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Abstract

We study the reduced Weyl groups of the Cuntz algebras O,, from a
combinatorial point of view. Their elements correspond bijectively to cer-
tain permutations of n” elements, which we call stable. We mostly focus
on the case 7 = 2 and general n. A notion of rank is introduced, which is
subadditive in a suitable sense. Being of rank 1 corresponds to solving an
equation which is reminiscent of the Yang-Baxter equation. Symmetries of
stable permutations are also investigated, along with an immersion proce-
dure that allows to obtain stable permutations of (n + 1)? objects starting
from stable permutations of n? objects. A complete description of stable
transpositions and of stable 3-cycles of rank 1 is obtained, leading to closed
formulas for their number. Other enumerative results are also presented
which yield lower and upper bounds for the number of stable permutations.
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The Cuntz algebras O,, constitute a prominent class of C*-algebras, which has
attracted much attention since their appearance in the seminal paper [10]. By



now, they have been studied from several different points of view (see e.g.
[16, 17, 2, 22]), and Cuntz himself computed their K-theory [12], and discussed
some natural generalisations with very interesting connections with the theory
of dynamical systems [13, 14]. Cuntz also started the investigation of their auto-
morphisms [11]. These, however, remained quite elusive, with the exception of
notable cases (see e.g. [25]), probably due to the difficulty in providing explicit
examples. Thinking of a unital C*-algebra as (the algebra of complex-valued
functions on) a compact noncommutative space, the automorphism group is
nothing but the homeomorphism group of this virtual space and, as such, it
is rich of hidden geometric content, with the inner automorphism playing the
role of gauge symmetries. It is only over the last few years that new tools were
introduced, that allowed considerable advance in spelling out some aspects of
the structure of the group of #-automorphisms of O,, , Aut(O,,), as well as that
of its quotient Out(O,,) modulo inner automorphisms [9, 8, 6, 7]. As a matter of
fact, as abstract groups both Aut(O,) and Out(O,,) are horribly complicated,
e.g. Out(O3) contains every second countable locally compact group, so they
have to be handled with due care. However, they have a discrete shadow, rich
of appealing yet quite mysterious structure, that opens a door on seemingly
new challenging combinatorics. Indeed, in order to determine the properties of
Aut(O,,), in [9, 8] it is developed Cuntz’s original idea of exploiting the com-
parison with the theory of semisimple Lie groups by introducing some kind of
(reduced) Weyl groups for Aut(O,,) as normalizers of a of maximal torus (of
infinite dimension). These groups exhibit a deep combinatorial flavour, as it
turns out that their elements are parametrised by certain permutations of n”
objects, r = 1,2, 3, ..., hereafter referred to as stable permutations (by a vague
analogy with the expansion of a real number as a continuous fraction in the
past we have sometimes called them also rational permutations). Notice that
these stable permutations do not form a group by themselves as long as one con-
siders the usual group operation on permutations, but they do if their product
is (re)defined by reproducing the composition of the corresponding automor-
phisms. The resulting product law is quite complicated and certainly it would
not have come to mind without looking at the Cuntz algebras.

An important open problem, that motivated this research, is to count the
stable permutations, with the ultimate goal of giving an explicit complete char-
acterization.

There is empirical evidence that very few permutations are stable. For in-
stance for n = 3,7 = 2, among the 32! = 362, 880 possible permutations, only
576 of them are stable, so that 576,/362880 = 0,0015873... In order to get an idea
of what is going on it would be useful to compute some more of these numbers.
However, the computational problem of counting stable permutations in S([n]")



although definitely intriguing is very demanding and these numbers are known,
mostly by means of massive computer calculations, only for n +r < 7 [9, 8, 1].
It would be a remarkable advance to match or relate those numbers with other
numbers arising from different situations. The most optimistic hope would be
to arrive at some recursive or even closed formulas, or to get the expression for
the generating functions.

One might also expect that N, , the number of stable permutations in S([n]"),
is remarkably relatively small, i.e. lim,_,o N},/(n")! = 0 for each n. However, a
proof of this fact has yet to be found, as well as a precise claim on the speed of the
decay (which is likely to be extremely fast). For this and other purposes, taking
into account that to date it seems still beyond capabilities to determine those
exact numbers, good estimates from below or from above would also provide
valuable information.

The computational difficulties alluded to arise for two reasons. On the one
hand, the number (n")! of permutations to test becomes quickly unmanageable
in any practical sense. On the other hand, given a permutation u of [n]", to de-
cide whether it is stable, one has to go through a finite but cumbersone procedure
that requires constructing a related sequence of permutations of n" 1 n™2 ...
elements by combining suitable embeddings and shifts of u. A further improve-
ment was found in [9] based on rooted trees which however still requires heavy
computer calculations.

In this paper we study, from a combinatorial point of view, the stable per-
mutations of [n]?. We have decided to focus mostly on the case » = 2 (and
arbitrary n) in order to maintain the length at a reasonable size, but we believe
that this approach provides several important hints also for the case r > 2.
In addition to the fact that most of our results hold for all n, the novelty of
our approach lies in a more thorough analysis and explicit understanding of the
combinatorial structure of the stable permutations.

The organization of the paper is as follows. In the next section we provide
some background on Cuntz algebras and their automorphisms. In Section 3 we
introduce the tensor product of two permutations and derive some elementary
properties of this operation. In Section 4 we define our main object of study,
namely stable permutations. We define the rank of a stable permutation, and
study in more detail the stable permutations of rank 1, and those whose asso-
ciated automorphism is an involution. In Section 5 we introduce and study a
condition, which we call compatibility, that ensures that the (ordinary) product
of two stable permutations is still stable, and give an upper bound on the rank of
the product in terms of the ranks of the factors (Theorem 5.2). As a consequence
of these results we determine some explicit classes of stable permutations. In
Section 6 we study symmetries of stable permutations. More precisely, we study
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the effect on stability of the symmetries of the square grid [n]?, and show that
the symmetric group .S, acts in various ways on the set of stable permutations.
In Section 7 we provide a combinatorial construction, that we call immersion,
that produces stable permutations in S([n + 1]?) from stable permutations in
S([n]?) (Theorem 7.8), and preserves the property of having rank 1 (Corollary
7.5). In Section 8 we characterize some special classes of stable permutations.
More precisely, we show that a stable transposition is necessarily of rank 1, and
classify such transpositions (Theorem 8.1). We also characterize the 3-cycles
that are stable of rank 1 (Theorem 8.7), and give a sufficient condition for a
k-cycle to be stable of rank 1 (Proposition 8.5). In Section 9 we show that
the arithmetic structure of n affects the number of stable permutations of [n]?2.
More precisely, we give a combinatorial construction of stable permutations that
cannot be performed if n is a prime (Propositions 9.1 and 9.2). In Section 10
we discuss, in light of the results obtained in this work, the cases n = 3 and
n = 4 (with r = 2). In Section 11 we discuss enumerative aspects of stable
permutations. More precisely, we reduce the problem of enumerating the stable
permutations to that of enumerating a particular subclass of them, which we
call irreducible stable permutations (Proposition 11.1), and we use the results
obtained in previous sections to give upper and lower bounds for the number
of stable permutations (Corollary 11.12, Proposition 11.2, Corollary 11.14). Fi-
nally, in Section 12, we discuss some conjectures, open problems, and directions
for further research, that arise from the present work.

2 Preliminaries

In the sequel we adopt the following notation: for n € N = {1,2,3,...} we set
[n] = {1,...,n} and, for h € N, [n]" = [n]*". We also let (")) := {S C [n] :
S| = k}, and (n)g := k!(}) for all k € {0,1,...}. If {i1,..., i} C Z then we
write {i1,...,9k}< to mean that iy < --- < i,. For x € R, we let |z| and [x]
be the largest integer < z and the smallest integer > x, respectively. Given a
statement P we let x(P) := 1 if P is true and x(P) := 0 otherwise. S,, denotes
the symmetric group on n symbols, so Sy, := S([n]) where S(4) :=={u: A4 — A:
u is a bijection }. Given o € S, we write 0 = a; - - - a,, to mean that o (i) = a; for
all i € [n] (one-line notation). We also write o in disjoint cycle form omitting to
write the 1-cyles of 0. So for example, if o = ((1,2),(3,1),(2,2))((4,5),(2,1)) €
S([6]*) then o(1,2) = (3,1), 0(3,1) = (2,2), 0(2,2) = (1,2), etc... Recall
that, as it is easy to see, if o = [[]_;(ai1,ai2,-..,a;ik) is the disjoint cycle
decomposition of o € S, and 7 € S;, then H‘gzl(T(ai71),T(ai72), oo T(aiy,)) is
the disjoint cycle decomposition of 7o7~!. We follow [28] for other notation and



terminology concerning enumerative combinatorics.

For all undefined notation, terminology and basics on the theory of C*-
algebras we refer the reader to [15]. Let n > 2. Consider an infinite-dimensional
(separable) complex Hilbert space H, and let B() be the set of bounded linear
operators on H. Let S; € B(H), i = 1,...,n be isometries, i.e. such that

S;S; = 1, that satisfy
> 88 =1.
i=1

It is very easy to see that such operators always exist. The Cuntz algebra
O,, is the C*-algebra generated by the operators S;, ¢ = 1,...,n as above. It
is well-known that O,, is independent, up to isomorphism, of the isometries S;.
Moreover, O,, is a simple C*-algebra, that is it has no nontrivial closed two-sided
ideal, in particular its center reduces to the complex multiples of the identity.
One can describe O,, as the closed linear span of the Wick-ordered monomials
S,,S;, where 1, v are arbitrary multi-indices (possibly empty) and, for a multi-
index g = (u1,. .., k) € [n)¥, we define S, = Sy, ... S, if k>0and S, :=1if
k = 0. For u as above, we say that k = |u/ is the length of g. One has important
subalgebras
On D Fn D Dy,

Here F, is the closed linear span of S,,S;; with |u| = |v|, and is isomorphic to the
C*-algebra infinite tensor product @Q;°, M, where M, is the algebra of n x n
complex matrices. While D,, is the closed linear span of 5,5, and is a MASA
in O,,, isomorphic to the algebra of continuous functions on [n]N equipped with
the product topology, where [n] has the discrete topology, which is a Cantor set.

Denote by End(O,,) the semigroup of unital *-endomorphisms of O,, (en-
domorphisms, for short). Any element w in the unitary group U(O,) = {v €
O, | v*v = vv* = 1} determines an endomorphism A, of O,, such that A, (S;) =
uS;, i = 1,...,n and the map u — A, is a bijection between U(O,) and
End(0,), with inverse uy = > | A(S;)SF, A € End(O,). In general, this
bijection does not preserve the semigroup operations, indeed it holds

Ay oAy = )‘)\u(v)u

for all u,v € U(O,,). If ¢ denotes the so-called canonical endomorphism of O,,
given by

o(x) = ZSiCBS;, reO,,
i=1

one then has, for p = (p1,..., ux),
Au(Sy) = up(u) .. .@k_l(u)Su .



In general, given any u € U(O,,) the associated A, is automatically injective,
however deciding whether A, is an automorphism, i.e. surjective, is a difficult
problem. In addition to the inner automorphisms Ad(u) = Ayp(y+), notable
exceptions are provided by u € F} (where, for k € N, FX = span{S,,S}; | |u| =
lv| = k} ~ M,x) and u € U(D,), for which the associated A, are always
automorphisms, called quasi-free (or Bogolubov) and diagonal, respectively.

The following result has been shown in [9, Theorem 3.2] (with slightly dif-
ferent conventions).

Theorem 2.1. Letu € FF, k € N, then A, € Aut(O,,) with inverse (\,)~! = A,
for some v € F', h € N, if and only if the sequence of unitaries

{@"(u*) - p(u)up(u) - - " (u)}h=o,1,...
1s eventually constant, in which case its limit coincides with v.

Unitaries of the form u = Z|u|:|u\:r S,,S,, can be identified with permutation
matrices of size n”, so with elements of S([n]"). Denote by P} the set of such
unitaries. Following [9] we define the reduced Weyl group of O,, to be the quotient

(Aut((?n, F) N Aut(On, Dn)) JAutp, (On)

where Aut(O,, Fp) = {a € Aut(O,,) | a(F,) = Fn} and Autp, (Or) = {a €
Aut(0,) | a(z) = z, x € D, }. It is known that there is a bijection between the
reduced Weyl group of O, and

{u eUPil e Aut(@n)} .

reN

3 Tensor product of permutations

In this section we introduce the tensor product of two permutations and study
some of its fundamental properties, which will be used repeatedly in the rest of
this work without explicit mention. This operation corresponds to the tensor
product of the associated permutation matrices.

Let n and m be two integers larger than 1. Let u € S,,, v € S,,,. Define
U®v E Spm by

(u@v)((a=1)m + ) := (u(a) = 1)m +v(B)

for all « € [n], B8 € [m]. For instance, if u = (12) € Sy and v = (132) € S5 then
u® v = (162435) € Sg. The next result is then immediate.



Lemma 3.1. Let u,u’ € S, v,v' € S,,. Then
(u@v)(u @) = (uu) ® (vv')
In particular, (u®@v)™' =u"t @v7L

Proposition 3.2. Let o € Sy,,. Then there exists T € Sy, such that o =17 ® 1
if and only if o(j) = j (modn) for all j € [mn] and o(j + 1) =o(j) + 1 for all
j€[mnl], j#Z0 (modn).

Proof. Let T € Sy, be such that 0 = 7® 1. Let j € [mn], j = (k — 1)n + i for
some k € [m], i € [n]. Then

o(j) = (r@1)(j) = n(r(k) = 1) +i

so 0(j) = j (mod n). Furthermore, if j # 0 (mod n) then i < n. Hence
j+l=(k—1)n+i+1landi+1¢€[n]so

o(j+1)=(r(k)—1)n+i+1=0(j)+1.

Conversely, let o € Sy, be such that o(j) = j (mod n) for all j € [mn] and
o(j+1)=0(j)+1 for all j € [mn] such that j #Z 0 (mod n). Let 7 : [m] — [m]
be defined by

o((k—=1)n+1)=n(r(k) —1) +1

for all k € [m]. Then 7(k) € [m] and it is clear that 7 is a bijection, and that
0(j) = (T ®1)(j) for all j € [mn] such that j = 1 (mod n). Furthermore, if
jemnl,j=(k—1)n+i(k€[m], i€ [n]) then

U(j):a((k—l)n—i-l—&-.t.—i—l):a((k—l)n+1)+i—1

= (T(k:) - 1)n+i =(r®1)(j) .
|

We find it convenient to identify S([n] x [m]) with Sy, by labeling lexico-
graphically the elements of [n] x [m] (so (1,1) is labeled 1, (1,2) is labeled 2,
.y (1,m) is labeled m, (2,1) is labeled m + 1, etc...) and to represent them
graphically by drawing the cycles of the permutation as directed (except for the
cycles of length two) cycles of the rectangular grid [n] x [m]. We call this the
box diagram (or simply diagram) of the permutation.



