HOPF-LAX FORMULAS
AND RELATED PROBLEMS

PAOLA LORETI

ABSTRACT. This note summarizes several talks I gave on this subject in
the last two years (IHP Paris 2007, Waseda Tokyo 2007, Sapienza Rome
2008, Paul Sebatier Toulouse 2008, Arlington Texas 2008, Imperial Col-
lege London 2009), and it is based on several works in collaboration with
A. Avantaggiati. I will give a complete reference in the bibliography.

1. A BRIEF REMAIND ON HOPF-LAX FORMULA

We assume H smooth, convex, coercive, ug €Lip(RY), up € B(RY) (B
reads bounded).
H*(z) = max{zy — H(y)}

As a reference to this part we may refer to L.C. Evans’s book [11], in which
the problem is split in three parts

e Variational Approach.

t
iant) =it { [ H s+ ualw): 600) = 5.6(0) =}
Jo
e PDEs.
Consider the Cauchy problem for the Hamilton-Jacobi equation
v+ H(Dv) =0 in  (0,400) x RY
v(0,x) = ug

e Hopf-Lax formula.

u(z,t) = Iél]l?I{ {tH* (r " y) + uo(y)} (Hopf — Lax formula)
yeR! /
1.1. Reminds on viscosity solutions. The notion of viscosity solution
was introduced by M. G. Crandall and P. L. Lions [7]. Let us recall their
notion using test function, as introduced in M.G. Crandall, L.C. Evans, and
P.-L. Lions [8], as a book reference we may give [2] and as an explaining paper
we refer to [16], although here we use, to simplify, the vanishing viscosity
method. The key point is that the notion gives a meaning to the solution
of the equation also if the solution has very weak property of regularity (for
example u is just a continuous function or even less).
1
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The equation to consider is

uf + H(Duf) — eAut =0 in (0, +o00) x RN
u(0,x) = ug
Fix € > 0 and we consider a subsequence u, such that

us — u,

next, we consider ¢ € C' such that u — ¢ has a strict maximum at .
Assume that u is continuous and differerentiable at xy. Then there exists
¢ € C' such that

u(zo) = ¢(z0)

and u — ¢ has a strict maximum at zg. Since ¢; is small ue; — ¢ has a max
in (2, ;) with
(xej?tﬁj) - (1‘0, tO)

Moreover,

ut(xej ) tE]') = (bt(xej ) t€j>

—Au (xﬁhtq') > _A¢(x5j’t€j)

¢t($€j,t5j) + H(D(rbt(xﬁjvtej) = ut(x€j7t€j) + H(-Dut($6j7t€j) =

€AUT (T, te;) < €Ap(xe;, Le;)
e —0,¢¢€ C', H continuous...
b1(zo0,t0) + H(D¢i(xo,t0) < 0

Then, we are now ready to recall the definition using test function. We
say that v is a (viscosity) subsolution of (2.3) if for every ¢ € C'. such that
u — ¢has a max in x

o1+ H(z,u(z), Dp(x)) <0

We say that u is a viscosity supersolution if for every ¢ € C!. such that
u — ¢ has a min in x

¢ + H(x,u(z), Dp(x)) >0

A viscosity solution of (2.3) is a viscosity subsolution and a viscosity super-
solution (of (2.3))



3

1.2. Equivalence of the three problems. The three problems are equiv-
alent, that is the w = @ = v (v being the unique viscosity solution of (2.3)).
We give the reference of the complete proof to [11], however here the rewrite
the equivalence between u and u to give an idea how to argue in this topic.
We define the trajectory

(&) =yt =y, 0<s<t ~ ()=

By definition, for this trajectory

inf{/ot H*(¢(s))ds+uo(y) : C(0) =y, ((t) = x} g/o H*({(s))ds+uo(y) =

/Ot H*<xty>ds+uo(y),

which immediately shows
(2) (x,t) < u(z,t)

Jensen’s inequality gives (H*convex)

w( t<‘<s>ds) <1 [ #eonas

C(s)ds = ((t) = ¢(0) =z —y

0

tH*(x - y) < [ B (E(s)yas

Since

tH*(x - y) tuoly) < [ H(E(s)ds + uo(y)

Passing to the inf

(3) u(z,t) < a(z,t),
hence
(4) u(z,t) = a(z,t)

To give just an idea how to pass the equation, it is relevant to show a
property of u, showing a semigroup property.

