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� We optimize the shape of Koch-mixture interfaces to drain heat in a bulk

� We propose a fractal dynamics which takes into account the heat fluxes.

� We use an optimal mesh algorithm for Koch interfaces to compute the temperature.

� Asymmetric Koch-mixture interfaces are suitable to drain heat when properly refined.

� The conductivity of the interface plays a significant role in the optimal shape.
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Abstract

The aim of this paper is to optimize the shape of a highly conductive interface in order
to drain the maximum amount of heat. Given the ubiquity of irregular interfaces in heat
transmission processes, we model such interfaces by Koch-mixture fractal layers. We propose
a dynamics that iteratively refines these mixtures in order to maximize the temperature
reduction in the bulk. We obtain that asymmetric Koch-mixtures drain heat effectively
when properly refined. In addition, we show that the conductivity of the interface plays a
significant role in the refinement of the optimal shape.

Keywords: Asymmetric fractal mixtures, Optimal shape, Heat flow, Highly conductive
layers

1. Introduction1

Irregular layers and media are involved in many physical phenomena, such as diffusion2

processes in physical membranes, current flow across rough electrodes in electrochemistry3

and diffusion of sprays in the lungs (see e.g. [1, 2]). In particular, the role of surface roughness4

has a deep impact in industrial applications, e.g. in coating technology and the design of5

microelectro-mechanical systems (MEMS) [3, 4, 5, 6, 7]. These phenomena are typically6

described by parabolic boundary value problems (BVPs) involving a transmission condition7

of order zero, one or two where the irregular media is modeled by fractal-type boundaries8

and/or interfaces. Thus, the numerical approximation of the corresponding boundary value9

problems is crucial to predict or confirm the experimental evidence.10

The first results on the numerical approximation of BVPs in domains with fractal-type11

boundaries and/or interfaces go back to the last 20 years [8, 9, 10, 11, 12, 13], where the main12

focus was on heat transfer problems across a given highly conductive pre-fractal boundary13
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and/or interface (i.e. second order transmission conditions). From the numerical simulations14

performed in such papers, it results that fractal-type interfaces are capable of draining heat15

from the bulk more efficiently than a flat interface, as described in [10]. This fact can be16

usefully exploited from the point of view of applications.17

In many industrial applications it is crucial to know which is the “optimal” interface to18

drain heat from heat sources. The mathematical model must be a control problem in which19

the dynamics of a pre-fractal barrier evolves automatically. Actually, the dynamics should20

be driven by the “feedback” of thermal flows, thus taking into account that the thermal21

sources located in the bulk are time dependent. The goal of the control system is to drain22

heat in an optimal way from the thermal sources.23

The problem could be formalized as follows: given a bulk (with an internal inter-24

face/layer) where some heat sources are located, which is the optimal shape of the layer25

to drain the maximum amount of heat from the heat sources in a given time? Answer-26

ing this question is the main goal of this paper and it first requires linking the concept of27

“draining heat” to a physical magnitude. For this reason, we assume that draining heat is28

equivalent to reducing the maximum temperature in the bulk. The mathematical problem29

that we aim to address in this paper is to obtain the optimal shape K∗ of an interface, in a30

set K of possible pre-fractal sets that divides a bulk domain Ω in two subdomains Ω1 and31

Ω2 and minimizes the maximum temperature in the subdomain where the heat sources are32

supposed to be located.33

This mathematical problem is denoted by (P) and is formalized as34

(P) min
K∈K

max
P∈Ω

uK(T, P ),

where, for every given K ∈ K , uK is the solution of the second order transmission problem
(P) formally stated as

(P)



∂u(t, P )

∂t
−∆u(t, P ) = f(P ) in [0, T ]× Ω,

−λ∆Ku(t, P ) =

[
∂u(t, P )

∂ν

]
on [0, T ]×K,

u(t, P ) = 0 on [0, T ]× ∂Ω,

u(0, P ) = 0 on Ω,

where T is the time in which the stationary state is reached, Ω is a given bounded open35

subset of R2, K is a pre-fractal curve, ∆K is the piecewise tangential Laplacian on K, λ36

is the layer conductivity,
[
∂u(t,P )
∂ν

]
is the jump of the normal derivative across K, ν is the37

outward unit normal vector and f is a given function in a suitable functional space.38

Actually, to solve our problem (P) is a complex task. To solve it, firstly, we assume that39

the heat sources are time independent and, secondly, we approach the solution iteratively.40