Example 3.3. The box diagrams of 3412,2143,4321 € S5 are, respectively,

[ 1] 1
I 1

Note that 3412 = 21®12, 2143 = 12®21, 4321 = 21®21 (these permutations
correspond to the unitaries denoted by f,¢(f), fe(f) in [9], where ¢ is the
unilateral shift). Moreover, with these identifications, if u € S, and v € S,
then

(u @ v)(z,y) = ((z),v(3))

for all (z,y) € [n] x [m]. If u € S, v € Sp, and w € S; one also has ((u ®
v) @ w)(z,y,2) = (u® (v@w))(2,y,2) = (ulx),v(y), w(z)) for all (z,y,2) €
[n] x [m] x [l], i.e. the tensor product is associative.
Let u € S([n] x [m]). Define u; : [n] X [m] — [n], and ug : [n] x [m] — [m]
by letting
u((a—1)m+B) = (ui(e, B) — 1)m + ua(av, B)

for all @ € [n] and B € [m]. If we identify S([n] x [m]) with S,,, as explained
above then
U(CC, y) = (U1 (l’, y)? U?(xa y))

for all (z,y) € [n]
For u € S([n]
defined by

x [m].
x [m]) let 'u € S([m] x [n]) be the transposed permutation
“uly, z) = (ua(z,y), u1(z,y)), (1)

for all (y,x) € [m] x [n]. Notice that the diagram of ‘u is obtained by transposing
that of u. Moreover, it is clear that it holds u = *(*u).

We note the following property of the transpose operation, whose verification
is immediate from the definition.

Proposition 3.4. Let u,v € S([n] x [m]) and x € Sy, y € Sy Then
(1) H(uv) = futv;
() rey =you

In the rest of this work we denote by 1 the identity element of S,, (this should
not cause confusion as n will always be clear from the context). So, for example,
we write 1 ® 21 instead of 12 ® 21. Also, we find it often convenient to let, as in
[9], if u € S([n]"), ¢(u) :==1®u, and to identify u with u ® 1. We call p(u) the
one-sided shift of u.



4 Stable permutations

4.1 Definition

Throughout this section 7 is a natural number, n € N. We identify, as explained
in the previous section, S([n|") with S,r.
Let u € S([n]") and k € N. Define an element 1, (u) € S([n]"**) by

= (1l®---®1 N1 ---21 “191)...
Pr(u) =(1®-@1u )(1l® - ®1leu  ®1)
k k—1
Cleulele 9w lele - 9)(1ouele-- 1)
k—1 k k—1

1I1leuel®..®l)- - (1®..81lu)(l®...0 Lo u)
4 S————
k—2 k—1 k

(and vg(u) := u~1). Equivalently,

k k
O=lllg.. 919 '9le...e1 181..910uRl®...01).
i (1) ir%( SLD Z_ >}Il< i Loml )

Note that

I
=
&
®
—
@
IS

L
=
T
E

&
N
=
@
&
—_
&
=

Vi (u)

for all £ > 1.

Definition 4.1. Say that v € S([n]") is stable if there exists ko > 0 such that

Ur(u) = Yp(u) @1®---®1 (2)
k—ko

for all kK > ko. We let N}, denote the number of stable permutations in S([n]").

For example, if n = r» = 2, then it is not hard to check that there are four
stable permutations, namely the identity and

((1,1), (2, 1))((1,2),(2,2)), (1, 1), (1,2))((2,1),(2,2)), (1,1),(2,2))((2,1),(1,2))

(that is, the three permutations listed in Example 3.3), so N3 = 4. Also, for
r = 1, all the elements in S([n]) are stable (they correspond to the so-called
Bogolubov automorphisms of 0,,). Hence N! = n!. Note that the identity is
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stable, so N, is positive for all n,r. Moreover, if u € S([n]") is stable, then it can
be checked that u ® 1 € S([n]"™!) is stable. Therefore the stable permutations
of S([n]") are naturally embedded in the stable permutations of S([n]"*!), so
that N7 < N/+L,

The next result follows from Theorem 2.1, taking into account the analysis
carried out in [9] (see Theorem 2.2).

Theorem 4.2. Let n,r € N, and u € S([n]"). Then A, is an automorphism of
Oy, if and only if u is stable. In particular, the reduced Weyl group of O, is

{Aue S(n]"),r € N, u stable}.

4.2 The rank of a stable permutation

that a stabl tation h k1ifkg=0,i.e. =ur®l®---®1
Say that a stable permutation has rank 1 if kg = 0, i.e. ¥g(u) = u* ® ®k®
for all kK > 0.

Definition 4.3. We say that a stable permutation has rank kg + 1 if kg is the
smallest integer satisfying equation (2).

So if u € S([n]?) then u has rank 1 if and only if ¥1(u) = u~!, u has rank
< 2 if and only if ¥2(u) = 91(u), and in general u has rank < k if and only if
Yrp(u) = Yp_1(u). It is then easy to see that v has rank 1 if and only if u~! has
rank 1. For instance, all the permutations in S([n]) have rank 1. Furthermore,
if w € S([n]") is stable then ¢(u) is also stable of the same rank. The three
permutations listed in Example 3.3) all have rank 1.

Proposition 4.4. Let u € S([n]"), and k € N. Then

i) if Yr(u) € S(MFH) ®1®@ - ®1 then u is stable of rank < k + 1;
r—1

i) if u is stable of rank < k41 then ¥y, 1(u) € S([n)*) @ 1.
In particular, u is stable if and only if there exists a positive integer h such that

Yn(u) € S("MM @1 @1

r—1

Proof. If y(u) € S([n) ) @1 ®--- @1 then ¥, (u) = Yp(u) ®1®@--- @1 for

r—1 h—k
all h > k so u is stable of rank < k + 1.

11



C ly, if u is stable of rank < k+1 h ; = 1®---®1
onversely, if u is stable of rank < k+1 one has 94 ;(u) = ¥5(u)®1 ®@ ' ®
j
for all j > 1, so in particular 9y, 1(u) = ¥ (u) ® 1 and ¥y (u) € S([n]"tF).
The last statement follows from the fact that if u is stable, say of rank < k+1,
then, by what we have just observed, ¥ ,—1(u) € S(n] M) ®1®---®1. O
—_————

r—1

4.3 Stable permutations of rank 1 (case r = 2)

Proposition 4.5. Let u € S([n]?). Then u is stable of rank 1 if and only if u
satisfies the equation

uel)(leu) =10u)(ux1l) (3)
in S([n]3).

In the shorthand notation, the above equation is written as up(u) = ¢(u)u.
From the point of view of the Cuntz algebras, the equation (3) says that A, is
an automorphism of O,, and furthermore (\,)~! = \,-1. It would be interesting
to know how many stable permutations of rank 1 there are in S([n]").

Equation (3) somewhat resembles (but is different from) the Yang-Baxter
equation (i.e., up(u)u = @(u)up(u), see [26] for a general introduction). Indeed,
if a permutation u € S([n]?) satisfies both equation (3) and the Yang-Baxter
equation then u = p(u) so u = 1. After Drinfel’d’s suggestion [18], permutations
u € S([n)?) that satisfy the Yang-Baxter equation have been widely studied (see,
e.g., [3, 19, 21, 20, 23, 27]) and are often called set-theoretic solutions of the YBE.
More generally, it can be shown (see [5]) that any set-theoretic solution u # 1
of the YBE is not a stable permutation.

Remark 4.6. Note that it is not true that if u € S([n]?) satisfies equation (3)
and 0,7 € S,, then u”®7 satisfies equation (3), where u’®7 := (o~ '@7 Hu(oc®T)
(= o to(r Huop(r)). For example, if n = 3, r = 2, u = 132456789, 0 =
321 and 7 = 213 then u”®7 = 123456987 which does not satisfy equation (3).
Furthermore, it is not true that if u,v € S([n]?) both satisfy equation (3) then
uv satisfies equation (3). For example, if u = 132456789 and v = 126453789
then vu = 162453789 which does not satisfy equation (3).

Remark 4.7. Let u € S([n]?) be a solution of the equation (3). Then, u being
stable, for any z € S, one has that zup(z)* is also stable (see [9], and also
Proposition 6.2 below). However, it is not generally true that zug(z)* still sat-
isfies equation (3). Indeed, this amounts to checking that zup(z*)p(zup(z*)) =

12



o(zup(z*))zup(z*), that is

2up(u)p? () = p(2)@(u)e? (%) zup(2*).

It is easy to see that ¢?(z*) commutes with zup(z*) and that z commutes with
o(2)p(u). After simplifying, one is thus left with the condition

up(u) = p(2)p(u)up(z") ,

that is up(u) (= ¢(u)u) commutes with ¢(z).
If one also knows that u is an involution then zup(z)* is an involution if and
only if zup(z*)zup(z*) = 1, i.e. zuz = p(z)up(z).

We find it convenient to have an explicit characterization of permutations
of rank 1. We provide the following more general result, that will be used often
in the sequel. We use the maps u; and ug introduced in Section 3.

Proposition 4.8. Let u,v € S([n]?). Then 1@ u)(v®1) = (v 1)(1®u) if
and only if

vi(a, B) = Ul(a,ul(,@,’}/))
1}2(@, U1(,3, 7))
= u2(677)

550w
S—
Il

for all o, B,y € [n].
Proof. 1f a, 8,7 € [n], we have that

(1®u)(v@1)((a—1)n?+ (B —1)n+~)

[(vi(a, B) = 1)n 4 v2(a, B) — 1n + )

(v1(a, B) = 1)n? + (va(a, f) = 1)n +7)
,B) — Dn® 4+ u((va(a, B) — 1)n +7)

)
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Similarly,

(w®@1)(1@u)((a—1)n*+ (B —1)n+7)
= (@ 1)((a —1)n* +u((B - 1)n+7))
= (0@ 1)((a—1)n* + (u1(8,7) — 1)n + u2(B,7))
= (@) ([(a=n+w(B,7) — 1n+u2(B,7))
= [v((a = Dn+ui(B,7)) — ln +u2(B,7)
= [(vi(a,u1(B,7)) — Dn +va(e, ur(8,7)) — 1n + u2(8,7)
= (vi(e,u1(8,7)) = Dn? + (va(, w1 (8,7)) = 1)n + ua(8,7) -

O

Corollary 4.9. Let u,v € S([n]?) be such that ui(x,y) = x and va(x,y) = y
forallx,y € [n]. Then (1®@u)(v®l)=(v®1)(1®u).

Let u,v € S([n]?). Then we have that, if o, 8 € [n],
(vu)((a =1)n+ ) = v((w(a f) —1) +uz(e, §))
= (v1(ui(ae, B),u2(a, B)) — 1)n + va(ui (e, B), u2(a, B)) -

Therefore, uv = vu if and only if

vi(u1(e, B),uz(a, B)) = ur(vi(e, B),v2(c, B))
02('“1(0‘76)7“2(0‘7/8)) = u2(v1(a7/8)vv2(a7/8))

for all a, B € [n]. In particular, v = «~! if and only if
Ul(ul(a,ﬁ),UQ(Oé,ﬂ)) = «
va(ur (e, B),uz(ax, B)) =
for all , 8 € [n].

Let z,y,w,z € Sp, u := Ry, v := w® z. Then, by the definitions,

ui(a, B) = z(a), us(a,B) = y(B), vi(a, B) = w(a), va(a, B) = z(B) for all
a, € [n]. Therefore, we conclude that (1 ®@u)(v® 1) = (v® 1)(1 ® u) if and
only if xz = zx (in S,). The following proposition is almost immediate.

Proposition 4.10. Let u € S([n)?), u =2 ®vy, v,y € S,. Then u is stable of
rank 1 if and only if xy = yx.
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4.4 Stable permutations of rank two (r = 2)

Let u € S([n]?). Consider the following equation in S([n]?)
urel)(lou) =12u)(ual). (4)

This says that ¢1(u) = u so Yr(u) = u for all & > 1, hence u is stable of
rank < 2. From the point of view of the Cuntz algebras, it says that A, is an
automorphism of @, such that (\,)~' = A, that is A, is an involution. Indeed,
the converse statement is also true, as the following result shows.

Proposition 4.11. Let u € S([n]?). Then u satisfies the equation (4) if and
only if (A\y)~t = Ay. Moreover, in this case u is stable of rank < 2.

Proof. We have that (Ay)?> = Ay, (u)u- But, if u € S([n]?), then A\,(u) =
up(u)up(u=u™t, so Ay, (wu = AMugp(u)up(u-1)- Hence (M\)? = Id if and only

if Ayo(uyup(u—1) = Id = A1 which happens if and only if up(u)up(u™) =1. O

Proposition 4.12. Let u € S([n]?), u =2 ®y, 2,y € S,. Then
wlel(lou) =10u)(ual)
if and only if ™! = x and yx = (yz)~'.
Let u € S([n)?). We consider more generally the following condition

leuHutel)(leou) e S(n?) 1. (5)

As above, such permutations are stable of rank < 2. From the point of view of
the Cuntz algebras, equation (5) says that A, is an automorphism of O,, such
that (\,)~! = ), for a certain v € S([n]?).

In general, if u € S([n]?), one might consider the family of conditions
Yi(u) € S(In]** @1
for k > 2. Such permutations are stable of rank < k + 1 (cf. Proposition 4.4).
Remark 4.13. Suppose that u,v are stable permutations in S([n]?) (not nec-

essarily of rank 1). Then the commutativity A A, = A\, of the associated
automorphisms of O, is equivalent to the validity of the relation

(we)(1euwwe)(leu ) =we)1ev)(uel)(lev?) (6)
in S([n)?).
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The following result establishes a connection between rank 1 and rank two.

Proposition 4.14. Letu € S([n)?). If ¢1(u) := ¢(u)*u*p(u) € S([n]?) is stable
of rank <1 then u is stable of rank < 2.

