Tutoraggio Analisi II, Ing. Ambiente e Territorio Dott.ssa Silvia Marconi - 04 Aprile '08 -

Regolarità di funzioni in due variabili

Continuità, derivabilità parziale, differenziabilità, derivabilità direzionale, piano tangente.

• Determinare l'equazione del piano tangente al grafico della funzione

$$f(x,y) = \sqrt{x^2 + y^2}$$

nel punto P(2,0,2).

• Data la funzione

$$f(x,y) = \ln\left[y\ln x\right]$$

determinarne l'insieme di definizione e calcolare la derivata $f_x(e^2, 2)$.

• Data la funzione

$$f(x,y) = e^{xy} + \sin x$$

calcolare la derivata direzionale $f_{\hat{v}}$ in direzione normale alla retta di equazione 3x + 6y - 6 = 0 nel punto P(0, 1).

• Data la funzione

$$f(x,y) = 1 + \sqrt[3]{(x-1)^2 y}$$

calcolare le derivate direzionali $f_{\hat{v}}$ in ogni direzione \hat{v} nel punto P(1,0) e stabilire se la funzione è differenziabile.

• Studiare la continuità, la derivabilità parziale, la differenziabilità e la derivabilità direzionale della seguente funzione:

$$f(x,y) = \begin{cases} \frac{x-y}{x^2+y^2} \log(1+y^{\alpha}) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 $y \ge 0$

al variare del parametro reale positivo $\alpha \in \mathbb{R}^+$.