In particular, we propose a dynamics which makes the layer grow in each iteration according41

to thermal flows and other key physical magnitudes.42
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It is crucial to choose the set K in an efficient way both from the numerical and industrial43

application point of view. In this regard, we choose as set of possible layer configurations44

the set of Koch-type fractal mixtures. Our results show that asymmetric Koch mixtures,45

which are possible through a dynamics that makes the different parts of the layer grow46

independently, efficiently meet our aims.47

The paper is organized as follows. In Section 2, we describe the geometry of the pre-48

fractal layers K ∈ K . In Section 3, we show that for every given K ∈ K , the problem (P)49

admits a unique “weak” solution. In Section 4, we study the numerical approximation of50

(P) by mixed methods (FEM in space and FD in time). In Section 5, we investigate problem51

(P) by iteratively solving a sequence of simpler optimization problems {(Pn)}, driven by52

a heuristic method which relies on the choice of a suitable “dynamics” which governs the53

growth of the interface. In Section 6, we present the results of the numerical simulations.54

Finally, in Section 7, we draw the conclusions and discuss the possibility to extend this work55

to the study of a control problem.56

2. Preliminaries57

2.1. The geometry58

Fractal mixtures are constructed by employing the general iterated map system (see [14]59

and [15]).60

Let A be a finite set of numbers greater than 1. For α ∈ A , let61

ψ(α) =
{
ψ

(α)
1 , . . . , ψ

(α)
Nα

}
(2.1)

be a family of Nα contraction maps in R2 with contraction factor α−1. Denote with Ψ(α) the62

mapping in R2 defined by63

Ψ(α)(E) =
Nα⋃
i=1

ψ
(α)
i (E), E ⊂ R2. (2.2)

Let A N be the set of sequences ξ = (ξ1, ξ2, . . .), with ξi ∈ A . For n ∈ N, let us define in64

R2 the following function:65

ϕξn = Ψ(ξ1) ◦ · · · ◦Ψ(ξn) (2.3)

where ϕξ0 is the identity operator.66

Let now Γ be a nonempty compact subset of R2 with Γ ⊂ Ψ(α)(Γ), then the fractal67

mixture Kξ associated with the sequence ξ is defined by68

Kξ =

(
∞⋃
n=0

ϕξn(Γ)

)
. (2.4)

For any fixed ξ ∈ A N and n ∈ N, the set Kξ is not strictly self-similar, but it does satisfy69

the property70

Kξ = ϕξn
(
Kϑnξ

)
, (2.5)
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(a) ξ1 = 3 (b) ξ1 = 3, ξ2 = 2.5

(c) ξ1 = 3, ξ2 = 2.5, ξ3 = 3 (d) ξ1 = 3, ξ2 = 2.5, ξ3 = 3, ξ4 = 2.5

Figure 1: Pre-fractal Koch curve mixtures for variable length sequences of contraction factors.

where ϑ is the left shift operator on A N defined as ϑξ := (ξ2, ξ3, . . .) for ξ = (ξ1, ξ2, . . .).71

Given ξ ∈ A N, we define72

W ξ
n = ⊗ni=1 {1, . . . , Nξi} (2.6)

to be the set of all finite sequences of integers w|n = (w1, w2, . . . , wn) with 1 ≤ wi ≤ Nξi for73

1 ≤ i ≤ n. In addition, we set74

ψξw|n = ψ(ξ1)
w1
◦ · · · ◦ ψ(ξn)

wn . (2.7)

Definition 2.1. Let A = (0, 0), B = (1, 0) and Γ = {A,B}. Let A be a finite set of real75

numbers α ∈ (2, 4). For a fixed sequence ξ ∈ A N, the Koch curve mixture Kξ defined in76

(2.4) is constructed by the families of contraction maps ψ(α) =
{
ψ

(α)
1 , . . . , ψ

(α)
4

}
in C:77

ψ
(α)
1 (z) =

z

α
, ψ

(α)
2 (z) =

z

α
eiθ +

1

α
,

78

ψ
(α)
3 (z) =

z

α
e−iθ +

1

2
+
i sin(θ)

α
, ψ

(α)
4 (z) =

z + α− 1

α
,

for α ∈ A , where θ = cos−1
(
α
2
− 1
)
.79

Let Γ be the unit segment connecting A and B. For fixed ξ ∈ A N and n ∈ N, the n-th80

generation pre-fractal Koch curve mixture Kξ
n is defined by81

Kξ
n := ϕξn(Γ). (2.8)

For Γ = {A,B} and n ≥ 0, we define V ξ
n = ϕξn(Γ). It can be seen that the following82

nested property of V ξ
n holds:83

V ξ
0 ⊂ V ξ

1 ⊂ · · · ⊂ V ξ
n . (2.9)

In Figure 1, V ξ
n and Kξ

n are plotted in red and in black respectively.84

Let C0(Kξ) be the space of continuous functions on Kξ and C0(Kξ) := {φ ∈ C0(Kξ) :85
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φ(A) = φ(B) = 0}. Following [16], we know that there exists a unique Radon measure µξ86

on Kξ such that87 ∫
Kξ

φ dµξ =
∑

w|n∈W ξ
n

(
N ξ(n)

)−1
∫
Kϑnξ

φ ◦ ψξw|n dµϑ
nξ, (2.10)

for every φ ∈ C0(Kξ), where N ξ(n) = Πn
i=1Nξi .88

Figure 2: Asymmetric Kock-type mixtures for variable length sequences of contraction factors.

