Tutoraggio Analisi II, Ing. Ambiente e Territorio Dott.ssa Silvia Marconi - 23 Aprile '08 -

\diamond Forme differenziali e campi vettoriali in \mathbb{R}^2

Forme differenziali esatte e chiuse. Campi vettoriali conservativi e irrotazionali. Integrali di forme differenziali su curve di \mathbb{R}^2 .

• Data la forma differenziale

$$\omega(x,y) = 2xe^{x^2}\sin y \ dx + e^{x^2}\cos y \ dy$$

determinare le primitive di ω e calcolare $\int_{\gamma}\omega$, dove γ è la curva di equazione $x^2+4y^2=4$.

• Data la forma differenziale

$$\omega = \frac{dx}{x+y} + (x^2 + y^2) dy$$

calcolare $\int_{\gamma} \omega$, dove γ è l'arco di parabola $y=x^2$ compreso tra (1,1) e (2,4).

• Data la forma differenziale

$$\omega(x,y) = \log y \, dx + \frac{x}{y} \, dy$$

calcolare la primitiva di ω che vale 1 in (1, 1).

• Data la forma differenziale

$$\omega(x,y) = x^2 dx + y \, dy$$

calcolare la primitiva di ω che vale 0 in (0,0) e calcolare $\int_{\gamma} \omega$, dove γ è la curva di equazione $x^2+y^2-2y=1$.

• Dato il campo vettoriale

$$\vec{F} = \left(\frac{x}{x^2 + y^2}, \ \frac{y}{x^2 + y^2}\right)$$

si calocoli:

- (a) $\int_{C_1} \vec{F} \ ds$ dove C_1 è la circonferenza unitaria percorsa in verso antiorario;
- (b) $\int_{\gamma} \vec{F} \ ds$ dove γ è la curva di equazione $y = 1 + x^2$ con $x \in [0, 2]$;
- (c) $\int_{C_R} \vec{F} \ ds$ dove C_R è la circonferenza di centro l'origine e raggio R percorsa in verso antiorario.