Proof. By assumption, we have 11 (11 (u)) = 11 (u)*, that is

¢ () up(u))p(u) up(u)p(p(u) u*p(u) = p(u*)up(u) .
Moreover, 19 (11 (u)) = ¥1(u)*, that is
0% (p(u) up(u)) (o) up(u)) (u) up(u)p (p(u) u e (u))¢* (p(u) v p(u))
= p(u")up(u)
and thus

0? (so(u) up(u)) p(u*)up(u)p? (p(u) u*p(u)) = p(u*)up(u) .
Therefore, after simplifying the highest powers, we get

P? (u)p(u" Jup(u)g? (u) = o(u*Jup(u) |

which, after taking the adjoints of both sides, can be written as

P? (u)p(w)up(u) o (u) = p(u")u"p(u)

which means that ¥9(u) = 91 (u). It then follows at once that ¥y (u) = 1 (u)
for all £ > 2, and u is stable of rank two. O

Note that the argument works equally well for unitary matrices [9]. One
might wonder whether a similar claim holds for u € U(M,,r), with r > 2.

4.5 An arithmetical digression

If we identify [n]® with [n%] as explained in Section 3 then the above equations
lead to seemingly complicated arithmetical questions. In this subsection we spell
out in detail one such instance, namely the one arising from equation (4).

We first discuss a change of basis formula, relating quotients and remainders
modulo n and n?, respectively.

Proposition 4.15. Let j € [n3]. We can write j = n(iy — 1)+ ki with i1 € [n?],
k1 € [n] and j = n%(ia — 1) + ko with iz € [n] and ks € [n?]. Then we have
ko — 1 ko — 1
ilzn(ig—l)—F[Q J—I—L ]ﬁ:kQ—TLLQ J
n n

1 — 1 1 — 1
19 = LZl J + 1, ko :TZQ{ZI }-I—kl
n n
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Proof. Let j = n?(a—1)+n(B—1)+7, a, 8,7 € [n]. Now, from n(i; —1)+k; =
n(a—1)+n(B—1)+yget ki =vand iy — 1 =n(a—1) + (8 — 1) and from
n2(ig — 1) + ko = n?(a— 1) +n(B — 1) +v get ko = n(B — 1) + v and iy = a.
Therefore, k1 = v = ko —n(f —1) and thus §—1 = ]”T_V = % + 1_77 Hence,
% =p—-1+ 77_1 and

ko —1
oi= (Bl
n

We have thus obtained that
ko —1

n

kg—lJ.

J+1, klzkg—r{ .

ilzn(ig—l)—i—L

On the other hand, from g —1 = (i1 — 1) — n(a — 1) we deduce that ky =
nB—1)+~vy =nli1 —1) —n(la—1)] + ki = n[(i1 — 1) —n(ie — )] + k1.
Since ip = a = 4 B—i—l “n1+1 ’64—1vveget22—1—“nl—i—ﬂ that is

a=1 :ig—l—i—% so that {%J = 19—1 and so ko :n[(il—l)—n[“ 1J]+k1

n
-1 -1
iy — Vl J+1, kgan{L }+k1.
n n

(Notice that k1 depends only on ks and is depends only on i;.) O

Therefore,

For u € S([n]?) one has
(u®@1)(n(iy — 1)+ k1) =n(u(i) — 1) + k
and
(1@ u)(n?(iz = 1) + k2) = n?(iz — 1) + u(kz) .
For j € [n3] we compute
Q@u)(ue)(y)=Au)(u@1)(n(i —1) + k)
= (1 @u)(n(u(i) - 1) + k1)

(= ) ] L )
Tt 1) ] ({4 )

=n uli) ~1 1J —&-u(nQ{iu(il)_l}—i-kl)

L n n

(n(iz — 1) —1J +1) -1

U + [kQ
:n2 " J

ko—1
2 J+1)—1

btk —n| 2

)



and

w!'ol)Aou)(j) = (u ' ®@1)(1®u)(n’(iz — 1) + k)
= (u ' @1)(n%(iy — 1) + u(ks))

N 1 P L By

+ u(ks) — n{u(kzg -1 )
= n[u_l (n(ZQ -1+ Lu(kng — 1J + 1) — 1}
+ u(kg) — n{u(ki — 1J

5 Compatibility

It is not hard to show, using the connection between stable permutations and
automorphisms of the Cuntz algebra, that if w,z € S([n]?) are stable, and
zp(w) = p(w)z, then wz is also stable. We give a combinatorial proof of this
fact here, which is self contained and also has the advantage of giving more
information on the product. We need first the following preliminary identity.

Lemma 5.1. Let w,z € S([n]?) be such that zp(w) = @(w)z. Then, for every
kE>1,

Ye(wz) = () (2" () 2 en(w) () . T (2)M(2) -
Proof. We show the claim by induction on k. For k =1 we have

P1(wz) = p(wz)" (w2) p(wz) = p(2)"p(w)* 2" w* p(w)p(2)
= p(2) 2 p(w) wrp(w)p(z) = p(2)" 2 1 (w)p(2) .

Now, let k > 2. Then by the induction hypothesis and the commutation rule
we have

Vi (wz) = @ (wz2) Y1 (w2) " (wz)
= G (2) (W) (P 2) - p(2) 2 Pk (w)p(2) - DT (2)) " (w) e (2)
= ()" " @) p(2) e (W) P (0P (W) (2) - T ()R (2)
as desired. O

We can now prove that the product of two stable permutations as above (is
stable and) has rank bounded above by the sum of the ranks of the factors.
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Theorem 5.2. Let w,z € S([n]?) be such that zp(w) = p(w)z. Assume also
that w is stable of rank < r and z is stable of rank < s. Then wz is stable of
rank <r +s.

Proof. For s = 1 and any r the statement can be checked directly without much
trouble. We shall henceforth assume that s > 2.
We claim that ¢,45-1(wz) equals

Vs—1(2)p(Ys-1(2)) - .. @ (Ys—1(2))Yr—1(W)@" (Ys-1(2))" ... p(hs-1(2))" . (7)

We begin by showing that

Ys1(2)p(Ws-1(2)) - - @7 (Ys-1(2)) = " TH2) L p(2) 2T (2) L @THTH(2)

(8)
(In this identity,  can actually be any nonnegative integer.) Note that, since z
is stable of rank < s we have that

¢S,1(z)g0(¢s,1(z)) cee 907"(%71(2)) = ¢r+371(z)@(¢r+572(2)) s @T(@bsfl(z)) :

We claim that

¢r+sfl(z)90(¢r+sf2(z)) s ka_l(wr-ﬁ-s—k( ))
:@r+sfl(z)*(pr+sf2(z) . (p( )*Z*(pk( ) i Sar‘Jrsfl(Z)

for all kK = 1,...,7 + 1. We prove this claim by induction on k, the identity
being true by definition if £ = 1. If £k > 2 then we have by induction that

Uris—1(2)(Pris—2(2)) .- 1(¢r+s k(2))
(

= Prps—1(2)p(Vrs—2 Z)) T (s k1 (2) 0 (s i(2))
—90”5 HE) TR () e T (R) 0 T ()R T (s (2))
7"+s 1(2)*()07’4-5 2(2,)* (,D(Z)* * k 1( ) . (PT—&-S—I(Z)

X PP TR p(2) 90(2)"-30”“’“(2?))
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as claimed. This proves (8). Now, substituting (8) into (7) we obtain
PTG () () T (2) - T () ()
X @ " (Ys-1(2))" .. p(ths-1(2))"
= ¢ R)OTTER)  p(2) 0 (2) T () (w)
PP (s ()" s (2)7)
= @ TR TR R)  p(2) e (2) T () (w)
X (P (@) T (2) 2p(2) . TR (2))
= @ T ) TR (2) - pl2) 2 1 () p(2)9?(2) T HTH(2)
= @ TH2) O TTR(2) () s (W) ()P (2 ) L)
— 1 (w)

by Lemma 5.1 and our hypothesis that w is stable of rank < r. This proves our
claim. Analogously, we have that

Urps(wz) = ¥s(2)9(ths(2)) - .- @7 (¥s(2))r—1(w) " (1s(2))" - .- (s(2))"
Since 5(z) = 15—1(2) we conclude that ¥, s(wz) = Prips—1(w2). O
The previous result has a sort of partial converse, as we now show.

Proposition 5.3. Let w,z € S([n)?) be such that zp(w) = ¢(w)z. Assume that
w 18 stable and z is not stable. Then wz is not stable.

Proof. We have, since z € S([n]?) and zp(w) = ¢(w)z, that Ay\, = M (2)w =
/\weo(w)w(w)*l = Ayz. But, by Theorem 4.2 and our hypothesis, A, is not an
automorphism, so )\, is not an automorphism, and the result follows again
from Theorem 4.2. O

Because of the previous results, we say that two permutations u, w € S([n]?)
are compatible if (1@ u)(w® 1) = (w® 1)(1 ® u). Note that it is not true, in
general, that if u,w are compatible then w, u are compatible.

Corollary 5.4. Let u, us, ..., um € S([n]?) be stable such that (u;®1)(1®u;) =
(1®w)(uj®1) for all1 <i<j<m. Then ujug- - uy € S([n]?) is stable.

Proof. For m = 2 the result follows from Theorem 5.2. If m > 2 then by
induction we have that u - - - u,—1 € S([n)?) is stable. But

(um @ DA @ ur - tm—1) = (Um @ (1 @ u1) - (1 @ um-1)
=(1®u) (1 ®tUn_1)(tym @ 1)
=(1®uy  Up-1)(Uy @ 1)

80 uy -+ - um € S([n]?) is also stable. O
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It is worth stressing that, by Theorem 5.2, the product u; . .. u,, of m stable
permutations of rank 1 u; in S([n]?) that is compatible in at least one way, i.e.,
for which there exists a bracketing such that each properly parenthesized sub-
word is (stable and) compatible with its sibling, is stable and has rank bounded
by m. In this case, we will call u; ... u, a compatible product.

It is of interest to explicitly identify specific subgroups of Aut(Q,,). In this
respect the previous result has the following consequence.

Corollary 5.5. Let uy,us,...,un € S([n]?) be stable permutations of rank 1
such that (u; ® 1)(1 @ uw;) = (1 ® u3)(uj ® 1) for all 1 < i,5 < m. Then the
subgroup of Aut(O,,) generated by { Ay, ..., Ay, } is isomorphic to the subgroup
of S([n)?) generated by {u1,. .., um}.

In view of Theorem 5.2 (and Theorem 8.1 below), it is an interesting problem
to decide when two (stable) transpositions of S([n]?) are compatible. In this
direction we have the following result.

Proposition 5.6. Let u = ((a,b), (i,7)), where a,b,i,j € [n], b # j, and v €
S([n)?). Then (v 1)(1®u) = (1®u)(v®1) if and only if there is o € S, such
that v(z, k) = (o(x), k) for all x € [n] and all k € {a,i}.

Proof. Note first that

n

1®@u= H((w,a,b),(z,i,j)),

=1

and hence that
eel(leu( ! el)=]](va),b),(©1),]).

Therefore u is compatible with v if and only if these two permutations are the
same. But this happens if and only if there is a permutation ¢ € S, such that
((v(z,a),b), (v(x,i),5)) = ((o(x),a,d), (c(x),i,7)) for all z € [n], so if and only
if (since b # j) there is a permutation o € S,, such that v(z,a) = (o(z),a) and
v(x,i) = (o(x),i) for all z € [n], as claimed. O

The previous result covers all transpositions except the “vertical” ones. For
these the situation is slightly more involved, as we now show.

Proposition 5.7. Let u = ((a,b), (i,b)), where a,b,i € [n], a # i, and v €
S([n]?). Then (v@ 1)(1®u) = (1 ®@u)(v® 1) if and only if there are o € Sy,
and € € (S2)" such that, for all x € [n],

v(z,a) = (o(x),a), wv(x,i)=(o(zx),1)
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if ez = 1d, while
v(z,a) = (o(x),1), v(x,i)=(0(x),a)

if e, # 1d.
Proof. We proceed as in the previous proof. We have that
n

1®u= H((xv a, b)? (.CU, i, b))’

r=1

and
n

vel(leu( ' el) = ]](v,a),b),(v(i),b).
=1
Therefore u is compatible with v if and only if these two permutations are the
same. But this happens if and only if there is a permutation ¢ € S, such that
((v(x,a),b), (v(z,i),b)) = ((6(x),a,b), (c(x),i,b)) for all x € [n], so if and only
if there is a permutation o € S,, and an ¢ € (S2)" such that

v(x,a v(x. i — [(0(z),a,b),(o(x),i,b)], if e =1d,
(vl a0, (vl 0. D) {[(‘7(95),1}1)),(a(x),a,b)], if € #£1d,

for all « € [n], and the result follows. O

In particular, Proposition 5.6 shows that Corollary 5.5 applies to “horizon-
tal” stable transpositions that act on the same row of [n]?, but fix the diagonal.
Namely, if h,i,j, k,l € [n], [, ], k distinct, [, h, i distinct, then ((I,h), (I,4)) and
((1,9), (1, k) € S([n]?) are compatible, in both orders.

Corollary 5.8. Let u € S([n]?) be such that u permutes the off-diagonal ele-
ments of a row. Then u is stable.

Proof. Let | be the row that is permuted by uw. Then w is a product of transpo-
sitions of the form ((1,7)(l, 7)) where i, j € [n] \ {l}. But, as observed above, all
these transpositions are mutually compatible by Proposition 5.6, and they are
all stable of rank 1 again by Proposition 5.6 (applied to u = v). So the result
follows from Corollary 5.4. O

Note that, by Proposition 5.13, the last two statements hold, respectively,
for “vertical” stable transpositions of any column, and for permutations that
permute the off-diagonal elements of any column.

From the point of view of Aut(O,), the previous result implies that the
reduced Weyl group of O, at level 2, contains several isomorphic copies of the
Weyl group of type A of rank n — 2.
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Corollary 5.9. {\, : u € S([n]?),u stable} contains at least 2n subgroups of
Aut(0O,,) isomorphic to S,_1, which pairwise intersect only at the identity.

Proof. Let | € [n]. By Proposition 5.6 any two transpositions that switch two
elements of the I-th row of [n]?, that are not on the diagonal, are compatible.
Therefore, by Corollary 5.5, the subgroup of Aut(O,,) generated by the auto-
morphisms indexed by these transpositions is isomorphic to the subgroup R; of
S([n)?) generated by the transpositions themselves, which is easily seen to be
isomorphic to S,_1. Similarly for the [-th column and the corresponding sub-
group Cj. Let now i,j € [n], and u € R;NR;. Then u(z,y) = (x,y) if x # i and
if z # j, so u = Idp,2 if i # j. Similarly if u € C; N Cj. Finally, if u € R; N C;
then u(z,y) = (z,y) if x # i and if y # j, so necessarily u = Idj,2. O

We present yet another consequence of Proposition 5.6.