In the following, we will use asymmetric mixtures, which can be obtained from the89

previous procedure by choosing, at each iteration, a different contraction factor α for every90

contraction ψ
(α)
i , for i = 1, . . . , 4; see Figure 2.91

2.2. Functional spaces92

Let Ω be an open set of R2 with 2-dimensional Lebesgue measure |Ω|. By Lp(Ω), for93

p ≥ 1, we denote the Lebesgue space with respect to the two-dimensional Lebesgue measure94

L2, which will be left to the context whenever that does not create ambiguity. We denote95

by C0(Ω) the space of continuous functions with compact support on Ω and by C∞0 (Ω) the96

smooth functions with compact support on Ω. We denote by Hs(Ω), s ∈ R+, the (fractional)97

Sobolev spaces with norm ‖ · ‖Hs(Ω) and semi-norm | · |Hs(Ω) (see [17]), and by Hs
0(Ω) the98

closure of C∞0 (Ω) under the norm ‖ · ‖Hs(Ω). If S is a closed subset of R2, C0,δ(S ) denotes99

the space of Hölder continuous functions on S of order 0 < δ < 1.100

We define the trace operator γ0 for f ∈ Hs(Ω) as101

γ0f(x) = lim
r→0

1

|B(x, r) ∩ Ω|

∫
B(x,r)∩Ω

f(y) dy, (2.11)

at every x ∈ Ω where the limit exists. It is known the the limit (2.11) exists quasi everywhere102

on Ω with respect to the (s, 2)-capacity (see [18]). We point out that γ0f ≡ f |∂Ω for f ∈ C(Ω).103

We denote by C0(Kξ
n) the space of continuous functions on Kξ

n, by C0(Kξ
n) := {φ ∈104

C0(Kξ
n) : φ(A) = φ(B) = 0} and by s the one–dimensional measure on Kξ

n relative to the105

arc length.106

Now we come to the definition of trace spaces on the polygonal curve Kξ
n. We follow107

Definition 2.27 in [19] and briefly recall some notations. We define the positive direction on108

Kξ
n to be from A to B. Let V ξ

n = {P1, ..., PN+1} where P1 = A, PN+1 = B (A and B are the109
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endpoints of the curve, made of N + 1 vertices) and N = 4n. We denote by lj, j = 1, ..., N ,110

the sides with endpoints Pj and Pj+1, whose length is Lj = Πn
i=1ξ

−1
i . The length of Kξ

n is111

L = Πn
i=14ξ−1

i . Since P1 is the origin, we can associate the arc length s(P ) to every point112

P ∈ Kξ
n:113

s(P ) = (j − 1)Πn
i=1ξ

−1
i + |P − Pj|, (2.12)

if P ∈ lj for j = 1, ..., N . Here |P − Pj| is the Euclidean distance between the two points114

P and Pj. We have a continuous function φ0(s) : [0, L]→ R2 that is the parametrization of115

Kξ
n by arc length. Moreover, φ0(s) is injective and its restriction on each lj, j = 1, ..., N , is116

smooth. In addition, we consider the parametrization of the “sub-arc”
⋃N
i=j li by the injective117

continuous function φj(s) : [0, (N + 1− j)Lj]→ R2 such that φj(0) = Pj, j = 1, ..., N .118

We set Hs(Kξ
n) ≡ Hs(

◦
Kξ
n) with

◦
Kξ
n = Kξ

n\{A,B}, s ∈ R+.119

Definition 2.2. For s > 1
2
, the Sobolev spaces Hs(Kξ

n) and H1
0 (Kξ

n) are defined by120

Hs(Kξ
n) :=

{
v ∈ C0(Kξ

n) : v|lj ∈ Hs(
◦
lj),

◦
lj = lj\{Pj, Pj+1}, j = 1, ..., N

}
,

and121

H1
0 (Kξ

n) :=

{
v ∈ C0(Kξ

n) : v|lj ∈ H1(
◦
lj),

◦
lj = lj\{Pj, Pj+1}, j = 1, ..., N

}
.

