ANALISI MATEMATICA II (Ing. Gestionale) V APPELLO 18.09.2015 A.A.2014/15

COGNOME E NOME	
MOTIVARE CHIARAMENTE TUTTE LE RISPOSTE Tempo 2 ore	COMPITO A

Dichiaro di avere superato l'esame di Analisi Matematica I

SI

NO

FIRMA

- 1) Data la funzione $f: E \subset \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \log(\cos x \cos y)$, determinare
 - a) insieme di definizione $E \subset \mathbb{R}^2$, $inf(f(E)) \in \mathbb{R}$, $sup(f(E)) \in \mathbb{R}$, e, quindi, $f(E) \subset \mathbb{R}$ (i.e. f(E) = ? Perchè?);
 - **b)** i punti di stazionarietà nell'insieme $E \subset \mathbb{R}^2$;
 - c) classificare i punti di stazionarietà ottenuti;
 - **d)** dato il triangolo T (compatto) di vertici $A = \left(\frac{\pi}{6}, -\frac{\pi}{6}\right), B = \left(\frac{\pi}{3}, -\frac{\pi}{3}\right), e C = \left(\frac{\pi}{3}, -\frac{\pi}{6}\right), determinare <math>f(T) \subset \mathbb{R}$.
 - e) Riconoscere che f(D) = [m, M] dove, rispettivamente, m ed M indicano il minimo ed il massimo valore assunto da f in D.
- 2) Data l'equazione differenziale:

$$y'' + 2\gamma y' + 9y = \cos(3x), \quad x \in I \subset \mathbb{R}, \quad \gamma \in \mathbb{R}$$
 (1)

determinare:

- a) l'intervallo $I \subset \mathbb{R}$;
- **b)** l'integrale generale di (1) in corrispondenza a $\gamma \in \mathbb{R}$;
- c) fissato $\gamma = 0$, determinare la soluzione (Esiste? È UNICA? Perchè?) del problema di Cauchy

$$\begin{cases} y(0) &= 1\\ y'(0) &= 0. \end{cases}$$
 (2)

3) Data la funzione di variabile reale

$$f(x) = \frac{x}{(1+x)^2} \tag{3}$$

determinare:

- a) l'insieme di definizione $E \subset \mathbb{R}$;
- b) lo sviluppo in serie di Taylor di punto iniziale $x_0 = 0$, precisandone "a priori" la regione di convergenza B;
- c) indicarne, poi, un sottoinsieme $A \subset B$ nel quale la serie trovata converge totalmente. Dimostrare la convergenza totale in A
- d) lo sviluppo in serie di Taylor di punto iniziale $\tilde{x}_0 = 1$, precisandone "a priori" la regione di convergenza.
- e) scrivere lo sviluppo al punto b) nel caso in cui si considera il prolungamento di f nel campo complesso $\mathbb C$, i.e., in (3), si sostituisce $z \in E \subset \mathbb C$ a $x \in E \subset \mathbb R$.