Proposition 5.10. Let u,v € S([n]?) be given by u = ((i,5)(i,k)), v =
((a,c)(b,c)), where j # k, a # b (i,5,k,a,b,c € [n]). Then (1 @ u)(v®1) =
(v@1)(1®u). In particular, uv is stable if i ¢ {j,k} and c ¢ {a,b}.

Note that the product of a vertical stable transposition with a horizontal one
(in this order) is not necessarily stable; for example, ((1,2), (3,2))((1,2), (1, 3))
is not stable.

Given the importance of the compatibility condition we now investigate some
further properties of this operation.

Foru € S([n)?) and o € S, define u° := (0" '@ )u (c®0). Sou® € S([n)?)
and

u?(2,y) = (07 (ur(o(2), 0 (y), 0~ (uz(o(2), o (y))))

for all (z,y) € [n)2.
Proposition 5.11. Let u,v € S([n]?) and let o € S,,. Then
lIeu)(vel)=(vel)(l®u)

if and only if
(1eu”) ©1)= @ @)1eu’) .

Proof. This follows immediately from the observation that
(leuw)=('ec'ecH(1lou)(r2rsc0)

and similarly for v. O
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Remark 5.12. As usual, let F' € S([n]?) denote the involutive permutation
corresponding to the flip map, i.e., F(z,y) = (y,z) for all (x,y) € [n]%. If
u € S([n]?), one has that u solves Equation (3) if and only if FuF does. In-
deed, assuming the first relation, the second one can be quickly checked by
means of the identity p(u) = Fo(F)up(F)F and repeated applications of the
Yang- Baxter equation for F: first observe that the equality Fo(F)up(F)Fu =
uFo(F)up(F)F implies that up(F)FuFo(F) = p(F)FuFp(F)u, and then

FuFo(F)p(u)e(F) = FuFo(F)Fo(F)up(F)Fo(F)
= Fup(F)FuFo(F)F
= Fo(F)FuFo(F)uF
= o(F)Fo(F)up(F)Fo(F)Ful
= o(F)p(u)p(F)FuF .

Note that F'uF is nothing but the transposed of w.

For v € S([n]?), let 'u,%u,™u € S([n]?) be the transposed, antitransposed
and rotated (by 7) permutations defined by

tu(xay> = ('U/Q(y,-f),Ul(y,x)), (9)
“u(z,y) = (n+l—us(n+1—y,n+1—z),n+l—u(n+1—y,n+1-2x)), (10)
Tu(z,y) == (n+1l—w(n+l—z,n+l—y),n+1l—u(n+l—z,n+1-y)) (11)
for all (z,y) € [n]%. Equivalently, “u = (wp ® wo) (*u) (wo ® wp), and "u =
(wp ® wp)u(wy ® wgy) where wy denotes the longest permutation in S, namely
wo = n---321. Notice that the diagram of ‘u (resp. %u,™u) is obtained by
transposing (resp. reflecting through the antidiagonal, rotating by 7) that of
u. Moreover, it is clear that it holds u = !(*u) = %(“u) = ™("u), and that
Huw) = tuto, 4(uwv) = “w, "(uv) = "u™v for all u,v € S([n]?).

Proposition 5.13. Let u,v € S([n]?). Then the following conditions are equiv-
alent.

(1) (
2) lev)(ful)=_"tux1)(le);
(3) (

(4) (

Iu)vel)=(ve)(1®u) ;
1) ("v®el)=("v®1)(1® ") .
1@%)(u®l)=("u®1)(1® %) ;
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Proof. We know from Proposition 4.8 that (1@ u)(v®1) = (v®1)(1®u) if and
only if

Ul(a7ﬂ = Ul(a7ul(ﬁa7))
ui(v2(e, B),7) = wa(a,u1(B,7))
uz(va(a, B),y) = u2B,7)

for all (o, 3,7) € [n]?. Similarly, (1®@%)(fu®1) = (‘u®1)(1® %) if and only if

uz(8,) = wua(v2(v,B), @)
va(v,ur (B @) = ur(va(v,B), @)
Ul(/yaul(ﬁva)) = 01(775)

for all (o, 3,7) € [n]3. This shows the equivalence of (1) and (2). That of (1)
and (3) follows immediately by taking ¢ = nn — 1---321 in Proposition 5.11,
and the equivalence of (1) and (4) follows from the other two after observing
that “u = {("u). O

Proposition 5.14. Let u,v € S([n]?). Then the following are equivalent:
i) leu)(vel)=(wel)(1®u) ;
i) 1ou" )W ®@1) =" @1)(1eu"), foralr € Z.
Proof. Suppose i) holds. Then
elehlev ) =@we) leuw ' =(1ouwel)
—(ve)(low)  =(1euw  (vel)™
=(louHrtel)

and i7) follows since (1@ w") = (1@ w)" and (w" ®@ 1) = (w® 1)" for all r € Z
and w € S([n]?). O

The following elementary result gives a simple sufficient condition for com-
patibility. It will be useful for the enumerative results about stable permuta-
tions.

Proposition 5.15. Let u,v € S([n]?) be such that ui(x,y) # va(a,b) for all
(z,v), (a,b) € [n]* withu(z,y) # (x,y) and v(a,b) # (a,b). Then (1®u)(vel) =
(v@1)(1®u).
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Proof. Let (z,y,2) € [n)3. If v(z,y) = (z,y) and u(y, 2) = (y,2) then
1ou)(vel)(z,y,z) =(z,y,2) = (v@1)(1Qu)(z,y, 2) .

If v(z,y) # (z,y) then there exists (a,b) € [n]? such that (a,b) # v(a,b) = (z,y).
Hence vi(a,b) = z and va(a,b) = y. We therefore have that

(1 ® u)(v ® 1)(:U,y,z) = (1 ® u)(vl(xay)v’I)?(x?y)?Z) = (Ul(xvy)a'U?(x?y)a Z)

(for if u(ve(z,y),2) # (va(w,y),2) then there exists (c,d) € [n]? such that
(c,d) # u(e,d) = (va(x,y),z) so ui(c,d) = vo(x,y) which contradicts our
hypotheses). Similarly, u(y,z) = (y,2) (else there exists (e, f) € [n]? such
that (e, f) # u(e,f) = (y,z) so y = uy(e, f) which is a contradiction since
y = va(a,b)). Hence

(@)1 ®u)(z,y,2) = (v l)(z,y,2) = (v(z,y) v2(2, ), 2) .
Similarly if u(y, z) # (v, 2). O

Like all results about compatibility, Proposition 5.15 has the following im-
mediate consequence for stable permutations of rank 1.

Corollary 5.16. Letu € S([n]?) be such that ui(z,y) # uz(a,b) for all (x,y), (a,b) €
[n]? with u(z,y) # (z,y) and u(a,b) # (a,b). Then u is stable of rank 1.

Note that the class of permutations to which Corollary 5.16 applies can be
equivalently described as those permutations u € S([n]?) such that if (a,b) € [n]?
and u(a,b) # (a,b) then u(x,a) = (z,a) and u(b,x) = (b, z) for all x € [n].

We conclude this section with the following result that is a refinement of
Proposition 5.10 in a special case.

Proposition 5.17. Leti € {2,...,n—1} andu= ((i —1,i+ 1), (4,5 + 1))((¢ +
1,i—1),(: +1,4)). Then u is stable of rank 1.

Proof. We verify that (v ® 1)(1 ® u) = (1 ® u)(u ® 1). Note that

1@u=[[((z,i—1i+1), (x,di+1)) (2,6 + 1,i — 1), (x,i + 1,i)).

z=1

Therefore (where, for notational simplicity, we write (u(a,b),c) in place of
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(x,y,¢), if u(a,b) = (z,y))
(ue)(1®u)(u®l)
= I ((u(e,i = 1),i+1), (u(,i),i + 1)) ((u(z,i+1),i—1), (u(@,i+1),i))
r=1
= ] (@i—1i+1)(edi+1)) ((u(i+1d—1),0+1), (ul+1,0),i+ 1))

ze[n]\{i+1}

< I (@i+1i—1),(2,i+1,1)
z€[n\{i—1,i}
x ((u(i—1,i41),5— 1), (u(i — 1,0 +1),4)) ((w(i,i+1),i—1), (u(i,i+1),7))

= ] (@i-1i+1),(di+1) ((+1,4,i+1),(+1,i-1,i+1))
z€[n)\{i+1}

X II ((zyi+ 1,0 — 1), (z,i + 1,7))
zeln]\{i—1,i}
x ((,i+1,0—1),(6,i+1,0)) ((—1,i+1,i—1),(i—1,i+1,7))
=1®u

as claimed. O

This result could also be deduced from repeated applications of Proposition
7.5 and the case n = 3.

6 Symmetries

In this section we discuss various issues related to actions on stable permutations.

6.1 Symmetries of stable permutations of rank 1 (case r = 2)

We now consider some operations that preserve the property of being stable.
From the general analysis in the previous section we can immediately draw the
following consequence.

Corollary 6.1. Let u € S([n]?) and o € S,,, then the following conditions are
equivalent:

1. wu s stable of rank 1;

2. u? is stable of rank 1;
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3. tu is stable of rank 1;
4. ™u is stable of rank 1;
5. %u is stable of rank 1;
6. u" is stable of rank 1, for allr € Z.

Note that it is not true in general that if u is stable of rank 1 then the permu-
tation /2y whose diagram is the diagram of u rotated by /2 counterclockwise
is still stable. For example, if u = ((1,4),(2,3)), one can verify that u is stable
of rank 1 but ™/2u = ((1,1),(2,2)) is not stable. Similarly, the permutation
v = ((3,3),(4,4)) whose diagram is obtained by reflecting the diagram of u
through the middle horizontal axis is not stable. (See also Theorem 8.1 below.)

6.2 Symmetries of stable permutations

We begin with three results that are simple consequences of the general analysis
made in [9]. We include short proofs for the benefit of the reader in the language
of Cuntz algebras. Self-contained proofs are possible, but longer.

Proposition 6.2. If u € S([n]") is stable then
(veu(lev) e S(n]") (12)
is stable for all v € S([n]"~1).

Proof. If u is stable, namely A\, € Aut(Op) then Ad(v) o Ay = Ayypp-1) €
Aut(0,), that is (v ® 1)u(l ® v~!) is stable. O

In particular, all the permutations that can be written in the form (v ®
1)(1 ® v71) for some v € S([n]"~!) are stable (they correspond to the inner
automorphisms of O, ), and one can compute that they have rank < r. Indeed,

1

Ur(ve(v™)) = @ (eW)v) - p(p) v W) (e ) - " (vp(v™h)
+1 - 1

) :
v lp(v)e" (v
= Y1 (ve(v™)).

The following is a simple consequence of the last result, which we think
deserves to be mentioned explicitly.

Corollary 6.3. Let u € SO, then u is stable. In particular, N} > (n!)".
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Proof. Let v = u1 ® us ® -+ ® u,, where u; € Sy, for all ¢ = 1,...,r then
U= ®1® @, 101)WVel® - 1RV @U@ @v,_1)" ', where
-1 -1

v,v; € Sy, are given by v = u, - - - ugu; and v; :uzﬂ---ur_lu;l,i: 1,...,r—1,

so u is stable by Proposition 6.2. U

The following result implies that, if » = 2, then there is an action of S, x
S, X S, on the set of stable permutations.

Lemma 6.4. Let u € S([n|") be a stable permutation, and o € S,. Then uo
is a stable permutation, as well as "~ Y(o)u. If u € S([n)?) is stable, then
(c @ T)u(p® o~ 1) is stable, for all o,7,p € S,.

Proof. The first statement follows from the equalities Ay Ay = A\, (5)u = Auouru =
Auo and Ag Ay = Ay, (o = Adgy(a)..or—2(0)Apr—1(s)u- Lhe second statement fol-
lows from the first one with » = 2 and Proposition 6.2, by writing (o ® 7)u(p ®

c )=o)l nupol)(1ost). O

Note that the above action does not preserve the rank. For example, if
u € S([n]?) is stable of rank 1 and o,7 € Sy, then cury(c)* is not necessarily
of rank 1. Indeed, it is not difficult to check that this happens if and only if

up(u)p(t) = plour)up(a)” .

For instance, for u = 1, then o7 (0)* is of rank 1 if and only if o and 7 commute
(see Prop. 4.10).

Also, the above action does not preserve compatibility. That is, if u is
compatible with v and o,7,p € S, then it is not necessarily true that u is
compatible with (c®7)v(p®c~1). For example, if n = 3, u = v = ((1,2), (1, 3)),
o =p =123 and 7 = (1,2) then one can check that u is compatible with u (see
also Theorem 8.1 below) but u is not compatible with (1 ® 7)u, since 1 ® v and
(1®7)u) ® 1 don’t commute. However, it is not difficult to check that if w is
compatible with v and p € S, then u is compatible with v(p ® 1).

For each stable permutation u € S([n]?), we consider the double orbit
{ourp(o)” [ 0,7 € Sn} (13)

consisting of (n!)? stable permutations, as shown below. For instance, the double
orbit of 1 € S([n)?) is S, ® Sy.

Proposition 6.5. For any stable permutation v € S([n|"), r > 2, the map
Sn X Sp 3 (0,7) = ovrp(o)* € S([n]") is injective.
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Proof. Suppose Ad(c)\,r = Ad(¢’')\yrs, where o,7,0',7" € S,,. This means
that Ad(c"™ o)Ay A\r = Ay A and therefore

Ad((A) 1™ 0))Ar = (M) TTAd(0™ ) A A = Ay .

Outerness of nontrivial Bogolubov automorphisms implies that 7 = 7/, and we
get Ad(o)\, = Ad(c')\y, i.e. Ad(c™0) = id. Therefore, being O,, simple,
o*o € C1, and hence o = o’. O

In contrast, the cardinality of the “triple orbits”,

{op(p)urp(a)* | o,p,7 € Sy},

(u € S([n]?)) is not constant, in general.

Note that the hypothesis that v is stable is necessary in Proposition 6.5. For
example, if n = 3, v = ((1,2),(2,1)), and ¢ = (1,2) then v = (c @ )v(1® o 1).