If Ω is a polygon in R2, then the Sobolev space Hs(∂Ω) can be defined in a similar way122

(see [19]).123

We now recall Theorem 2.24 in [19]. For more general details, we refer to [20] and [17].124

Proposition 2.1. Let Ω be a polygon in R2 with boundary Γ. Let s > 1
2
. Then Hs− 1

2 (Γ) is125

the trace space to Γ of Hs(Ω) in the following sense:126

(1) γ0 is a continuous linear operator from Hs(Ω) to Hs− 1
2 (Γ);127

(2) there exists a continuous linear operator Ext from Hs− 1
2 (Γ) to Hs(Ω), such that γ0◦Ext128

is the identity operator in Hs− 1
2 (Γ).129

Finally, we define the weighted Sobolev spaces in a non-convex polygonal domain. Let130

Q be a non-convex polygonal domain in R2 with vertices Pj, j = 1, . . . , N . We denote by θj131

the interior angle of Q at Pj for j = 1, . . . , N . Let R = {1 ≤ j ≤ N : θj > π}. Then the132

set {Pj}j∈R is the subset of vertices whose angles θj are “reentrant”. We choose a suitable133

constant η > 0. For each j ∈ R, we put Bη(Pj) = {P ∈ Q : |P − Pj| < η}. Let r : Q→ R+
134

be a continuous weighting function such that r(P ) = |P −Pj| if P ∈ Bη(Pj) for some j ∈ R,135

and r(P ) = 1 if P ∈ Q\
⋃
j∈RB2η(Pj).136
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Definition 2.3. For µ ∈ R+, the weighted Sobolev space H2,µ(Q; r) is defined by

H2,µ(Q; r) :=
{
u ∈ H1(Q) : rµDβu ∈ L2(Q) ∀ |β| = 2

}
(2.13)

with the norm

‖u‖H2,µ(Q;r) :=

‖u‖2
H1(Q) +

∑
|β|=2

‖rµDβu‖2
L2(Q)

 1
2

. (2.14)

Similarly, for µ ∈ R+, we denote by Ĥ2,µ(Q; r̂) the weighted Sobolev space where r̂ is the137

distance from the boundary of Q.138

3. Existence, uniqueness and regularity results139

In this section we introduce the parabolic pre-fractal transmission problem. We refer the140

reader for details and proofs to [9], see also [21] for the case of an equilateral Koch curve.141

Let Ω = (0, 1)× (−1, 1) be the open rectangular domain in R2. For the sake of clarity, we142

consider the set A with only two distinct elements, i.e., A = {α1, α2} with α1, α2 ∈ (2, 4)143

and α1 < α2. Let n ∈ N and ξ ∈ A N be fixed. We set θ∗ = cos−1
(
α1

2
− 1
)

and θ∗ =144

cos−1
(
α2

2
− 1
)
. Let Ω1

n and Ω2
n be the portions of Ω above and below the pre-fractal curve145

Kξ
n which from now on will be simply denoted by Kn, whose endpoints are A = (0, 0) and146

B = (1, 0) . From Figure 3 we can see that there are two reentrant angles for each portion147

Ωi
n, which are denoted by θi1 and θi2 for i = 1, 2. In particular, we have148

θ1
1 = π + 2θ∗, θ1

2 = π + 2θ∗, θ2
1 = π + θ∗, θ2

2 = π + θ∗. (3.1)

0 1
θ2

1

θ2

2

θ1

2
θ1

1

θ* θ
*

Figure 3: Reentrant angles with ξ = (3.5, 2.5, . . . ) and n = 2.

In the following we denote by θ1 := max{θ1
1, θ

1
2} and by θ2 := max{θ2

1, θ
2
2}. Let us consider149

the forms150

E(n)(un, un) =

∫
Ω

|∇un|2 dL2 +

∫
Kn

|∇τγ0un|2ds, (3.2)
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defined on the domain151

V (Ω, Kn) = {un ∈ H1
0 (Ω) : γ0un ∈ H1

0 (Kn)} . (3.3)

In (3.3), H1
0 (Ω) denotes the usual Sobolev space in Ω and H1

0 (Kn) the trace space. We
note that the second integral in the right-hand side of (3.2), the layer energy EKn(·, ·), can
be written as the sum of integrals over the segments M of the n-generation:∫

Kn

|∇τγ0un|2 ds =
∑
M∈Fn

∫
M

|∇τγ0un|2 ds,

where ∇τ denotes the tangential derivative on M .152

The form in (3.2) is not trivial because the domain V (Ω, Kn) contains the space H
3
2
0 (Ω). In153

fact if v ∈ H
3
2
0 (Ω) then γ0v ∈ H1(Kn). Moreover, both v and γ0v vanish in A and B; hence154

γ0v ∈ H1
0 (Kn).155

Proposition 3.1. The space V (Ω, Kn) given by (3.3) is a Hilbert space under the norm156

‖un‖V (Ω,Kn) =
(
E(n)(un, un)