(5) w(z,t) = min {(t - s)H*(x _y> —|—u(y,s)}

yeRN t—s
Select Z such that
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(t—s)H*(f_y) —l—u(y,s)z(t—s)H*( . >+u(y,s) <

Passing to the min

x_
(6) nin (-9 ($22) + o) < et
Next, choose z € RN
u(y,s) = sH*(y;Z> + up(2)
T —2 s x—y SyY—=z
U t
— S t s

By the convexity of H*
x—z s r—y s y—z
H* <(1--)H"| —= -H*
() =0 () i (5)
u(z,t) <

tH*(z - Z) Fug(z) < (t— s)H*(j _y> +sH*<y_ Z) Fug(z) =

— S S

t—s
The result follows since y can be chosen in arbitrary way.
Now the check how it is possibile to connect the problem to the PDEs,
assuming regularity for the function u and using the semigroup formula.
Fixge RN h >0

u(x + hg,t + h) = min {(t —s)H” (:L‘—l—hq—y) +u(y,t)} <
yeERN h

(= (522 +ulns

hH*(q) + u(z,t)
From which we deduce that
w(x + hg,t + h) —u(z,t)
h

< H*(q)

h— 0t
qDu +u; — H*(q) <0,



the inequality being true also for the max yields

We will not show the other inequality, refering to [11]

2. NEw RESuULTS

In two papers, jointly with Y. Fujita and H. Ishii [9], [10] we worked on
asymptotic questions for large time for the Cauchy problem
(7)
ut(z,t) + axDu(z, t) + H(Du(z,t)) = f(x) in RN x (0,4+00)
u(x,0) = ug,

and jointly with A. Avantaggiati, we considered the case f = 0, analyzing
other aspects as Hopf-Lax type formulas, hypercontractivity, entropy-energy
inequality, logarithmic-Sobolev inequalities. From now, we focus on this
subject:

8 ut(x,t) + axDu(z,t) + H(Du(z,t)) =0 in RN x (0, 4+00)
u(z,0) = up,

As in [3] we begin our analysis considering the one dimensional case
1
H(p) = 5lp*  acRy

and we study

{Ut(x’t) + [0z (,1) |+ SluP =0 in R x (0,+00)

u(0, z) = o,

constructing the associate semigroup: this is the first step for the formula
which generalizes the well-known Hopf-Lax formula. Indeed the Hopf-Lax
formula can be obtained by the formula given here by limit as @ — 07. Also
we give extension of known results by showing hypercontractivity, ultracon-
tractivity for the semigroup and by obtaining a class of Sobolev logarithimic
inequalities. In [4] we extend our analysis by considering the problem

N
ug(x,t) + Z Q;Tiug, (x,t) |+ %Zfil g, (2,1)|2 = 0in RN x (0, 4+00)
i=1

u(0, ) = uyp,

We study also the case in which some «; (1 <14 < N) could vanish, and this
will give a mixed behaviour.

{ut(x,t) + | azDu(z,t) |+ HDu(w, 1) =0 in RN x (0,+00)

U(.I?, 0) = Uo,
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As a model of the latter case we may consider
1
H(s) = —|s’
p

Our work is based on several papers by I. Gentil. A reference to this
arguments is S.G. Bobkov, I. Gentil, M. Ledoux
Three motivations

e Idempotent setting
A very recent theory of S. Maslov describes a new approach to
analysis, known as idempotent analysis, and the theory has recently
interested a large number of mathematicians.
This type of arguments are often used in the minimization process
in the analysis of Hopf-Lax type formulas ( [?]).
We consider the the semiring Ry,;, = RU{+o0} with the operations

¢ := min, =+
where
0 = o0, 1=0.
In Ry, the idempotent analog of integration on R is defined by the
formula

b
I(¢) = / ¢(x)dx = inf ¢(x),
R r€ER
An idempotent measure on Ry, is defined by the formula
Y) = inf
m¢(Y) = inf ((z)

where ¢ € B(R,Rpiy), and Y C R. Here B(R,Ri,) means the set
of functions which are usually bounded (from below) in Ry, and

’ dme = ’ dx = inf
| ét@ime = [ ot@) o Capde = i (61a) © (@)

Let us recall the semigroup associated to Ornstein-Uhlenbeck oper-
ator

Tyuo(z) = / up(e™ "z + V1 — e=20ty)du(y)
R
where the measure y is given by

2
oz
e 2 dx

p(x) =

Up — Ugy + azug(x) =0, uo(x) = uo
What is the idempotent analog ? Which measure?
Candidate of the form

®
/ ug(e™x 4+ /1 — e~20ty)dmy
R

dm¢ invariant measure



@
/ up(e” "z + /1 — e=20ty)dm,, =
R

D
/ (uo(e™z + V1 —e20ty) O (y)) =

R

min(ug(e” "z + V1 — e=20%y) + 1(y))
yeR

Definition. di,(x) is idempotent invariant with respect to the semi-
group @y if
S S5
[ 0@ Quat)vate) = [ ula) 0 Quie)dva(o)

Theorem 2.1. The measure di,(r) = ax? is idempotent invariant
with respect to the semigroup Q.