Finally, note that if z,y,u,v € S([n]?), = is in the double orbit of u, and y is
in the double orbit of v, then it is not necessarily true that xy is in the double
orbit of uv, even if v and v are stable, and w is compatible with v. For example,
ifn=4,u=((1,2),(1,3)),v=((1,3),(1,4)), 0 = 2134, 2 := (c@Nu(l®o 1),
and y := (0 ® 1)v(1 ® 0~ ') then one can check (preferably with the aid of a
computer) that zy is not in the double orbit of uw.

We conclude by examining, for stable permutations, the symmetries consid-
ered in the previous section.

Proposition 6.6. Let u € S([n]?) and o € S,,. Then the following are equiva-
lent:

i) u is stable;
i1) u is stable;
i11) ™u is stable.

Proof. The equivalence of i) and ii) is a simple consequence of Lemma 6.4 and
Proposition 6.2. Indeed, since u is stable we have from Lemma 6.4 that (1@v~!)u
is stable, and then by Proposition 6.2 that (v ™! ®1)((1®@v~!)u)(v®v) is stable,
as claimed. The equivalence of ii) and iii) follows immediately from the previous
equivalence since "u = u“° where wyg =n---21. O

Note that it is not true that if u is stable then its transpose ‘u is stable. For
example, if u = 123856479 (so w is the permutation depicted at the bottom right
of Figure 2) then ‘u = 162453789 and one may check that this is not a stable
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permutation. Also, it is not true that if v is a stable permutation then v—! is

stable. Indeed, (*u)~! = 136452789 is stable (it is the permutation depicted at
the bottom left of Figure 2, and is also the rotation by 7 of u, which is stable
by the previous proposition). Reflection of the box diagram through a vertical
or horizontal axis also does not preserve stability. For example, if n = 3 then
((3,1),(3,2)) is stable, while ((1,1), (1,2)) is not and ((1,2),(1,3)) is (see also
Theorem 8.1 below).

7 Immersions

In this section we examine another combinatorial operation that preserves sta-
bility. More precisely, we show that some of the ways to naturally embed S([n]?)
in S([n + 1]?) preserve the property of being stable.

For a,i € N let '
= a—x(a>1i)

and '
a~"” :=a+x(a>1).

Note that (a<*>)®) = q for all a € N, and that the function a — a<*> is injective.
More generally, we let (a1, ..., a;)<" = (a7"7,...,a5"”), forall ai,...,a; € N.
For u € S([n]") and i € [n + 1] we let u() € S([n 4 1]") be defined by
(i) (x1,...,2), if x; =1 for some j € [r],
w (@, 2) = (i (0 (i (1)) <i> -
(wi(zy’, ooz ’), w2y, o )", otherwise
for all (z1,...,2,) € [n+1]". We call uD, i = 1,...,n + 1 the i-th immersion
of u. So for example, if u € S([3]?) is the permutation whose box diagram is

depicted below, then u(® is the permutation of S([4]?) whose box diagram is
depicted to its right.

Note that ' ' ' A
u(z) (x<z>’ y<z>) — u(x, y)<z> (14)

for all z,y € [n].
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Remark 7.1. Note that any two different immersions u(? and u9) are conju-
gated through a permutation of the form p ® p € S([n + 1]?), for a suitable
p =pij € S([n+1]). Indeed, for i,j € [n+1] let p := p; j € S([n+1]) be defined
by
OY<I> if o £4
x , i @ #£4,
p(z) = {(. ) . .
7, if x =1,
for all z € [n+ 1]. Then it is not hard to check that (p ® p)ul® = w9 (p® p) in
S([n+ 1]%).

Remark 7.2. If U is the n? x n? permutation matrix corresponding to u €
S([n]?) and we index the rows and columns of U by [n] x [n] (where this set
has the lexicographic order) then the (n + 1) x (n + 1)? permutation matrix
U@ corresponding to u® € S([n + 1]?) is obtained by putting a 1 on the main
diagonal and 0’s elwewhere in every row indexed by (k,l) € [n + 1] x [n + 1]
such that ¢ = k or ¢ = [ (or both) and placing the matrix U in the remaining
positions in the natural way.

We begin by noting that products and compatibility are well behaved under
immersions. The next result follows immediately from our definition and we
omit its verification.

Lemma 7.3. Let u,v € S([n]?) and i € [n+1]. Then
() ) = Dyl
in S([n +1]2).
Proposition 7.4. Let u,v € S([n]?) and i € [n +1]. Then
(1ou)e?e1) =" e eu)

if and only if
Iu)(vel)=(vel) (1 u) .

Proof. Let (v,y,2z) € [n+1]3. If x =i ory =i or z = i then it is clear
that (1@ )™ @ 1)(z,9,2) = (9 @ 1)(1 ® u?)(z,y,2). Let (x,y,2) €
([n + 1]\ {i})3. We then have that

(U(z’) ®1)(1 ®u(i))(x,y’ ) = ( ®1)(z,u ( ())<i> u2(y(z‘)7z(i))<i>)
= (Ul(la(i)’ul(y(i)’z()))<z> 2 (2D, ug (y D, 2D)) <>y (y @, 20)<>) |
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while

(1eu)(wD @ 1)(x,y,2) = (1 @ u®) (v (&@,y D)< vy (2, y D)<= 2)
_ (Ul (ﬁ(i),y(i))<i>, ul(vg(x(i)jy(i)), Z(i))<i>7 u2(02(x(i)’ y(z))’ Z(i))<i>) )

Hence, (v @ 1)(1 ® u®) = 1 @ u®)(v® @ 1) if and only if

U1 (x(l)a ul (y(Z)a Z(Z))) =1 (x(Z)vy(Z)) ) (15)
(29 ug (Y, 20)) = g (va (2P, y D), 20y | (16)
uz(y D, 2@) = ug(va(a®, y @), 20 | (17)

for all (z,y,2) € ([n+ 1]\ {i})%. But the function a — a is a bijection
between [n + 1]\ {i} and [n]. Therefore, equations (15), (16) and (17) hold for
all (z,y,2) € ([n+1]\ {z})3 if and only if

vi(a,uq(b,c)) = vi(a,b) ,
?.12((1, ul(ba C)) =u (UQ(av b)v C) )
u2(b7 C) = U2 (UQ(aa b)? C) )
for all (a,b,c) € [n]®. The result hence follows from Proposition 4.8. O

As an immediate corollary of Propositions 7.4 and 4.5 we obtain that the
operation of immersion preserves the property of being stable of rank 1.

Corollary 7.5. Let u € S([n]?) and i € [n+ 1]. Then u is stable of rank 1 if
and only if uD is stable of rank 1.

We now show that stability itself is preserved under immersions. The proof
requires some preliminary lemmas. Recall the definition of vy (u) for u € S([n]?)
and k € N from Section 4.1.

Lemma 7.6. Let k >0, z1,..., 2142 € [n], u € S([n]?), and i € [n+ 1]. Then
wk(u(l))((zla s 7zk’+2)<i>) = (ylv .- 7yk+2)<i>
where (y1, - .-, Yr+2) = Yr(u) (21, - . 2kg2)-

Proof. If k = 0 then we have from Lemma 7.3, and the fact that 1() = 1, that

do(u) = @) = () = o)
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and hence ¢o(u®) (57, 2577) = vo(w)D (=, 257) = (Yo(u)(21,22)) <, as

claimed. Assume k > 1. Let, for convenience, v := u~!, and let (y1, ..., yps1) =
Yr—1(u) (21, 2k, 1 (Zk+1, zk+2)). Then
Yr(uD) (257, szﬁ)
=(1® - ®10 u) ™) (@1 (D) @ D)5, 7 w2, 2k42) <)
k
=(1® @10 @) (Wr_1(w) (21, - - 2k w1 (Zht1, 2842)) <7 U2 (2ht 15 242) <)
k
=@ @1 ™))™, Ly ua(zke, 2re2) <)
k
= (Y57, us 01 (ks 1, U2 (Zhg1s 2642)) S V2 (Yk g1, U2kt 1, 2k42)) <)

On the other hand,

wk(u)('zla cee 7Zk+2)
=1® --®1l® uil)(lbk_l(u) Q1) (21, -y 2, W2kt 2K42))

—(1®---®1xu?t
1@ - @L@u )Y, Ykt u2(2ht15 2142))
k

= (yh <o Yk U1(3/k;+17 U2(2k+1, Zk+2))7 ’Uz(yk+17 U2(2k+1a Zk+2)))
and the result follows. O

The next result states that 1 (u®) (u € S([n]?), i € [n+1]) does not change
the elements weakly to the right of the rightmost element equal to i (if such an
element exists).

Lemma 7.7. Let k>0, 1 <r <k+2, 21,...,20—1 € [n+ 1], 2p41,..., 2512 €
[n], u € S([n)?), and i € [n+1]. Then

wk(u(l))(zlv"'7zr—laiaz7~<-|Z-T Zk<—‘,l-§) (y17--'7y7"—17i7zr<-iT7" Z]f.i.;)

for some y1,...,yr—1 € [n+ 1].

Proof. We proceed by induction on k > 0. If k=0 then 1 <r <2 and one has
that ¢o(u®)(i, 257> = (i, 25°>) and Yo(u®)(21,4) = (21,4) for all zp € [n] and
z1 € [n+1]. So assume k > 1. Let, for brevity ¢ = (z1,...,2,-1). Suppose first
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that » < k. We then have from our induction hypothesis that

k()¢ 257, 5l3)

— (@818 @) e?) e DIe - @ 1ou)(¢ i 55, 555
k k

- L 8- Pl ®L® (u_l)(i))(wk—l(u(i)) ® 1)(¢.4, Zf—&?? e vzk<i>a u(2g415 Zk+2)<i>)
k

=(1®-- 21 @ D) (1, 1,6 255 25 w21, 2hg2) <)
k

= (Y1, Yr—1,1, zf_ﬁ, .. ,z,fi>, z,fjj, z,ffj)

Suppose now that » = k + 1. Then

(@) (¢ z3) = (18- © Lo @) ™) (e () @ 1G4, 553)
k
=@ - ®1e @ )y i 253)

k
= (y17 s 7yk’>i7zk<i§)

Finally, if r = k£ + 2, then
(%) N=(1l® - -1 (i)y—1 D@1 ;
Yr(u)(( 1) = (I® k ® 1@ (u"))(Wr—1(u'") ® 1)(C, i)
= (1201 @ H)D) (Y, ykr, )
k
:(ylv"'ayk‘+17i)7

and the result again follows. O
We can now prove the main result of this section.

Theorem 7.8. Let u € S([n]?) and i € [n+ 1]. Then u is stable if and only if
u is stable.

Proof. Let u be stable. Let k € N be such that 1;(u) = v ® 1 for some v €
S([n)**1). Let v € S([n + 1]*+2) be defined by

($1,...,$k+2), if1§T§2,
V(21 Thy2) = 8 (g (D) (21, ..., 2p1), Ty Tpgo), f 3< T < k42,
WO (21, ..., Tht1), Thot2), if r=4k+3,
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for (a:l,.. ,Tpt2) € [0+ 1]’”2, where r := min{j € [k + 2] : z; = i} (and

ri=k+3if{jelk + 2] : z; = i} = ). Note that, indeed, 7 € S([n + 1]+2).
We claim that g1 (u®) =0 ® 1. Let z1,...,2+3 € [n+ 1]. Assume first that
T1,.. ., g3 € [n+ 1]\ {i}. Let 21,..., 2k43 € [n] be such that z; = (2;)< for
j=1,...,k+ 3. Then, by Lemma 7.6,
U (WD) (21, Thys) = 1/}k+1(u())( 7 2E)
= (Vi1 () (2 Zk+3))<z>
(¢k+¢(u a"'v gig))<z>
() i) () (1) \<i>
= (v(@”,- xk—&-l) it Ths)
(v(xl ye - xkil)<2>7$k+27xk+3)
(v(’ @1@1)(21,...,Tks)

= (v@l)($1,.--,$k+3) .

Suppose now that x; =i for some 1 < j < k+3. Let t := min{j € [k + 3] :
xj =1i}. Define 9y, s(u), 1 < s < k for brevity as

1 910u)(l®-01lou®l) - (1® - 9leouel®- - 1).
—— N——
k k—1 s k—s

Then
— Y (s 1®---®1 S(u™HL
Y (u) = Yp,s(u™) (Y1 (u) 1@ -+ @ 1) oy s(u™")
h—s+1
Let (Yit1,-.-,Yrt3) :=
Wele 1) (10 0leu?®21) (10 ©1eu?) (@, ..., Trs)-
k11—t k—t k1t

Then we have, if 3 <t < k+2

U1 (W) (@1, Tt 0, T Tpys) =
= Ps1(u) ) (1 (W) @1® - @ 1) (¢k+1,t((u(i))_1))_1(ﬂ?1,-.',!Ek+3)
k+2—t
= Yern (W))W (w) @ 1@ - @) (@1, 21,6, Yer1s - Yt s)
k2t
= Y1 (D) ) @rms D) (@1, 2em1) 8 Yer1s - Ynss)
= (-3 (uD) (@1, .o, Te—1), 4, Tes1, - - Thrn)

= (0®1)(21,..., Ths3) -
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If 1 <t < 2 then one can easily check that

Ut (W) (@1, ags) = (@1, 2egs) = (5@ 1) (21, - ., Tps)-

Finally, if t = k+3, let 21, ..., zx+2 € [n] be such that z; = (2;)<* for j € [k+2].
Then one can similarly check, using Lemma 7.6, that

Urpr (W) (@1, w2, 0) = (p(@D) (21, 2kga), 1)
= (WD) (=57, 555),0)
= ((r(u) (21, .- ., 2p42)) <", 4)
= (v @1)(21,. ., 2p42)) 1)
= ((w(z1, - 241)) <7, 25050 1)
(U(z) (z Cs Tht1), Thy2, 1)
= (v

1,
®1) x1,...7$k+3) :

Conversely, let u() be stable. Let k& € N be such that ¢y (u)) = o ® 1 for
some ¥ € S([n + 1]**1). Let 21,...,2x42 € [n]. Then, using Lemma 7.6,

() (21, 242)) 7 = (D) (57, 555) = (07 5580 7ids)

It follows that © restricts to a bijection of ([n + 1]\ {i})*! and that

%ZJk(U)(Zl, ceey 2k+2) = (ﬁ(zl<z>a SRR) z]ji?)“)a Zk+2) .
But, because ¥ restricts to a bijection of ([n + 1]\ {i}) !, (21,...,2p41)
v(zf”, z,f}j)() is a bijection v of [n]FT! such that ¥y(u) = v ® 1. The
result then follows from Proposition 4.4. O

It seems plausible that an analogous statement works in general for u €
S([n]"). We leave this for a future investigation

8 Explicit Characterizations

In this section we obtain explicit characterizations of various classes of stable
permutations. More precisely, we characterize the transpositions of S([n]?) that
are stable, the 2 and 3-cycles of S([n]?) that are stable of rank 1, and give a
sufficient condition for a cycle to be stable of rank 1.
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8.1 Transpositions

Probably the first class of permutations that comes to mind is that of transpo-
sitions. In this subsection, we completely characterize the stable transpositions.
In particular, we show that all stable transpositions have rank 1.