) 1
2 . (3.4)

Moreover, for each n ∈ N E(n)(·, ·), with domain V (Ω, Kn), is a regular, strongly local157

Dirichlet form in L2(Ω).158

See [22] and [21] and the references included. We refer to [23] for definitions and main159

properties of Dirichlet forms.160

We now introduce the transmission problem across the pre-fractal layer Kn. In the161

following, we denote both the functions un and their traces γ0un on Kn by the same symbol162

leaving the interpretation to the context. Let f(t, P ) be a given function in C0,δ([0, T ];L2(Ω))163

with δ ∈ (0, 1); we consider the problem (Pn), formally stated as:164

(Pn)



∂un(t,P )
∂t

−∆un(t, P ) = f(t, P ) in [0, T ]× Ωi
n, i = 1, 2,

−∆Knun(t, P ) =
[
∂un(t,P )

∂ν

]
on [0, T ]×Kn,

un(t, P ) = 0 on [0, T ]× ∂Ω,

u1
n(t, P ) = u2

n(t, P ) on [0, T ]× Kn,

un(t, P ) = 0 on [0, T ]× ∂Kn,

un(0, P ) = 0 on Ω,

where uin denotes the restriction of un to Ωi
n, ∆Kn denotes the piecewise tangential Laplacian165

defined on the layer Kn and
[
∂un
∂ν

]
= ∂u1n

∂ν1
+ ∂u2n

∂ν2
denotes the jump of the normal derivatives166

across Kn, where νi is the inward normal vector to the boundary of Ωi
n.167
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In the following, we recall the main results on existence and regularity of the solution to168

problem (P n). In [21] the existence and uniqueness of the “strict” solution of problem (Pn)169

has been proved via a semigroup approach. More precisely, the solvability of the following170

abstract Cauchy problem, for every fixed n ∈ N, has been studied:171

(Pn)


∂un(t)

∂t
= An un(t) + f(t), 0 ≤ t ≤ T,

un(0) = 0,
(3.5)

where An : D(An) ⊂ L2(Ω)→ L2(Ω) is the generator associated to the energy form E(n),172

E(n)(un, v) = −
∫

Ω

Anunv dL2, un ∈ D(An), v ∈ V (Ω, Kn), (3.6)

and T is a fixed positive real number.173

A “strict” solution of problem (Pn) is a function174

un ∈ C1([0, T ]; L2(Ω,m)) ∩ C([0, T ]; D(An)) s.t. (3.7)

∂un(t)

∂t
= Anun(t) + f(t), for every t ∈ [0, T ] and un(0) = 0.

Then the following holds.175

Theorem 3.1. Let 0 < δ < 1, f ∈ C0,δ([0, T ], L2(Ω)), and let176

un(t) =

∫ t

0

Tn(t− s) f(s) ds for every n ∈ N, (3.8)

where Tn(t) is the analytic semigroup generated by An. Then un is the unique strict solution177

of (Pn).178

Furthermore there exists c > 0, independent from n, such that179

‖un‖C1([0,T ],L2(Ω)) + ‖un‖C0([0,T ],D(An)) ≤ c‖f‖C0,δ([0,T ],L2(Ω)). (3.9)

For the proof, we refer to Theorem 4.3.1 in [24].180

Actually, the solution of the abstract Cauchy problem (Pn) is the “strong” solution of181

problem (Pn) in the following sense.182

Theorem 3.2. For every given n ∈ N, let un be the solution of problem (Pn). Then we have,183

for every fixed t ∈ [0, T ],184 

∂un(t, P )

∂t
−∆un(t, P ) = f(t, P ) for a.e. P ∈ Ωi

n, i = 1, 2,

∂uin
∂νi
∈ L2(Kn) i = 1, 2,

−∆Knun|Kn =

[
∂un
∂ν

]
in L2(Kn),

un(t, P ) = 0 for P ∈ ∂Ω,

un(0, P ) = 0 on Ω,

(3.10)
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where uin is the restriction of un to Ωi
n,
[
∂un
∂ν

]
= ∂u1n

∂ν1
+ ∂u2n

∂ν2
is the jump of the normal derivatives185

across Kn, νi, for i = 1, 2, are the inward normal vectors and ∆Kn is the piecewise tangential186

Laplacian associated to the Dirichlet form EKn. Moreover ∂uin
∂νi
∈ C([0, T ];L2(Kn)), i = 1, 2.187

For the proof, see Theorems 3.2 and 3.3 in [9].188

We recall an important regularity result for the restrictions uin of the solution un.189