&)
/ v(z) © Quuo(w)dia(z) =

R

(&3]
/ () © minfuo(e™ " + v/1— e=27y) + oy b (x) =
R

min {v(z) + mm{uo A+ V1 —e 20ty + ay’} + ax }
rgliyn{v( ) + up(e™ "z + V1 — e~20ty + a(y? + 2%)} =

We consider the change of variable
V1 — e 20ty e—aty — C
_atx + /1 — e—20¢ty =7

This is a linear invertible trasformation

V1 — €—2atc + efatn =7
e—oth + /1 — 672at17 =y

Squaring and adding,

C+n? =27+

min{v(e”*n + m( ) +uo(n) + a(¢® +7°)} =

¢

mgn{uo( n) + mcln{v Ay V1 —e20t0)) L an’} =
S2]
= min/ 4+ V1 — e 20)dipo (C) + uo(n) + 04772} =

T JR

D &)
/U(U)G/Rve /1= e 200 ) i ()b () =

R
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/ " woly) © Quoly)dia(y).

e Ornstein-Ulhenbeck operator We recall the definition of the
Ornstein-Uhlenbeck operator L.

Definition. Given Q = (a; ;)i j=1,....n a symmetric and positive def-
inite matrix, and B = (b; j)i j=1...n a non null matrix, the Ornstein-
Uhlenbeck operator is Lf(z) = }_, ; a;,;D;D; f(z) + BxDf,

The semigroup associated is given by
Tiup(x) = / ki(ePa — y)uo(y)dy,

where

1 1
ki(z) = ————exp(—~Q; 'z, x),
t(m) (47‘(’)%(detQt)%exp( 4Qt €T $)

and .
Qt —_ / esBQesB*dS
0

u — €(Au+ 2Vu) + axVu + 3|Vul? =0 in (0,400) xR
u(0,2) =up =€~ 5

Using the Hopf-Cole trasform, we arrive to the solution of

vy — €(Av+2Vv) + axVo =0 in (0,+00) xR
_ug(=)
v(0,z) =vg =€ 2

€ is a small, positive parameter. Solution in the form

v(z,t€) = C'/ [w(z, z,t, 6)]idz,
R
where C' does not modify the value of the limit as e — 0 and

a—€ e
o) = | ()~ (= gty (=

The limit to compute is

1i1r(1)2€log/[w(z,:z,t,e]2ledz = limlog[/w(z,a:,t, e)%edz]2€
e R R

€E—

(07

wo(z, z,t) = limw(z,z,t,€) = exp[—uo(z) — (e g — 2)2].

e—0 1 — e 2at

Theorem 2.2.
lim 2€log/[w(2,x,t, 6]idz = log ||wo(z, x,t)|| Lo
R

e—0

where
o —
|wo(z, 2, t)||Le = supexp| — ug(z) — m(e oty _ 2)2]=
z€R €



(0}

Tz (@ e =)

exp| — minuo(z) +

For the proof we refer to [3]

e 1-d: Hopf-Lax type formulas We take ug € Lip(R) and we denote
by Ly, the Lipschitz constant of ug. Generalization of the Hopf-Lax formula

ﬁ(@’_atl‘ —2)%] = Quuo(a),

which is the Lipschitz solution, in the viscosity sense, to the Hamilton-
Jacobi problem

u +oxVu+iVu?=0 in (0,400) xR
u(0,x) = up

u(z,t) = I;(lelﬂlg [uo(2) +

Let us observe that there are equivalent representations. For instance, we
can rewrite as

u(z,t) = min [uo(z) N ek (e% - 2)2] ,

o
2€R l+e 2\ 1—e ot

Moreover, if we set

we have the following

u(z,t) = min {uo(eo‘tx + V1 —e2atz) + azQ] .
z€R

We set

Qup(x) = miﬁg {uo(eatx +V1—e20tz) + 0422] ,
ze

Corollary 2.3. The formula holds
1— —a(t—s) _ —a(t—s) 2
u(z,t) = min{u(y, s)+ ¢ (y ¢ ac> }

yER al + efoz(tfs) 1— efa(tfs)

and we wish to show
Theorem 2.4. For any s and t € (0, +00)
Qt+s = Qt(Qs>7 %E}% Qt =1.

