
η

ω

) 1
ωeαt

η
N
q

( 1
η
− 1

ωeαt )
C

C =
(
αp(1− a)
1− e−αpt

)N
p

( 1
η
− 1

ωeαt ) 1( ∫
RN e−H

?(x)dx

)( 1
η
− 1

ωeαt )
=
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(
η

ω

) 1
ωeαt

[(
αp(1− a)
1− e−αpt

) 1
p

η
1
q

1( ∫
RN e−H

?(x)dx

) 1
N

]N( 1
η
− 1

ωeαt )

Then, since η ≤ ω, to satisfy cα ≤ 1 we impose(
αp(1− η

ωe
−αpt)

1− e−αpt

) 1
p

η
1
q ≤

( ∫
RN

e−H
?(x)dx

) 1
N

Then we can state the following theorem

Theorem 2.8. The semigroup is hyperconctractive from Lη(RN ) to Lωe
αt

(RN ),
i.e.

‖eQtu0‖Lωeαt (RN ) ≤ ‖eu0‖Lη(RN )

for all the triple of real positive numbers (η, ω, t) for which η ≤ ω and t ∈ R+

such the above condition is verified.

Corollary 2.9. If

(αp)
1
p <

( ∫
RN

e−H
?(x)dx

) 1
N

,

then for t large enough we have

‖eQtu0‖Lωeαt (RN ) ≤ ‖eu0‖L1(RN )

Au Hyper Ultra
IG(02) ‖eQt(f)‖Lq ≤ C(p, q, t)‖ef‖Lp q →∞ p = 1[(

q−p
2πt

) 1
p
− 1

q
(
p
q

) 1
p
+ 1

q
]N

2
(

1
2πt

)N
2

AA-PL ‖eQt(f)‖Lq ≤ C(α, p, q, t)‖ef‖Lp q →∞(
(q−pe−αt)α
π(1−e−2αt)

)N
2

( 1
p
− 1

qe−αt )(
p
q

)N
2

( 1
p
+ 1

qe−αt ) (
pα

π(1−e−2αt)

) N
2p

In the ultracontractive case we take p = 1 and N = 1. Then since
1

2πt
<

α

π(1− e−2αt)
the constant found by Gentil is smaller than ours.
This does not means that our constant is not good!
Both the estimates are optimal

Ge (03) 1( R
RN e−H?(x)dx

)( 1
η−

1
ω )

(ω−η
t

)N
p

( 1
η
− 1

ω
)( η η

p + ω
q

ω
ω
p +

η
q

) N
ωη

AL 1( R
RN e−H?(x)dx

)( 1
η−

1
ωeαt )

(
(ω−ηe−αt)αp

(1−e−αpt)

)N
p

( 1
η
− 1

ωeαt )( η η
p + ω

q

ω
ω
p +

η
q

) N
ωη

Here the table of functions giving the optimality.
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Au Optimal
IG(03) -b H?(x− x)

AA-PL -H?

(( Apα
α−A(1−e−αpt)

) 1
p (e−αtx− x)

)
3. LSI

We show in the simpler case how to get logarithmic Sobolev inequality
by hypercontractivity. For the general case see [5].

We introduce the function

(9) F (t) = ‖eQtu0‖Lq(t) ,

then

(10)
(
F (t)

)q(t) = eq(t) logF (t) =
∫

R
eq(t)Qtu0(x)dx,

and

logF (t) =
1
q(t)

log
∫

R
eq(t)Qtu0(x)dx,

We differentiate (10)(
F (t)

)q(t)(
q′(t) logF (t) + q(t)

F ′(t)
F (t)

)
=

(11)
∫

R
eq(t)Qtu0(x)

(
q′(t)Qtu0(x) + q(t)

∂

∂t
Qtu0(x)

)
dx,

and, using (11)

q(t)
(
F (t)

)q(t)−1
F ′(t) = −q′(t)

(
F (t)

)q(t) logF (t)+∫
R
eq(t)Qtu0(x)

(
q′(t)Qtu0(x) + q(t)

∂

∂t
Qtu0(x)

)
dx =

−q
′(t)
q(t)

(
F (t)

)q(t) log
∫

R
eq(t)Qtu0(x)dx+∫

R
eq(t)Qtu0(x)q′(t)Qtu0(x)dx+

∫
R
q(t)eq(t)Qtu0(x) ∂

∂t
Qtu0(x)dx

Using (10) we get

q(t)
(
F (t)

)q(t)−1
F ′(t) = −q

′(t)
q(t)

∫
R
eq(t)Qtu0(x)dx log

∫
R
eq(t)Qtu0(x)dx+

q′(t)
∫

R
eq(t)Qtu0(x)Qtu0(x)dx+ q(t)

∫
R
eq(t)Qtu0(x) ∂

∂t
Qtu0(x)dx

From which, recalling that Qtu0(x) is a solution,∫
R
eq(t)Qtu0(x) ∂

∂t
Qtu0(x)dx =
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−
∫

R
eq(t)Qtu0(x)

(
1
2
∂

∂x

∣∣Qtu0(x)|2 + αx
∂

∂x
Qtu0(x)

)
dx,

we have

q2(t)
(
F (t)

)q(t)−1
F ′(t) = −q′(t)

(∫
R
eq(t)Qtu0(x)dx log

∫
R
eq(t)Qtu0(x)dx+

q′(t)q(t)
∫

R
eq(t)Qtu0(x)Qtu0(x)dx−

q2(t)
∫

R
eq(t)Qtu0(x)

[1
2
∂

∂x
|Qtu0(x)|2 + αx

∂

∂x
Qtu0(x)

]
dx

We set

h(x, t) = eq(t)Qtu0(x), Qtu0(x) =
1
q(t)

log h(x, t)

and we recall the definition of entropy of a function h

(12) E(h) :=
∫

R
h log hdx−

∫
R
hdx log

∫
R
hdx

Then, we have
q2(t)

(
F (t)

)q(t)−1
F ′(t) =

(13)

q′(t)E(eq(t)Qtu0(x))− q2(t)
∫

R
eq(t)Qtu0(x)

[1
2
∂

∂x
|Qtu0(x)|2 +αx

∂

∂x
Qtu0(x)

]
dx

We select the function F as

F ?(t) = ‖eQt1u0‖Lpeαt

Hypercontracitity gives

Lemma 3.1. For every p ∈ (0, πα ] the function F ?(t) is non increasing for
t ∈ (0, 1

α log π
αp).

Now we pass to prove a logarithmic Sobolev inequality. We consider (13).
From the lemma (3.1) we have

F ?(t) ≤ 0 ∀t ∈ (0,
1
α

log
π

αp
)

αpeαtE(epe
αtQtu0(x)) ≤

p2e2αt

2

∫
R
epe

αtQtu0(x)
[ ∂
∂x
|Qtu0(x)|2 + 2αx

∂

∂x
Qtu0(x)

]
dx

Taking the limit as t → 0, for any admissible u0, by the continuity of Qt,
we obtain

(14) αE(epu0(x)) ≤ p

2

∫
R
epu0(x)

[ ∂
∂x
|u0(x)|2 + 2αx

∂

∂x
u0(x)

]
dx ∀α < π
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