Theorem 8.1. Let (i,7),(a,b) € [n]%, (i,7) # (a,b), and v := ((i,5), (a,b)).
Then the following conditions are equivalent:

i) u is stable;
i1) u is stable of rank 1;
iii) {a,iy N {b,j} = 0.
Proof. We show first that 4ii) implies ii). Assume that {a,i} N {b,j} = 0.
Then we have that

(teuwe)leu)=1eu) [[(aba2),(j2)1ou)

r=1

((a, u(b, 2)), (i, u(j, )))

Il
=

8
Il
—

Il
=

((a,b, ), (4, 5, ))

=1
=(u®l)
where we have used the fact that u(b,z) = (b,x) and u(j,z) = (j,z) for all
x € [n] since {a,i} N {b,j} = 0. So, by Proposition 4.5, u is stable of rank 1.

It is clear that 4i) implies 7). We now show that ¢) implies 4ii). Assume that
{a,i} N {b,j} # 0. We may clearly assume that (a,b) < (7,7) in lexicographic
order. We have six cases to distinguish.
iya=1
Then b < j. If a =i = b then, for any k € N,

u)(a,a,...,a)=1(a,j,...,J

U (u)( ) = (a;4,---,])
k+2

so u is not stable. Similarly if a =i = j.

ii)yb=y

Then a < . If b = j = a then, for any r € N,

Yor—1(u)(a,a,...,a,1) = (i,a,a,...,a,1),
~—_—— —_———
2r 2r—1
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while
—1(u)(aya,...,a,a) = (a,a,...,a,a),
¢2r 1( )( ) ( )
2r

s0 a,—1(u) ¢ S([n]*") ® 1 for all » € N and hence, by Proposition 4.4, u is not
stable. Similarly if b = j = 1.
i) a£i, b#j,a=b
Then u(j,a) = (j,a) so, for any r € N,

wQT—l(u)(ia.ja' . '7i7j7a) = (a7i7j7"'7i7j)7
_2,_/ T
T r

so, as in the previous case, u is not stable.

iV) aFi,bFja=]j
Then a # b, so u(b,b) = (b,b) and hence, for any k € N,

Yi(u)(iyi,...,4,a) = (a,b,b,...,b),
—— —_——
k+1 k+1

so u is not stable.

v)a#i,b#j,i="b

Then we conclude as in case iv) above.

vi)a#£i,b#£j,i=7

Then we conclude as in case i) above. ]

Remark 8.2. Note that no transposition in S([n]?) belongs to S, ® S,,, as every
nontrivial element in 5, ® S,, moves at least 2n points, which is always larger
than 2. Thus, the automorphisms corresponding to the stable transpositions
are all outer automorphisms of O,,, since, as mentioned in the Introduction, the
inner automorphisms correspond to the elements of the form u ® u™!, u € S,,.

The previous result enables us to obtain a simple closed formula for the
number of stable transpositions in S([n]?).

Corollary 8.3. In S([n])?) there are n(n—1)?(n—2)/2 stable transpositions (all
of rank 1).

Proof. Since for any such transposition ((a,b), (7,7)) one has, by Theorem 8.1,
that {a,i} N {b,j} = 0, it is clear that ¢ # j and a # b. Thus there are
n(n — 1) possible pairs (i, 7). For any fixed such pair (i,7), (a,b) must lie in a
row different from the j-th, in a column different from the i-th, and not on the
diagonal. There are thus n? — (3n — 3) — 1 possibilities for (a,b) (since (i,7),
(7,7), and (j,1) are all distinct), and the result follows. O
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Note that Corollary 8.3 implies that if we pick a transposition at random
in S([n]?), then, as n goes to infinity, we obtain a stable transposition with
probability 1.

We now show that the stable transpositions are all in different double orbits
(recall our definition (13) of the double orbit of a stable permutation u).

Corollary 8.4. Let (a,b),(i,j) € [n)?, (a,b) # (i,5) and u,v € S, n > 2.
Then (u® 1)((a,b), (i,7))(v @ u™') is not a transposition if (u,v) # (e, e).

Proof. Let, by contradiction, (a, ), (7y,9) € [n]?, (a, 8) # (7,9) be such that

(u®1)((a,b),(i,4))(v@u!) = ((a, B), (,9)). Then (u®1)((a,b), (i,5))(u'®
(uv @ u™t) = ((a, B), (7,9)) so we conclude that

((u(a), b), (u(i), 1)) ((@. B), (v,6)) = (w @ u™") . (18)

Let (x,y) € [n]?. Note that (uv ® u™!)(z,y) = (x,y) if and only if z = u(v(z))
and y = u(y). If u # e, then u has at most n — 2 fixed points, so (uv ® u~!) has
at most n? — 2n fixed points. If u = e then v # e hence v has at most n — 2
fixed points, so (v ® 1) again has at most n? — 2n fixed points. On the other
hand, ((u(a),b), (u(i),))((a, B), (7,6)) has at least n? — 4 fixed points, and this
contradicts equation (18) if n > 2. O

It follows immediately from Corollaries 8.3 and 8.4, Proposition 6.5 and
Lemma 6.4, that the number of stable permutations in S([n]?) is bounded from
below by (n!)?(n(n — 1)2(n — 2)/2 + 1), taking into account also the double
orbit of (any one of) the Bogolubov automorphisms (i.e., the permutations of
Sp ® Sy). This gives a lower bound of 252 stable permutations for n = 3 and
21312 for n = 4.

8.2 Cycles

In this subsection we examine the stability of cycles. More precisely, we point out
that a natural generalization of the necessary and sufficient condition obtained
in Theorem 8.1 for the stability of rank 1 of a transposition is sufficient also for
a longer cycle, and prove a partial converse of this result.

The next result follows immediately from Proposition 5.15, but we feel that
it should be stated explicitly.

Proposition 8.5. Let (a1,b1),...,(ar,b) € [n)?, all distinct, be such that
{al,...,ar}ﬂ{bl,...,bT} = 0.
Then ((al,bl), A (aT,b,«)) 1s stable of rank 1.
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The following result provides a partial converse to Proposition 8.5.

Proposition 8.6. Let u := ((a1,b1), (a2, b2), ..., (ar, b)) € S([n]?) be stable of
rank 1, where ay,...,ap,b1,...,b, € [n] and a; # a; if i #j (1 < 4,5 <r).
Then {a1,...,a;} N{b1,..., b} = 0.

Proof. Assume, by contradiction, that {a1,...,a,}N{b1,...,b.} #0. Let i,j €
[r] be such that a; = b;. Then

(1 ®u)(u®1)(aj,ai,b;) = (1 @u)(ajt1,bjt1,bi)

while

(u®1)(1®u)(ay,ai,bi) = (u®1)(aj,aiy1, biv1) = (a5, aiv1, bit1)
(for if u(aj, ai41) # (aj,a;41) then, since ai,...,a, are all distinct, b; = a;41
S0 a; = a;y1 which is a contradiction). But a; # a1 so (1 @ u)(u® 1) #
(u®1)(1®u). O

Note that, by Proposition 6.1, Proposition 8.6 remains valid if we substitute
the hypothesis a; # a; if i # j with the one b; # b; if 1 # j.

8.3 3-cycles

In this subsection we study the stability of 3-cycles. More precisely, we charac-
terize the 3-cycles which are stable of rank 1, and show that stability does not
imply stability of rank 1 for 3-cycles.

Theorem 8.7. Let (a1,b1), (ag,be), (a3, b3) € [n]? be distinct, then the 3-cycle
u = ((a1,b1), (az,b2), (a3, b3)) € S([n]?) is stable of rank 1 if and only if
{a1,a2,a3} N {b1, b2, b3} = 0.

Proof. We already know, from Proposition 8.5, that if {a1, az, ag}N{b1, b2, b3} =
() then wu is stable of rank 1. Conversely, suppose that u is stable of rank 1. If
{a1,a2,as}| = 3 or [{b1,b2,b3}| = 3 then the result follows from Proposition 8.6
and the comments following it. We may therefore assume that max{|{a1, a2, as}|,
[{b1, b2, b3}|} < 2. Hence, it is enough to consider the case where |{a1, az2,a3}| =
‘{bl, bQ, b3}’ =2 (indeed, if \{al, as, ag}‘ = 1, then u = ((al, bl), (al, bg), (al, bg))
so [{b1,b2,b3}| = 3 and similarly for |{b1,b2,b3}| = 1). We may henceforth as-
sume that a; # as = ag and therefore by # bs. So {a1,a2,a3} = {a1,as},
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{b1,b2,b3} = {b2,b3}.
There are two main cases, namely either b; = by or by = bs. Note that

(u®1)(1®@u)(u" l® H x,a1,b1), (z,a2,bs), (l‘,ag,bg))(u_l ®1)

x=1

=TT (@, a1), by), (u(z, a2), bo), (u(z, az), bs))

r=1

SO
H u(z,a1),b1), (u(z,az), b2), (u(z, as),b H (y,a1,01), (y, a2, b2), (y, az, b3)) -

Since the two cases are similar, we only treat one of them. Assume b; = bo.

Let z € [n]. Then there is y € [n] (depending on z) such that either (u ®
1) (z,a1,b1) = (y,a1,b1) or (u®1)(x,a1,b1) = (y,a2,bs). But, in the latter case,
since (1 ® u) commutes with (v ® 1), (u ® 1)(x, az, b2) = (y, as,b3) so by = bs,
a contradiction. Therefore, u leaves the aj-th column of [n]? globally invariant.
Hence, a1 # ba, bg since the corresponding columns are not globally invariant.

Similarly, for any = € [n] there is y € [n] such that either (u® 1)(z, az, ba) =
(y,a2,b2) or (u ® 1)(x,a2,b2) = (y,a1,b1). Again, in the latter case, (u ®
1)(z,a3,b3) = (y,a2,b2) so ba = bs, a contradiction. Therefore, u leaves the
as-th column of [n]? globally invariant. Hence, as # ba,b3. So {ai,az,as} N
{b1,b2,b3} = 0.

Il

Using the previous theorem we can easily enumerate the 3-cycles in S([n]?)
which are stable of rank 1.

Corollary 8.8. In S([n]?) there are exactly (n)y(n® — 3n + 4)/3 3-cycles that
are stable of rank 1.

Proof. Let uw = ((a1,b1), (a2, b2), (a3, b3)) where {a1,az,a3} N {b1,b2,b3} =
(a1, asz,as,by,be,bs € [n]), and (a1, b1), (ag, b2), (a3, bs) are distinct. If [{a, ag, as}|
= 1 then there are n choices for this common value and by, ba, b3 must be distinct
and different from a; so there are (n — 1)3 choices for these values. However,
each u is thus obtained 3 times, so the number of such 3-cycles is (n)4/3. If
[{a1,az2,a3}| = 2 then we may assume that a; = az # a3. So there are (n),
choices for these two values. Furthermore, there are (n — 2)y possibilities for by
and b (since we must have by # b1 ), and n — 2 for bs. So we obtain (n)4(n — 2)
such 3-cycles. Finally, if [{a1,a2,as}| = 3 then these values can be chosen in
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(n)3 ways and correspondingly there are (n — 3)3 possibilities for the values of
b1, bo, and b3. Each such wu is obtained three times in this way so the number of
such 3-cycles is (n)4(n — 3)2/3. O

So, for example, there are 64 3-cycles that are stable of rank 1 in S([4]?).
The above result easily implies that a random 3-cycle in S([n]?) is stable with
probability 1, as n goes to infinity.

Note that a stable 3-cycle is not necessarily of rank 1. We illustrate this by
considering “right-angled” 3-cycles leaving the diagonal fixed (see, for example,
the permutation depicted on the left hand side of the figure below).

Proposition 8.9. Let i,j,k € [n], i,j,k distinct. Then ((i,7), (k,7), (i,k)) is
stable of rank 2.

Proof. Let w := ((i,7), (k,7), (i,k)). Then w = ((i, k), (i,5))((¢,7), (k,j)). Fur-
thermore ((4, k), (4,7)) and ((4,7), (k,j)) are stable of rank 1 by Theorem 8.1,
and they are compatible by Proposition 5.6 (where u := ((i,k), (i,7)) and
v = ((4,7),(k,7)), so by Theorem 5.2 u is stable of rank < 2. However, by
Theorem 8.7, u is not stable of rank 1. [l

We conclude by noting that, on the other hand, if ¢ # j, the 3-cycles
u = ((i,7), (i, k), (k,k)) ((i,7), (i, k), (k, k) distinct, so k ¢ {i,j}) are never
stable (see for example the permutation depicted on the right hand side of the
figure below). Indeed, u = ((4,7), (¢,k))((i, k), (k,k)) and, by Theorem 8.1,
((¢,7), (i, k)) is stable while ((i, k), (k, k)) is not. On the other hand, by Propo-
sition 5.6, ((i,7), (i, k)) is compatible with ((i, k), (k, k)) so, by Proposition 5.3
((4,7), (i, k))((3, k), (k, k)) is not stable.

i i
J J
k k

9 A construction for composite n

In this section we show that the arithmetic structure of n affects the set of stable
permutations. More precisely, we prove that if n is a composite number then
there are stable permutations that have no counterpart when n is prime.
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Let n = nine. Without loss of generality, we assume that n; > no. We
identify [n1] X [ng] with [n] by identifying (a,b) with ng(a — 1) + b. Let ~ be
an involution of [n;] which leaves [n2] C [n;] globally invariant. We define
u € S([n]?) by

a,b d) ifa=d
u((@.b), (e.d)) = § \@OH D) T
(a.b), (c.d) ifa+d
for all (a,b), (¢,d) € [n1] X [n2]. Note that u is an involution.
Proposition 9.1. With the above notation w is stable of rank 1.