Since

Qsup(r) = min [uo(easx + V1 —e2082) + azﬂ ,
weR

we have

Qi(Qsf)(x) = min{min [f(e_o‘s(xe_o‘t+

z€R | weR

V1—e2az) /1 — e 205w) + an] + azQ} =
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min{min [f(ea(”t)x e /1 — e 20ty 4 \/1 — e—2050) + an] + az2}
zeR | weR

We consider the change of variable

{eas\/l — e 20ty 4 \/1 —e2asyy = /1 — e—2a(s+t)y,

—V1 —e 208z 4 em /1 —e 2y =y

This is a linear invertible trasformation of R?: (z,w) — (u,v) whose coeffi-
cients determinant is

e—as\/1 — e 2at \/1 — e—2as e—2oc(t+s)

/1 _ e 2as pas,/] _e2al | 1-
Squaring and adding,

(1 _ e—2a(t+s))(z2 + w2) _ (1 _ e—2a(s+t))u2 + ,02’

which gives

1
2 2 _ 2 2
Zrwt=ut A 1 _ef2a(s+t)v
Since
min{min [f(e_a(s+t)x+e_as V1—e20tp4/1— ezasw)jtawﬂ —|—a22} =
zeR | weR
. : —a(s+t) — _2a(tt 2 a 2
mip mig| 0+ V= ] 4 S

Now, we observe that the sum of the first two terms is constant with
respect to v, hence the minimum with respect to v is attained at v = 0, and,
in conclusion,

min{min [f(e_o‘(5+t)a:+e_o‘s V1—e20tgp44/1— e—2asw)+ozw2} —|—oz22} =
z€R | weR

milg [f(ea(s”)x + V1 — e 20(tts)y) + auQ]
ue

which ends the first part of the proof.
To conclude we consider the representation formula

. 1—e ot fe=aty _ »\?2
) = Quuo(e) = min ) + o e (Tt ) |
We take z = z, then
1—e ot 9

u(x,t) < wup(x) + S pp——

u(z,t) —ug(z) < a1 — e ) M3 Vo € [-M, M|,
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where M is any fixed positive number. On the other hand,

min [uo(z) Pl (6% - Zﬂ _

o
z€R 14+eat\ 1 —eot

1—e ot fematy — 2\?
e "a) + i () — wle” ) +oq Ty (T ) | 2

1 — e —at,. _ 2
uo(e”*"z) 4+ min [—|u0(z) — up(e™z)| + a € (e x z) ] _
4

cR 1 + e—at 1— e—at
1—eat fe=aly _ »\2
—at —at =
wale=) ~ max uo(2) — ot~ — o+ o (o) | =
We set
B e~y — 2
Yy=7 e—at’
then

(6
t) > oty L _ 20 _ ot
u(z,t) > ug(e” ) l;ﬂgg{ uo Y| 1Jre_mtlyl }( e ™)

Next, we set

(6
C = Luylyl — ————|y|?
Hll??x{ uO’y‘ 1 _’_e—at|y‘ }7

from which

u(z,t) —uo(x) > uple”*x) —ug(z) — C(1—e ) > —(1 — e ) [Ly,|z| — O]

Hence in any bounded interval [—M, M| there exists a constant K such
that

lu(z,t) —up(x)] < K(1 —e ),
which ends the proof.
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2.1. Mixed case. We consider the following Cauchy problem
wg(x,t) + 3| Dua, ))? + SN aiwiug, (z,8) =0 in RN x (0, +00)
u(0, ) = uyp, inRN

We shall use the following assumptions:

up € Lip(RY) i.e. |[up(x) — ug(y)| < Ly, |x — v vx,y € RN
a1,09,...,QN € R+.
We introduce the operator applied to a function f of one variable, x;, by

(@1 1)) = min [ () + 7= Lo (g — "))

We proved that t — Q. f has the semigroup properties. Hence Q7" (x1), Q7 (z2),
$3(z3) ..., QN (xn) are semigroups. Then we define (here a = (a1, g, ..., an))

(QtUO)(x17"'7xN) = (Qt ) taN)UJO(xl?'"a:EN)

Remark. By the permutability between Q}", Q?, ... Qf does not depend
on the order where Qf 7 appears in the formula.