Theorem 3.3. For every fixed t ∈ [0, T ] u1
n ∈ Ĥ2,µ1(Ω1

n), µ1 >
2θ1

π+2θ1
, u2

n ∈ Ĥ2,µ2(Ω2
n), µ2 >190

2θ2

π+2θ2
.191

For the proof we refer to Theorem 3.4 in [9].192

We remark that from Theorem 3.2 it follows that, for each t ∈ [0, T ], un|Kn ∈ H2(Kn)
and un ∈ C0(Ω) (see Remark 3.1 in [9]). By proceeding as in Theorem 4.2 of [25], with the
obvious changes, one can prove that

uin ∈ H2,µi(Ωi
n), µi >

2θi

π + 2θi
,

where the weight is the distance from the reentrant vertices (see Definition 2.3).193

4. Numerical approximation of problem (P)194

In this section we investigate the main issues concerning the numerical approximation of195

problem (P).196

We remark that, since the domains Ωi
n, i = 1, 2 are non-convex polygonal domains, in197

order to obtain an optimal rate of convergence it will be necessary to generate an appropriate198

mesh satisfying the conditions of the following Theorem 4.1 (see Appendix Appendix A for199

details on the mesh algorithm).200

Let D denote the domain Ωi
n, i = 1, 2, and let α = αi, i = 1, 2 and r = rin(x) be as in201

(A.1). Let un be the solution of problem (3.10) and uin the restriction of un to Ωi
n. We recall202

that un is in C0(Ω). We denote by Xh := {v ∈ C0(D) : v|S ∈ P1, ∀ S ∈ T ξ
n,h}, where P1203

denotes the set of polynomial functions of degree one. Let Ih : H2,α(D) → Xh be the Xh-204

interpolating operator, defined as follows : Ih(un)|S ∈ P1 for every S ∈ T ξ
n,h and Ih(un) = un205

at any vertex of any S ∈ T ξ
n,h. We note that the interpolation operator is well defined since206

un ∈ C0(Ω). In the above notations and assumptions we have for each t ∈ [0, T ]:207

Theorem 4.1. Let {T ξ
n,h} be a family of meshes over D satisfying conditions from (a) to208

(f) in Appendix Appendix A. Then there exists a constant C > 0, independent from h, such209

that210

|uin − Ih(uin)|H1(Ωin) ≤ C h

∑
|β|=2

‖ rαi ·Dβuin‖
2

L2(Ωin)


1/2

. (4.1)
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In the following for simplicity we will drop the superscript ξ. With the symbol T i
n,hi

we211

will denote the triangulation over the subdomain Ωi
n. Since Ω is divided by Kn into two212

subdomains Ω1
n and Ω2

n, which are non-convex polygonal domains having Kn as a portion of213

the boundary, we generate an appropriate mesh T i
n,hi

, i = 1, 2, satisfying the requirements214

to apply the mesh algorithm (see Appendix Appendix A) and the natural triangulation over215

Ω is216

Tn,h = T 1
n,h1

⋃
T 2
n,h2

, (4.2)

where h = max{h1, h2} and σ = max{σ1, σ2}.217

Under these conditions, the size of the elements is consistent with the assumptions of218

Theorem 4.1, thus, by proceeding as in Proposition 4 and Theorem 5.1 in [8], one can219

deduce a V (Ω, Kn)-estimate and a L2(Ωi
n)-estimate of the linear interpolation error for any220

function which has H2,µ-regularity, µ ∈ (0, 1).221

With these two properties at hand, the numerical approximation of the problem (Pn) is222

carried out in two steps.223

In the first step the semi-discrete problem is obtained by discretizing with a Galerkin224

method the space variable only and the following a priori error estimate of the order of225

convergence holds.226

Theorem 4.2. Let un(t) be the solution of (Pn), uin(t) be the restriction to Ωi
n of un(t), for227

i = 1, 2, and un,h(t) be the semi-discrete solution. For each t ∈ [0, T ], it holds228

‖un(t)− un,h(t)‖2
2 +

∫ t

0

‖un(τ)− un,h(τ)‖2
V (Ω,Kn) dτ ≤ ch2

(∫ t

0

‖f(τ)‖2
2 dτ

)
(4.3)

where c is a suitable constant independent of h.229

For the proof one can proceed as in Theorem 5.2 of in [8] with the obvious changes.230

In the second step, the fully discretized problem is obtained by applying a finite difference231

scheme, the so-called θ-method, on the time variable. As it is well-known, the θ-scheme is232

unconditionally stable with respect to the L2(Ω)-norm provided that 1
2
≤ θ ≤ 1. On the233

contrary, in the case of 0 ≤ θ < 1
2
, one has to assume that {Tn,h} is a quasi-uniform family of234

triangulations and that a restriction on the time step holds. Since the peculiarity of our mesh235