Proof. Consider (a,b), (c,d), (e, f) € [n1] x [n2]. Suppose first that a = d and
c = f. Then we have that

<
H
—~
:
S~—
—
—
e
S
:_/
—
JQ
QL
:_/
—
]
~
S~—
S~—
Il
—~
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—~
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—
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—
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~ ‘
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Il

If a =d and ¢ # f then
wl(u)((av b), (C, d)? (67 f)) = (1 ® u)(“’ ® 1)((&, b): (67 d)v (ev f)) =
= (1 ®u)((a,b), (678)7 (e, f)) = ((a,b), (c, a)? (e, f))
Similarly, if @ # d and ¢ = f then
d1(w)((a,0), (c,d), (e, f)) = A @ u)(u®1)((a,b), (¢, d), (e, ) =
= (1 ®u)((a,b), (¢,d), (ea?)) = ((a,0), (¢, d), (e, [)).
Finally, if a # d and ¢ # f then clearly
%(U)((% b)v (C, d)? (6, f)) = ((CL, b), (Ca d), (e, f)) :
This shows that 11 (u) = u ® 1. O
Likewise, defining v € S([n)?) by

((a,b),(c,d)) ifb=c

v((a,b), (c,d)) :== {((a,b), (c,d)) ifb#c

for all (a,b), (¢,d) € [n1] X [n2], one obtains again a stable involution. The proof
is similar and is omitted.

Proposition 9.2. With the above notation v is stable of rank 1.
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Analogous statements work for w, z € S([n]?) defined respectively by

((a,),@d)) ifb+#c

w((a,b), (¢, d)) := {((a,b), (¢,d)) ifb=c

and

((@,b), (c,d)) ifa+#d
((a,b), (c,d)) ifa=d

for all (a,b), (¢,d) € [n1] x [n2]. The details of the proofs are left to the reader.

In the case where n = 4, it turns out that the last two stable involutions are in
the same double orbits as the first two. Also, if n; = ng then v = (FQF)u(FQF)
where F': S([n1] x [n1]) = S([n1] x [n1]) is the “flip” map (F(a,b) := (b,a) for
all (a,b) € S([n1] x [n1])) so u and v are in the same triple orbit if n; = na.
On the other hand, one can check that the triple orbit of u € S([4]?) does not
contain any permutation that fixes the diagonal of [4]? pointwise, hence u is not
in the same triple orbit as any compatible product of stable transpositions.

z((a,b), (c,d)) := {

10 Small cases

In this section we discuss, in light of the results obtained so far, the stable
permutations of S([3]?) and S([4]?).

10.1 n=3

One can check that for n = 3 there are precisely 576 = 96-3! stable permutations
in S([3]?) [9, 8]. Among them, there are the 36 = (3!)? inner perturbations of
the Bogolobov automorphisms in S([3]) ® S([3]).

It turns out that in this case the search of the permutations studied in
Propositions 4.5 and 4.11 can be fully accomplished.

Proposition 10.1. In S([3]?) there are 54 stable permutations of rank 1 and
52 permutations satisfying equation (4). Moreover, in S([3]%) \ S([3]) ® S([3]),
there are 36 solutions of equation (3), 36 solutions of equation (4), and these
two sets coincide. These are precisely the involutions in S([3]%)\ S([3]) ® S([3])
satisfying either equation.

In detail, using Proposition 4.10, it is not difficult to see that the 18 = 54-36
permutations in S3 ® S3 that are stable of rank 1 consist of:
- the six permutations of the form {u® 1 : u € S3}
- the five permutations of the form {1®@u : w e S3\ {1}}
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- the five permutations of the form {u® u : uw e S3\ {1}}
- the two permutations (2,1,3) ® (3,1,2) and (3,1,2) ® (2,1, 3).

Moreover, denoting by I, the subset of involutions in 5,, it is not difficult
to see, using Proposition 4.12, that the 16 = 52-36 permutations in S3 ® S
satisfying the equation (4) consist of:

- the four permutations of the form {zr® 1 : z € I3}

- the three permutations of the form {1®x : x € I3\ {1}}

- the three permutations of the form {u®wu : w e I3\ {1}}

- the three permutations of the form {z ® (2,1,3) : = € I3\ {1}}
- the three permutations of the form {z ® (3,1,2) : z € I3\ {1}}.

Thus, there are 10 permutations that are in S3®.S5 and satisfy both equations
(3) and (4).

Concerning the 36 involutions in S([3]) \ S([3]) ® S([3]) mentioned above,
although it is not obvious how to characterize them by intrinsic structural prop-
erties (see however Proposition 5.17), it is clear that they possess some specific
symmetries. For instance, by Corollary 6.1 and Proposition 3.4, the set of such
involutions is invariant under the transpose map. Moreover, and we have no gen-
eral explanation for this fact, they are grouped into 18 distinct pairs through
the map (12), with » = 2, where v is any of the three transpositions of S3, each
one connecting 6 pairs. Furthermore, the transpose map respects these pairs,
leaving 6 of them fixed (as a pair). In accordance with Theorem 8.1, six of these
36 permutations are transpositions, and by Corollary 8.4 these transpositions all
belong to different pairs. Twelve of these 36 permutations are products of two
disjoint transpositions, nine of these twelve are the immersions (see Proposition
7.4) of the stable permutations (of rank 1) of S([2]?) \ {1} and the other three
are obtained from these immersions through the map (12); altogether they give
rise to nine distinct pairs, different from the 6 corresponding to the transposi-
tions above. Finally, six of these permutations are products of an immersion of
the product of two parallel transpositions of S([2]?) with a non-parallel disjoint
transposition having one line (i.e., a row or a column) of fixed points, giving rise
to three distinct pairs, that are left invariant by transposition (see Section 13).

Recall (see Lemma 6.4, and Proposition 6.5) that for any stable permutation
u € S([n]?) its double orbit (13) consists of (n!)? stable permutations. Since
576 = (3!)216, by grouping together the 576 stable permutations in S([3]?) into
double orbits, we only need to describe 16 representatives. We can pick the
identity, and nine more representatives can be found among the 36 involutions
considered before. Now, one can check that among the 576 stable permutations
there are precisely 27 stable permutations of order 3, and that 6 of them are
3-cycles. These can be chosen as the remaining 6 representatives.
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Theorem 10.2. Let u be a stable permutation in S([3]2). Then u is in the
double orbit of one of the following 16 elements: either an immersion of a
stable permutation in S([2]%) (ten elements) or one of the siz 3-cycles
Cr = ((1’ 2)7 (37 2)7 (1’ 3)); Coy = ((17 2)’ (3’ 1)7 (37 2))7 Cs = ((17 2)7 (17 3)’ (2’ 3))}
Cy= ((27 1)7 (37 2)7 (37 1))7 Cs = ((27 1)7 (Qa 3)7 (17 3))7 Ce = ((27 1)7 (37 1)7 (Qa 3))
Equivalently, u is in the double orbit of a product of stable transpositions.
More precisely, u is in the double orbit of one of the following 16 elements:
either the identity, or a stable transposition (siz elements), or the product of a
horizontal stable transposition and a vertical stable transposition (in this order,
nine elements).

The first description is quite explicit (see also Section 13). Furthermore, it
is worth stressing that the C;’s can be easily expressed as products of two stable
transpositions of rank 1, namely

Actually these are the only products between a horizontal and a vertical stable
transpositions of rank 1 with one endpoint in common. In fact, such permuta-
tions are always stable by Proposition 5.6 and Theorem 5.2.

The second description is probably the most concise and elegant one. It is
also the one that could conceivably be most easily generalized. Note that, as
a consequence of the second description and of Proposition 5.6, every stable
permutation in S([3]?) is in the double orbit of a compatible product of stable
transpositions.

We conclude this subsection by observing that the subgroup generated by
the stable transpositions in S([3]?) coincides with the subgroup of all elements
of S([3]?) that leave the diagonal of [3]? pointwise invariant.

10.2 n=4

A conceptual description of all the stable permutations in S([4]?) is much more
demanding and to a certain extent not known. In this subsection we describe
explicitly the stable permutations in S([4]?) that can be obtained with the results
presented in this work.
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With the help of a computer one can check that by immersing each of the
576 stable permutations of S([3]%) in S([4]?), each one in one of the four possible
ways, 2283 different permutations (stable by Theorem 7.8) are obtained and, of
these, 2211 are in different double orbits. Of the 36 stable transpositions in
S([4]%), 24 are immersions of (necessarily stable) transpositions in S([3]%). The
remaining 12 stable transpositions are in 12 distinct double orbits, different from
the ones of the 2283 permutations above. Thus, considering the immersions of
the stable permutations of S([3]?) and the stable transpositions of S([4]%), we
have 2223 stable permutations lying in different double orbits.

On the other hand, by Corollary 5.4, products of stable transpositions that
satisfy its hyphoteses are stable. Computing products of this kind yields 9828
stable permutations (among them, 270 are of rank 1) and they are all (com-
patible) products of at most eight stable transpositions. We have also checked
by computer that they are all in different double orbits, and that each one of
the 2283 permutations obtained above is in the same double orbit as one of
these 9828. These 9828 permutations are naturally partitioned by the mini-
mum number of stable transpositions needed to express them as a compatible
product. Furthermore, 61 of these 9828 permutations are immersions of stable
permutations of S([3]?), and all 155 permutations satisfying the hypotheses of
Proposition 5.16 are among these 9828.

We conclude by noting that not all stable permutations of S([4]%) are in the
same triple orbit as compatible products of stable transpositions. For example,
the construction given in Section 9 yields that

((1,1),(3,2))((2,1), (4,2))((1, 3), (3,4))((2,3), (4,4))

is stable of rank 1 (actually, it is in the same double orbit as

((1,2),(3,1), (2,1))((1,4), (3,3), (2,3))((2,2), (3,2), (4, 1))((2,4), (3,4), (4,3))

also of rank 1), but is not in the triple orbit of any product of stable trans-
positions. Indeed (as noted at the end of Section 9) one can check that no
permutation in its triple orbit fixes the diagonal of [4]2, while all products of
stable transpositions have this property. Again, the subgroup generated by the
stable transpositions is the subgroup of S([4]?) consisting of those permutations
that fix the diagonal of [4]? (it is easy to see that this holds for all n). Actually,
the construction given in Section 9, together with Lemma 6.4, yields 24 stable
permutations whose double orbits are distinct among themselves and different
from the 9828 double orbits obtained above.
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11 Enumerative Results

The enumeration of the stable permutations of S([n]?) (or, more generally, of
S([n]")) is a very difficult problem. Both a recursion or some information on the
generating function of these numbers would be interesting as this would shed
further light on their structure. We have obtained some enumerative results in
Corollaries 8.3 and 8.8 for special classes of stable permutations. In this section
we show that the enumeration of stable permutations can be reduced to that of
a certain subclass, and we obtain upper and lower bounds for their number.

11.1 Reducible and irreducible stable permutations

Theorem 7.8 shows that if u € S([n]?) is such that there is an i € [n] so that
u(x,i) = (x,i) and u(i,x) = (i,z) for all € [n], so that u = v® for some
v € S([n — 1]?), then u is stable if and only if v is stable. This motivates us
to define a permutation u € S([n]?) to be irreducible if there is no i € [n] so
that u fixes pointwise both the i-th row and the i-th column of [n]? (i.e., so that
u(z,i) = (z,1) and u(i,x) = (i,x) for all z € [n]) and reducible otherwise.

Let SZ(n,2) be the set of stable irreducible permutations of S([n]?), SR(n,2)
the one of stable reducible permutations, and S1(n,2) := |SZ(n,2)|, SR(n,2) :=
|SR(n,2)|. So, for example, SI(1,2) = 0, SR(1,2) = 1, SI(2,2) = 3, and
SR(2,2) = 1. Then, clearly, N2 = SI(n,2) + SR(n,2). However, there is also
another relation.

Proposition 11.1. Letn € N, n > 2. Then

SR(n,2) _1+Z<>51k2

Proof. We construct a bijection between SR(n 2)\ {1} and U;_ ( ) x ST(n—
k,2) as follows. Let (S,0) € UpZ ( ) x SIZ(n — k,2). Let h := |S| and
{i1,...,in}< = S and define ¢(S, (J') = ("-((U(”))(”)) -)@n) (s0, (S, 0)
is the iterated embedding of o in positions i1, ig, ..., ip). Then ¢(S,0) is
reducible, ¢(S,0) # 1, and, by Theorem 7.8, any reducible stable permutation of
S([n)?)\ {1} is of this form. Furthermore, note that, since ¢ is irreducible, i € S
if and only if (S, o) fixes pointwise both the i-th column and the i-th row of
[n]?. Hence if ¢(S, o) = (T, 7) for some (S, o), (T, 7) € UpZ ( )xSI(n k,2)
then S =T and so 0 = 7. O

This allows us, given N2, to compute easily the numbers SI(n,2), and
SR(n,2) for small values of n. Specifically one obtains that SI(3,2) = 566,
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SI(4,2) = 5769237, and that SR(3,2) = 10, SR(4,2) = 2283.

11.2 Lower bound

In this subsection we obtain a lower bound for the number of stable permutations
of rank 1 in S([n]?) and so, in particular, for the number of stable permutations.
Given u € S([n]?) we find it convenient to let

F(u) := {(a,b) € [n)? : u(a,b) = (a,b)}

so F(u) is the set of fixed points of w.
For n € N we let

Dy, = {u € S([n)?) : u1(z,y) # uz(a,d) for all (z,v), (a,b) & F(u)}.

Then, by Proposition 5.16, we have that the number of stable permutations of
rank 1 is bounded from below by |D,|. Thus, in particular, N2 > |D,| for all
n € N. This easily implies the following explicit lower bound.

Proposition 11.2. Let n € N. Then N2 > 2(|%][2])! — 1.

Proof. This follows from the observation that S([|5]] x [[ 5] +1,n]) C D,, and
similarly that S([|5] + 1,n] x [|5]]) € Dy, and these two sets have only the
identity permutation in common. O

In particular, we obtain that ]\732 >3, N, f > 47. These figures are lower than
those obtained in the paragraph after Corollary 8.4, however they are greater
forn > 7.

While the lower bound given by the previous proposition is very explicit, we
now compute |D,| exactly.

We begin with the following observation, whose simple verification is omit-
ted.