Theorem 2.5. Then the following properties hold true
Q?(qu(])(xlv s 7$N) = (Q?—&—tuo)(l‘l’ s >xN)

For every compact set K of RV

lim Qfuo(x1,...,zN) = up(x1,...,2N)
t—0t
uniformly on K
QY (Q%ug)(z1,...,xN) = Q" ..., fN MR (ug) =

QM RINQPRL?) - (@ aN)( 0) = QpeQite - - Qi = Qo

The property is proved. Neverthless it may be useful to give the following
direct proof:

(quo)(xl, - ,,SN) =

min [ug(e” "z + V1 — e 205y, ..,
yeRN

e NSy 4 V1 — e 2ovsyn) + ) )]
i=1
Then
Q?(QaUO)(wla sy 7$N) =

min { min [ug(e”*[e”x) + /1 — e 201t] 4 /1 — e 2018y,

2€RN “yeRN

e—aNs I'N‘i‘mZN + 1—e¢e 2aNSyN +ZaZyZ —|—ZaZ 2} =
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min {uo(e_o‘l(s+t)x1 + e M1 — e 2ty 4 /1 —e2sy L

(z,y)ERZN
N

efozN(Sth)xN 4 e NS /1 — e—QOcNtZN +4/1— e—QaNsyN) 4 Zal(y? 4 212)}
i=1
We consider the change of variables
e—OéjS\/l _ e—2ajtzj + \/1 _ e—2ajsyj —+/1— e—2aj(s+t)uj
_1/1 _ 672ajszj + e~ S /1 . ef2ajtyj _ Uj
forj=1,...,N.

UO(efcn(ert)l,l Fe1s, /1 — e—2a1t21 +4/1— 6—2a1sy17 e
N
emaN(sHt) o 4 emans [1 _ o—2antyy 1 4/1 = e—20nNty ) + Zai(y? +22) =

i=1

up(e 1t g 4 /1 — e 20n(t+s)yy

N N
—an(s+t) _ o—2an(s+t 22 i 2
e NN + V1 — e 2an(s )uN)—FZaZuZ +Zl_e—2a1(t+5)v]
i=1 i=1
We call F(z,t,s,y,z) the function which appears on the left hand side and

Q(x,t,s,u,v) in the right one, the above equality reads
F(.’I), t7 5, Y, Z) = Q(l" tu S, U, /U)

The proof of the formula

(y gleiEQN F($7 t? 87 y7 z) = (u 5?;%21\7 Q(x7 t? S? u’ U)

and

o 00 F:t10:9:2) = min {1nly Qa8 5u,0)),

is trivial. From this observation, we see that the minimum is attained for
v = 0. Substituting this value inside the formula, we see that

Qi (QSuo) (w1, ... on) =

= min [ug(e” Tz + /1 — e 20alt+s)yy

ueRN
N
efaN(s+t)xN + e*ClcN(Sth)1 /1 — e—?ostuN) + Z azu?] —
i=1
(Q?—l—tUO)(xl, ceey :EN)

We fix N = n + m and we represent the N-ple of RY as (z,2') € R" x

R™,  x = (x1,...,2y); « = (2,...,2],), and the function f defined in

RN = R"xR™, which we represent with the notation f(z,2') = f(z1,...,Tn, 7], . ..

In a similar way we will use u(z,2’,t) = u(z1,...,2n,2},...,2,,,t), and we

will denote the gradient (D, D’) with respect to the variables in R™ x R™,
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with the position D = (0y,,...,0z,) and D" = (O, ..., 0x,) We will deal
with the Cauchy problem
w(z, @', t) + | Du(z, 2, )|+
D'z, )7 + 30 g, (2,2, 1) = 0 in RN x (0, 4+00)
u(0, 2, 2") = ug, in RN

A candidate function to be a solution is

1
= —ajt,. \2 I 12
u(x, 2, t) ngN{uoyy —i—é 72% e %'z;) +f2t|x y'I*}
We need to define together with the semlgroup Q. .., Q™ we introduced

above (from now denoted by Q7 ;... ) the semigroup

) tw
Qtﬂc1""7thn7Qt,w’l7""Qt,$;n

where Q?’x , is the usual Hopf-Lax semigroup applied to the variable z;, j =
1,...,m

1
Qg (1)) = min L F(0f) + 5w = )"}
We observe that the one dlmensmnal semigroups

0 0
Qtﬂc1""7thn7Qt,w’l7""Qt,$;n

applied to functions of n + m variables x1,...,x,, 2, ..., 2},
permutable. Then the function will be

u(x, 2’ t) = th,...,thn,ng/l,...,Qm( 0)(z,2),

are pairwise

and also

u(z, 2’ t) = (Inll/’l) {ug(e™'my 4+ /1 —e 20tz .,
2,z

N
1
ety 4 /1 — e 2amty ah Vi), al V) F Zaizg + §]z'|2},

obtained by the change of variables
{yj:eajtmj—i—mzj j=1,...,n
Y, = x) + /2], I=1,....m
In the following we shall use the notation
Q§a’0)(u0)(x, ') =u(z, 2, t)
It is not difficult to show that
QY = QY s teR™

Indeed we can use the pairwise permutability of the one dimensional semi-
groups. In a similar way from the Lipschitzianity of ug(z,z") we deduce the
same property (with a different constant) for the function u(z,2’,t), and,
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also, the uniform convergence on compact subset to the initial datum as
t—0T.