{Tn,h} is not to be quasi-uniform, from now on we assume 1
2
≤ θ ≤ 1. An error estimate236

between the semi-discrete solution un,h(tl) and the fully discrete one uln,h can be obtained237

as in Theorem 6.1 in [8]. From this estimate and Theorem 4.2 we deduce the following238

convergence result.239

Theorem 4.3. Let tl = l∆t for l = 0, 1, . . . ,M , ∆t > 0 being the time step and M being240

the integer part of T/∆t. Let f ∈ C0,δ([0, T ];L2(Ω)) and ∂f
∂t
∈ L2([0, T ]× Ω, dt× dL2). Let241

n be fixed and let un(t) be the solution of problem (Pn), uln,h be the fully discretized solution242

as given by the θ-method with 1
2
≤ θ ≤ 1. Then243

‖un(tl)− uln,h‖2
2 ≤ ch2

(∫ T

0

‖f(τ)‖2
2 dτ

)
+ Cθ4t2

(
‖f(0)‖2

2 +

∫ T

0

∥∥∥∥∂f∂τ (τ)

∥∥∥∥2

2

dτ

)
,
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where c is the constant given by Theorem 4.2 and Cθ is a constant independent from M , ∆t244

and h.245

5. The layer optimization problem (P)246

In this section we describe how to approximate numerically problem (P). Since it is247

too complex to be solved directly, we approach the solution to problem (P) by iteratively248

solving a sequence of simpler optimization problems {(Pn)} driven by a heuristic method.249

First, we assume that the optimal solution K∗ exists. Therefore, the solution to problem250

(P) is an element of K . Since every element of K can be obtained through an iterative251

growth process starting from a flat segment K0 (as shown in Section 2.1), we can state that252

there exists an iterative growth “dynamics” that links K0 with K∗.253

With this aim, we define a mapping denoted by Φi,α that represents a growth dynamics for254

the evolution of one particular segment of the layer, indexed by i, by applying a contraction255

factor α−1. In particular, given a layer Kn formed by a union of Sn segments, i.e. Kn =256

∪Sni=1Mi, the mapping Φi,α is defined as:257

Φi,α(Kn) = Mn
1 ∪ · · · ∪ ϕα(Mn

i ) ∪ · · · ∪Mn
Sn , i = 1, . . . , Sn, α ∈ [2 + ε, 4].

For every given iteration n, it is necessary to select which segment grows. This selection
comes from an heuristic method. In particular, we choose the segment of the layer which
has the maximum heat flux, defined as:

φ(Mi) =

∫
Mi

−λ
[
∂un
∂ν

]
ds.

The idea behind this heuristic is the following: as the goal is to minimize the maximum
temperature in the domain, we look for the most uniform temperature distribution. There-
fore, we apply a change to the segment which has the maximum heat flux. We denote by i∗n
the index of such segment and we define it by

i∗n = arg max
i∈Bn

φ(Mi),

where Bn is the set of indices of segments that can grow, which is defined by:

Bn =

{
jn ∈ N :

{
jn ∈ Bn−1 \ {i∗n−1} if Kn = Kn−1

jn ∈ {1, . . . , Sn} otherwise

}
This set is formed by all indices from 1 to Sn except the case when the layer has not

grown in the previous iteration. This happens when the optimal contraction factor for the
segment Mi∗n−1

with maximum flux in the previous iteration is 4. This means that this
segment does not grow, the layer remains the same (Kn = Kn−1) and therefore the segment
has to be removed for growing purposes in the current iteration n. In particular, the optimal

12



contraction factor for segment i∗n is denoted by α∗ and it is the solution of the following
optimization problem (Pn):

(Pn) α∗ = inf
α∈[2+ε,4]

(
max
P∈Ω

u
(
T, P,Φi∗n,α(Kn)

))
where u

(
T, P,Φi∗n,α(Kn)

)
is the solution of the problem Pn with interface Φi∗n,α(Kn). Since258

the steady state is only reached when t→ +∞, for application purposes we define T as the259

finite time in which all variables of the process do not vary anymore in significant way (for260

instance the 99% of their final value, which is theoretically computable).261

Therefore, as long as Bn 6= ∅, the growth dynamics is given by:{
B0 = {1}, i∗0 = 1, K0 = [0, 1],

Kn+1 = Φi∗n,α
∗
(Kn), in = 1, 2, . . .