Lemma 11.3. Let n € N. Then
Dy ={ue S([n]*) | a#y for all (x,), (a,b) ¢ F(u)}.
Definition 11.4. For u € S([n?]) set
R(u):={ie[n]|3j€n]:(ij) ¢ Fu)}

Clu):={jenl|Jieln]: ()¢ Fu)},
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so R(u), resp. C(u), is the set of rows, resp. columns, containing at least one
element that is ¢ F'(u). We observe that, for u € S([n]?), u € D, if and only
if R(u) N C(u) = 0. Furthermore, it is easy to see that R(‘u) = C(u) and
C(tu) = R(u).
Now,
D, = L—Ij {ue S(n?) : Ru)=1,C(u)=J}
{(1,J):1,JC[n],INJ=0}

(disjoint union). We are thus led to compute |L; ;|, where
Lry:={ueS(n? : Ru) =1ICu)=J}

(in order to simplify the notation we omit to write the index n). Observe that,
for I,J # 0, Ly ;=0 =Ly, while Lyy = {e}. Moreover,

Lemma 11.5. If I,J, K, L C[n], INJ =0, KNL =10, |I| =|K|, |J| = |L]
then

Ll =|LkL| -

Proof. Let {i1,...,is}< =1, {isy1,...,in}< := [n] \ I. Let o7 € S,, be defined
by o7(it) := t for all ¢ € [n], and define o; similarly. Then the map u +—
(o1 ®0o)u(or®oy)~ ! is a bijection between Lr,; and Ly ], where r := | J|. O

Given i, j € [n] we therefore let
Ei,j =
for any I,J C [n], such that INJ =0, |I| =1, |J| = j.

Therefore,
| Dn| = > L1,
{(I J): I,JC[n],INJ=0}

233 Z L1

=0 IE([n]) JC[

Z i > Ll
7€) 7=0 78 (")

n n—i n n— Z
i=0 j=0 J
Given a,b € [n], we now wish to compute L, 5, which is also the cardinality

of Loy = {u € S([a] x [b]) | R(w) = [a], C(u) = [b]}.
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Definition 11.6. For u € S([a] x [b]), let M (u) € Mat,;({0,1}) be the a x b-
matrix defined by setting, for all (i,7) € [a] x [b], M (u);; = 1 if (4,5) ¢ F(u)
and M (u);; = 0 otherwise.

We observe that, for u € L3, Z;’.:l M(u);; > Oforalli € [a] and )7 | M(u);; >
0 for all j € [b]. Thus, letting

a b
Mat;, = {M € Mat,,({0,1}) : > M > 0Vj € [b],> M >0Vi€[a]},
i=1 j=1

we have that M (u) € Mat;, , and hence

Ea,b: Z Hueza,b | M(u):M}‘ .
MEMatZ’b

Although we will not use this, it is worth noting that Mat , is the disjoint
union of subsets determined by given row and column sum vectors, namely
Mata (A, p) = {M € Matqy({0,1}) : S0y My = X\; Vj € [b], X0, M;; =
p; Vi € [a]}, where A = (A1,..., ) € N°, = (u1,...,pa) € N% The cardi-
nalities of these subsets are invariant under permutation of the components of
the row, resp. column vector and are given by the transition matrix between
the elementary and monomial bases of the ring of symmetric functions, see for
instance [24, Chapter I, section 6].

We remark that, for M € Mat*

a,b’
{u€Laop : Mu)=M}={uecS(a] x b)) : [n]*\ F(u) =S(M)}

where
S(M) :={(i,5) € [a] x [b] : M;; =1} .

We now need to recall a well-known combinatorial notion. Given a set T,
let u e S(T).

Definition 11.7. We say that u is a derangement if u(t) # t for all t € T..
Summing up, we have thus obtained the following result.

Proposition 11.8. Let M € Mat ;. Then
{u€ Lap : M(u) = M}| = disqar, »

where d, := |{oc € Sy, | 0 is a derangement }|.
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It is perhaps worth recalling that d,, ~ nl/e, for n — oo (see, e.g., [4,
Theorem A, Section 4.2]).
All in all, we have thus arrived at the formula

Lop = Z dis(a))| - (20)

MeMat:

Note that at this stage it is already possible to derive from formula (19) a
lower bound for |D,| and thus for N? that is better than the one obtained in
Proposition 11.2.

Proposition 11.9. Let n € N, then

9 "IN (i —
T
i=0 j=0 J

In particular, N2 > (LZJ)dL%J Bk
2

Proof. The first claim follows from (19) and (20). Taking the term in the sum

with ¢ = [§] and j = [5], the second bound follows. O

Using Stirling’s formula, it is easy to see that (Lg J) is asymptotic to n%—r;g\/%
for n — oo.
Let P, € Z[q] be given by

Pupla) = S ™I,

MeMat?

where ||M|| = >0, 22‘21 M;; . Notice that for M € Matg, we have that
|M|| = |S(M)|. Moreover, one has that

Pa,b(Q)|q’€—>dk = Ea,b ) (21)

where P, 4(q)|4x_q, means that, in the expression of P, as a sum of monomials,
we replace each ¢ with dj, for all k. Hence, it suffices to compute Poy(q).
Let, for brevity

Miata,b({(), 1}) = {M S Matmb(o, 1) : ZazMij >0Vje [b]}
=1
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For T C [a] we let

F(T) = 3 M1

{Me Mat, ,({0,1}) : ¥, My;=0 if l€T}

and

o) = > .

{MeMat, ,({0,1}) : Zj M;;=0 if and only if l€T}

Note that f(T') = 35557 9(S) for all T' C [a], and that g(0) = P, 5(q). Hence,
by the Principle of Inclusion-Exclusion, we have that

Pop(a) = > (—D)PI£(S).
SC[a]

On the other hand,

7(8) = (1 a5 1)

Therefore,

Pus(a) = > (=) (1 + @51 1)"
SCla]
(o)

S () (e

We now note the following useful fact.

I
.
S
o

i
[e)

Lemma 11.10. Lett € N. Then

(L4 0) g, = 1!

Proof. 1t is easy to see that

t
t
(14 q) Fod, = Z <k>dk =tl.

k=0
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By the last lemma we therefore conclude that

Lo Pl =33 e () (D) a2

7=0 k=0
Concluding, we have the following formula for D,,.

Theorem 11.11. Let n € N, then

n n—a a

| Dn| = ZZZZ b+k+a+j<j,a—j,k,bilk,n—a—b>(kj)!-

a=0 b=0 j=0 k=0

Proof. By (19), and (22) we have that

b5 ()T S L () (o

a

EEEE 00

and the result follows. O

One can check that Dy = Dy = 1, D3 = 7, Dy = 155, D5 = 13781,
Dg = 8383469, D7 = 33623552299. The seven permutations counted by Dj
are the identity and the 6 transpositions that satisfy the equivalent conditions
of Theorem 8.1.

As stated at the beginning of this subsection, |D,,| provides a lower bound
for N2. Therefore, we get the following bound that improves the one obtained
in Proposition 11.9.

Corollary 11.12. Let n € N. Then

n n—a a

SRS ) 9 9) DL (USRI 1))

a=0 b=0 7=0 k=0

Using the Bonferroni inequalities (see, e.g., [4, Section 4.7]), one can show

that
Lap> Z < > 1P [(ai)! — a[(ai —)!]]
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for all a,b € N and from this deduce, after some work, that
Loy > (ab)! —al(bla — 1)) —b[(a(b— D)+ ab[((a —1)(b—1))!] .

However, we feel that this does not lead to an immediate significant improvement
over Proposition 11.9.

11.3 Upper bound

Given that we obtained a lower bound for the number of stable permutations, it
is natural to look for some upper bound. This of course entails finding conditions
for a permutation not to be stable. In this subsection we give one such condition
and compute the corresponding upper bound.

Proposition 11.13. Let a,b,c,d,i € [n], a # b, and u € S([n]?) be such that
u(i,a) = (a,b), u(i,a) = (c,b) and u='(b,b) = (d,b). Then u is not stable.

Proof. Let k € N. Then one can compute that
LZ)k(U)(Z,’L, oo 7Z.?a) = (C7d7da oo d, b)a
—— N—_——
k+1 k

so u is not stable. O

From the previous proposition we deduce the following (certainly improv-
able) lower bound on the number of permutations that are not stable.

Corollary 11.14. In S([n)?) there are at least 4((n® — 3)!) permutations that
are not stable.

Proof. This follows by takingd =b=1,c=i=a=2,d=a=1,c=i=b=2,
b=d=i=1,c=a=2andd=a=1t=1,c=b=2 in Proposition 11.13. O

12 Directions for further work

Without any attempt at being exhaustive, in this final section we collect a few
problems and conjectures arising from this work.

From the point of view of the explicit characterization of various classes of
stable permutations we feel that the following is natural.

Conjecture 12.1. Let (ay,b1), ..., (ag,by) € [n]? be distinct. Then

((CLl,bl),(CLQ,bQ),...,(ak,bk))
is stable of rank 1 if and only if {ay,...,ar} N {b1,...,bp} = 0.
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The above conjecture holds if k¥ < 3 by Theorems 8.1 and 8.7, and it holds
if aj,...,ax (or by,...,b;) are distinct by Propositions 8.5 and 8.6. Note that
the enumeration of stable k-cycles of rank 1 in S([n]?) for all n € N and k > 4
would follow from Conjecture 12.1.

Another natural family of permutations to analyze is involutions. This seems
to be a much harder problem. Perhaps the most natural class of permutations to
consider next would be the product of two commuting transpositions. We leave
an exhaustive analysis of this case to future work. Here we limit ourselves to
observing that we know from Proposition 5.6 and Theorem 5.2 that the product
of a horizontal and a vertical stable transpositions (in this order) is stable. For
the case of two horizontal stable transpositions we have the following conjecture.

Conjecture 12.2. Let (a1,b1), (a1, b2), (az,b3), (as,by) € [n)? be distinct, a1 #
as. Then
u:= ((a1,b1), (a1,b2)) ((az,b3), (az, bs))

1s stable of rank 1 if and only if one of the following conditions is satisfied:
(i) {a1,a2} N {b1,b2,b3,bs} =0;
(i) {a1,a2} = {b1,ba, b3, ba}.

We have verified that Conjecture 12.2 holds if n < 8. Also, note that if
condition (i) holds then, by Corollary 5.16, u is stable of rank 1. Further, one
can check that if condition (ii) holds then without loss of generality we may
assume that a; = by = bsg and as = by = by, and in this case it is not hard to
show that u is again stable of rank 1. Therefore, Conjecture 12.2 holds if one
can show that either (i) or (ii) is a necessary condition for u to be stable of rank
1.

From the enumerative point of view the most fundamental problem is defi-
nitely the following.

Problem 12.3. Determine the numbers N, of stable permutations in S([n]")
for all values of n and r.

Note that it is known that N is always divisible by n"~1!, see [9, Section 6].

A natural and possibly easier problem is that of enumerating the stable
permutations u in S([n]?) (or in S([n]")) of rank 1 or those such that A, is an
involution. For r = 2, by Propositions 4.5 and 4.11, this is equivalent to the
following.
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Problem 12.4. Compute
Hue S(n?): 1ow(u®l)=(u®1)(1®u)}

and
HueS(n)?) : Iou Hu'leol)(leou) =(uel)}
for alln € N.

In the case of permutations in S, ® S,, these problems can be solved. Indeed,
by Proposition 4.10 we have that

Hu € Sp,®S,: (1u)(u®l) = (uel)(1eu)} = {(z,y) € Sp xS, : zy = yz}|

and this number is known to be (see, e.g., [29, Ex. 5.12]) p(n)n! where p(n) is
the number of partitions of n. Similarly, by Proposition 4.12 we have that

Hue S, ®8,: 1ouHu'le)(1leou) =wel)}
= {(z,y) € Sp x Sy + 2° = (yx)* = 1}|

so this number is t2 where t,, is the number of involutions in S,,, or equivalently,
the number of standard Young tableaux of size n (we refer the reader to, e.g.,
[29], for further information about these numbers).

The enumeration of stable permutations by rank is also a natural problem.
This distribution is only known for n < 3 and r = 2, in which case it is 4 and
54 + 186x + 24022 + 9623 (where the coefficient of z* is the number of stable
permutations in S([n]?) of rank k +1). A related problem (see Proposition 4.4)
is that of computing

Erp(n) := [{u € S([n)?) : Yp(u) € S([n)*) @ 1}

for all n > 2 and k£ > 1. In the case of n = 3 one can check that F;(3) = 144,
E»(3) — Eq(3) = 288, and F3(3) — Ey(3) = 144, while Ey(3) = 576 for all k > 4.

We feel, and the empirical evidence suggests, that stable permutations in
S([n]") are extremely rare. More precisely, we believe that the following holds.

Conjecture 12.5.

r

N
lim —2 =0, foralln>2,
r—oo n’!

T

N
lim —2% =0, forallr>2.
n—oo nr!

Let T?? denote the number of permutations in S([n]?) obtained as compatible
products of stable transpositions.
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T2(n!)?
N3

Problem 12.6. Does the limit lim,, oo exist?

From a group theoretical point of view, we feel that the finding a generating
set for the reduced Weyl group of O,, is a fundamental problem. It is of course
well known that finite symmetric groups are generated by transpositions. We
have characterized stable transpositions in S([n]?) and we expect that it should
be possible to extend this to S([n]"), » € N. In this respect, the following seem
like natural questions to investigate.

Problem 12.7. Let n € N. Is the reduced Weyl group of O,, generated by

{)\t te U S([n]"), t stable tmnsposition} ?
reN

Problem 12.8. Let n € N. Is the reduced Weyl group of O, generated by
involutions?

Of course, the same questions would also make sense for the image of the
reduced Weyl group in Out(@,,) under the quotient map.

In light of Theorem 2.1 it is interesting to investigate, more generally, which
unitary matrices U € U,r(C) yield automorphisms of the Cuntz algebra O,,.
In particular, we feel that examining which elements of the complex reflection
group G(k,n) (also known as the group of colored permutations) give rise to
automorphisms of O, is a natural and interesting avenue of further research,
which could give rise to arithmetic identities. In this direction the case k = 2
(i.e., the Weyl group of type B,,) would be a natural starting point.

It is known (see [11, Proposition 1.5]) that every stable permutation also
gives rise to an homeomorphism of the Cantor set. However, this condition
is strictly weaker than that of being stable, and has been characterized in [9,
Theorem 3.4]. It would be interesting to study also these permutations from a
combinatorial point of view.

We plan to investigate these questions in a future work.
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13 Appendix: some figures

Figure 1: the 36 permutations u € S([3]2) \ S([3]) ® S([3]) such that (\,)~! =
Ay, and their symmetries.

Simple transpositions:

Immersions:
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Figure 2: the 15 non-trivial representatives of the 16 double orbits of the
576 stable permutations of S([3]?), with their symmetries.
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