The semigroup properties allow us to show tha wu is viscosity solution of the
Cauchy problem. Moreover, denoting by

(04706,) — aq Qn all Oé'/n
Q) = Qe Q1 Q1 Q1
the following holds

Theorem 2.6. If ug € Lip(R™ x R™), then for any compact subset K of
R"™ x R™ we have
O}}E}O nga )(UO)(JU, 7)) = an,o) (ug)(x, '),

uniformly on K.
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2.2. General case « is real positive number. H* the conjugate of H,
i.e. the Legendre trasform of H, defined by
H*(¢) = sup {o¢ - H(z)}  (eRY
zeRN

As well known H* is non negative, convex function and positively homo-
geneous of degree ¢, where ]% + % =1.
We introduce

Quuo(z,t) = u(w, t) = min{uo(y) + <1_Ofam>q_l Ay - e_atx)}:

yER™

1
1— —apt\ 5
min {uo <e_°‘t$ + <e> pz) + H*(z)}
z€R™ ap
Then we have the following

Theorem 2.7. Under the assumptions

e (al) H :RY — R is an even, non negative, convex function and
positively homogeneous of degree p, with p > 1.

e (a2) wg (the initial data) are Lipschitz continuous, with Lipschitz
constant L,,; « is a real positive number.

the application ¢ — ()¢ has the semigroup property

Q7' (QSuo)(z) = (Q5rpuo)(2)

lim Qfug(x) = ug(x
o Qi uo(z) = uo(x)
uniformly on the compact sets of RY.

Let us show that it is a viscosity solution
q—1
_“r *(y — e~ P(t=s)
u(ma t) < u(yv 5) + <1 _ epa(ts)> H (y € CL‘),

for any y € RY and s € (0,¢).

We fix ¢ € CY(RYN x Ry) and we assume that (zg,%) is a relative max-
imum point to u — ¢, so we assume that there exists a neighborhood Iy of
(zo,to) such that

u(zo, to) — ¢(zo,t0) > u(z,t) — P(x,1)
We have that for (y,s) € Iy, and s € (0,1) :

(b(x()? t()) - ¢(y7 S) < (Q?(), t()) - U(y, S) <
q—1
ap *( o —ap(to—s)
(=) ww—eorn)
We set
h=1- ¢ to—s) Yy — e Palto=s) 0 — _hi

from which 1

1—-h

1
s:to—alog y=2x0— h(xo+ k)
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We have

1 1 ap -1 N
d(xo,to) — p(xo— h(xo+ k), to— o log T h) < h<1—(1—h)p) H*(hk)
then

P(xo,to) — d(xo — h(xo + K), to — élog ﬁ) aph q—1 .
h < (i) o

Taking into account
h

' _1
hlirng (1—(1—hp) p’

sending h — 0, we obtain that
1 - *
Dé(zo, to) (0 + k) + —di(20, to) < o LH* (k)

for any x € RV,

1
Do, t) @) = - (sa Dot t) — (e |
!
Hence, using the Legendre trasform we finally get
¢t(z0,t0) + axoDo(x0, to) + H(Dd(w0,10)) < 0,

and u is a viscosity subsolution.
Next we show the u is a supersolution.
Now assume that u — x has a local minimum point in (zg, to).
By assumption there exists a neighbourhood Iy such that

U(l’o,to) —X(l‘o,to) < U(ZL‘,t) _X(xat)v V(%,t) € Iy
or
X($07t0) —X(.’Ii,t) > u(l'o,t()) —U(l‘,t), V(l‘,t) € o
We have to prove
xt(wo,to) + H(Dx(wo,t0)) + axoDXx (w0, t0) > 0,

We argue by contradiction, and we assume that for all (z,¢) in a neigh-
bourhood J of (xg,tp) and for some positive

Xt(z,t) + H(Dx(zo,to)) + axoDx(x,t) < —0 <0 V(z,t) € J(@o,t0) N 1o,
We use the Legendre trasform, and we observe that (p(¢ — 1) = q)
1 _ Dx(x,t) _ Dx(x,t)
- _ q-1 ) q—1 ) . * _
aH(Dx(a:,t)) =« H<aq1 > >« {’{(aql H*(k)p =

kDx(z,t) — a9 H*(k)
Then
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1 0
EXt(m,t) + (xo + k)Dx(x,t) < - + aq_lH*(Fc)

We have
X(xo,t0) — x(x,t) > u(xo,to) — u(x,t), V(x,t) € I

We take a neighbourhood J = I N Iy, For h positive and small enough we
fix y the point where the minimum is realized such that (y,s) € J. Then we

set
y==x
{s =19 — élogﬁ,
and
1 1
u(zo, to) — u(ml,tg - log = h) =
L q71H*($ _ e p(to—5) .\ —
<1 — e—POé(to—S)> 1—¢€ z0) =
had™ H* (k) + ho(1)
where
— + (; — h):n07 ie. h(k+xmy) =z — 21

On the other hand
1 1
to) — to— —log ——) =
x(zo,t0) — x (1, to - log (1—h))

'd 1
/0 %x(l‘1 + S(xo - $1),t0 + (8 - 1)5
1D 1 1
/0 x (21 + s(zo — x1),t0 + (s — l)a log m)(xo —x1)ds+

51 1 1 1
~log (7)@(:131 + s(xg —x1),t0 + (s — 1)5 logi)ds
0

o' 1—h) (1—h)
We set
x(s) = x1 + s(xo — 1)
t(s) = to + (s — 1)1 log k.
Taking w(h) := w, we have

(l’o,to)—X(ﬂcmto—l log %) [ Dx(e(s), #(5)) (a-+0)-+oo(h) = xe((5). £(s))ds
X a “(1—h) 0 a

From which

1 1
J— — 71 — pr—
x(zo, to) — x (21, %0 a8 h))

1
[ DA 6600+ ) + (o)1) s
0
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Hence,

h/ol (oﬂ_lH*(m) - 19) ds + h(w(h) — 1% /01 xa(@(s), £(s))ds =

1
hat  H* (k) — hg + h(w(h) — 1);/0 xt(z(s),t(s))ds

Finally

1
_ _ _ = _— \<
x(z0,t0) — x (o — h(zo + k), to 5 log = h)) <

1
U(.’Eo,to) — U(SUQ — h(x[) + /ﬂ?,to - E log m) — O'(h),
for h small enough

(“(h)_l))/O (@ (s), 4(s))ds > 0

which contradicts the assumption that (zg,to) is a relative mimimum point
to u — x.

o(h) = hg ~ ho(1) — L
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2.3. Hypercontractivity.

Quunf) = u(a.t) = ain fun(o) + (O‘p)q_lmy )

yER™ 1 —e—apt

We fix the numbers 1 and w such that

0<n<Lw,
and we set
a=Teat
w
and we introduce the functions
u(z) = explwe™ (Quuo) (x)];  v(z) = exp[—vH*(z)];

w(z) = exp[mm(%w)]

where v has to be fixed later. ug is an admissible function, this means that
ug belong to a suitable functional space to justify the computation we are
going to do.

(u(z))® = exp [1(Qruo)(x)] < exp {W[Uo(e_athr (1_;:&}#) ;z)+H*(z)]} -

exp {n (a0 (Lereta 1 (L2E) ) i)

Now we set

which means

We have
(u(e)*(wl) = < exp Lo | Zaz + (1~ |+

= )RR

Then we select

Al

Since % =g — 1 and H* is g¢-homogeneous we have

")/:

()" () < exp o[ £(aw + (1= )| | = wlao + (1=
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We apply the Brunn-Minkowski inequality, and we get

([ uw) ([ o) "< [ wtw

Now we compute

/RN w(z)de = /RN eXP[ﬁUo(%)x]dm — (E)N /RN oM0() 4o

w

/RN v(x)dr = /]RN exp|—yH*(z)]dz = /RN eXp[—H*('y%:c)}dx _

1 x
— €_H (x)dil}
~ya JRN
Finally we get
HthuoHLweat(RN) < Calle® || pren

(£)

Co = =

(fRN v(x)dx) o

n
EN(1 1)

3|z

(g 77’)/? N wedt
(
(fRN C_H*(x)d.l‘)

ap(w — ne™at) & G = gaar) nN(%erelet)

l_l):

N weat

l_l)

L 1 N weat
o.)N(np—"wqeat) (fRN e—H*(a:)dx>

As « goes to 0T the constant goes to ¢y where

N(po+3)

n  w 77
(
wN(,Tler%q) (f]RN e_H*(x)dl‘>

(o)
co = T

and it is also the constant found by I. Gentil in the case of the Hopf-Lax
formula. To get strict hyperconctractivity, i.e. ¢, < 1, we rewrite ¢, in the
following form

1 1
W)

1 ﬂ(l_%) 1
= (fw(—a)> s _

1—eoprt
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1 1

n ot ap(l —a) v 1 1 NG —ear)
w 1 — e—apt "
(fRN eH*(x)diU)

Then, since n < w, to satisfy ¢, < 1 we impose

10 ,—opt\\ p L
ap( — ae ap ) P,r]% S e_H*(a:)dx N
1 — e—opt RN

Then we can state the following theorem

2|~

Theorem 2.8. The semigroup is hyperconctractive from L7(RY) to L«¢* (RN),
ie.

€900 ]t gy < €% Loy
for all the triple of real positive numbers (1, w,t) for which n < w and t € R
such the above condition is verified.

Corollary 2.9. If

1

(ozp)% < (/ e_H*(x)dm)N,
RN

then for ¢ large enough we have

16960 | et gy < el 1)

Au Hyper Ultra

In the ultracontractive case we take p =1 and N = 1. Then since
1 o
ot S (1 — e—20t)
the constant found by Gentil is smaller than ours.

This does not means that our constant is not good!
Both the estimates are optimal

Here the table of functions giving the optimality.
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Optimal

3. LSI

We show in the simpler case how to get logarithmic Sobolev inequality
by hypercontractivity. For the general case see [5].
We introduce the function

(9) F(t) = €| Lo,

then

(10) (F(t))q(t) — t()log F(t) _ / £4(t)Qruo(x) dz,
R

and

1
log F(t) = —lo /e‘J(t)Qtuo(z)dw,
g F(t) 20 %8 /.

We differentiate (10)

(F(1)™ ( ¢ (t) log F(t) + q(t) 11*;' ((tt)) > _

(11) /R ed(t)Quuo(=) <q’(t)Qtuo(l‘) +q(t) 5

Qo) )

and, using (11)
g (F0)" 7 (6) = =g () (F(£)) " log F(t)+

[ 02 (4 (0Quua(o) + a(0) 5y Qrun(o) ) s =

/
_q(t) (F(t))q(t) log/ eI Qtuo(@) . 4

q(t) R
/ eq(t)Qtuo((E)q/(t)QtuO(x>d$ + / q(t)eq(t)QtUO( ) aatQtuO( )d{]j
R R

Using (10) we get

/
gty (F1)" D P (1) = L2 (*) / 1(DQeu0(x) gy oo / a(HQuuo(®) gt
q(t) Jr R

0 /R £1OQ0) 10 () d + q(2) / 90200 0 Qo)

R
From which, recalling that Qiuo(z) is a solution,

)
/R 10Q0) 2 Qg () =
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(o) (10 0
_/Req(t)Qt o( )(2%‘QWO($)|2+aa?athuo(x))dx,

we have
() (F(t))CI(t)*lpl(t) =—q(t) (/ o1()Qruo(x) g log/ (1Qruo(2) g 1
R R
o (@att) [ 1% Quug (o)~
10 0
2 q(t)Qruo(x) [~ 2 2 —
7(0) [ ¢ (3 2l Quuo(@)? + o Quuo(e)]
We set
hant) = 100, Quu(a) = = Tog h(z.
and we recall the definition of entropy of a function h
(12) E(h) = / hlog hdx — / hdx log/ hdx
R R R

Then, we have
C(0)(FW)" () =
(13)

() B(e/®Rm0())  2(1) /

Req(t)Qt o )[5%\62%0(36)!2+ax%Qtuo(9«“)]d9€

We select the function F' as
F*(t) = Hthluo‘|LPe°‘t
Hypercontracitity gives

Lemma 3.1. For every p € (0,Z] the function F*(¢) is non increasing for
t e (0, log I).

Now we pass to prove a logarithmic Sobolev inequality. We consider (13).
From the lemma (3.1) we have

1 T
F (t) < t — log —
(t) <0 VE(O,aogap)

ape® B(eP Qruo(@)) <

2 2ot
pe ' Quug(x) [ 9 0
2/R€p Qe )[%\Qtuo(ﬂﬁw+2ax%QtUO($)]dx

Taking the limit as ¢t — 0, for any admissible ug, by the continuity of (),
we obtain

(14) aE(eP"0®)) < Z/R puo(z) [aax|uo(x)|2 + 2a:z:£cuo(x)]d:r Va<m
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