The dynamics stops when Bn = ∅, i.e. no segment grows.262

The approach described above can be resumed in Algorithm 1 below. This algorithm in-263

cludes some variations, which have been added for computational and application purposes.264

First, given an iteration n, the optimal contraction factor α∗ for the segment Mi∗n−1
with high-265

est flux is selected from a discrete set of z different factors {α1, α2, . . . , αz}. This procedure266

does not guarantee that the factor α obtained is the optimal, but it is necessary to compu-267

tationally approach the problem given its complexity. Furthermore, αj < 4, j = 1, 2, . . . , z,268

because applying a contraction factor of 4 does not produce any change in the layer from a269

computational point of view.270

Finally, the layer evolves if the relative difference of temperature between the maximum271

temperature umax with the current layer Kn and the maximum temperature uprovmax with the272

provisional layer Kprov
j∗ evaluated is greater than a threshold δ > 0. This threshold ensures273

that the layer evolves only if the reduction of maximum temperature is enough to justify the274

increase of length of the layer.275

6. Numerical results276

In this section we study the growth of the pre-fractal layer and its final configuration277

depending on the heat source position and the layer conductivity. The dimensional equations278

of the problem are, for every t ∈ [0, T ],279 

ρ Cp
∂u

∂t
= λb ∆u+ f in L2(Ω),

−λs∆Knu = λb

[
∂u

∂ν

]
in L2(Kn),

u(0, x) = 0 ∀x ∈ Ω,

u(t, x) = 0 ∀x ∈ ∂Ω,

where280
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Data: {α1, α2, . . . , αz} ∈ [2 + ε1, 4− ε2], δ,Ω = (1, 0)× (−1, 1), λ, f,K0 =
{(0, 0), (1, 0)},B0 = {1}, i∗0 = 1, n = 0

Result: K
Obtain uK0(T, P ),∀P ∈ Ω ;
umax ← maxP∈Ω uK0(T, P );
while card(Bn) 6= 0 do

if n > 0 then
for i ∈ Bn do

Obtain φ(Mi);
end
i∗n ← arg mini∈Bn

φ(Mi);

end
for j ∈ {1, 2, . . . , z} do

Kprov
j = Φi∗n,αj(Kn) ;

Obtain uKprov
j

(T, P ),∀P ∈ Ω ;

end

j∗ ← arg minj=1,2,...,z

(
maxP∈Ω uKprov

j
(T, P )

)
;

uprovmax ← maxP∈Ω uKprov
j∗

(T, P )

if umax−uprovmax

umax
> δ then

Kn+1 ← Kprov
j∗ ;

Bn+1 ← {1, 2, . . . , card(Bn) + 3} ;
umax ← uprovmax ;

else
Kn+1 ← Kn ;
Bn+1 ← Bn \ {i∗n}

end
n← n+ 1 ;

end
K ← Kn

Algorithm 1: Algorithm to approach solution K∗ for problem (P)
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� ρ is the material density in the bulk Ω (in Kg/m3);281

� Cp is the heat capacity at constant pressure (in J/(Kg · ◦C));282

� λb is the thermal conductivity in the bulk domain Ω (in W/(m · ◦C));283

� λs is the thermal conductivity in the pre-fractal layer Kn (in W/◦C));284

� the term f represents a thermal source (in W/m3);285

� u is the unknown variable: the temperature in Celsius degrees.286

In order to preserve dimensional coherence, we assume that Ω is a planar section of a287

three-dimensional domain of infinite depth. Moreover, we consider that the layer Kn has an288

infinitesimal thickness on the planar section.289

From this point on, the values of the parameters and variables defined above are referred290

to their mentioned units. Table 1 shows the values consistently used for ρ, Cp and λb291

in all subsections. On the other hand, in Algorithm 1, the contraction factors are set to292

αi = 0.19(i− 1) + 2.1, i = 1, . . . , 11, and the treshold is set to δ = 0.01.293

ρ Cp λb
8000 450 1

Table 1: Numerical values used in the simulations for the physical coefficients

6.1. Iterative growth of the pre-fractal layer294

In this subsection we examine how the layer grows to maximize the heat draining. In295

particular, the evolution of the layer according to the iterative growth dynamics represented296

by Φi,α and obtained through Algorithm 1 is shown in Figure 4. In this figure, we observe297

how the layer is iteratively approaching the center of the heat source. This is due firstly to the298

fact that the segments with the maximum flux, and therefore the segments that grow first,299

are the ones closer to the heat source, and secondly to the fact that the optimal contraction300

factors for these segments are the ones that approach the layer to the heat source.301

These results are sensible from a physical point of view. The layer is more conductive than302

the bulk and is connected in its extremes to the walls which are at a constant temperature303

of 0 ◦C. This implies that the layer constitutes a more efficient path for heat draining than304

the bulk. In addition, the greater the temperature gradient between the bulk and the layer,305

the greater the heat flux along the layer. Therefore, the closer the layer is to the points of306

maximum temperature in the bulk, the more efficiently the heat is drained.307

Nevertheless, the growth towards the heat source must be balanced with the increase308

of length of the layer. When the layer grows, so does the distance between some points of309

the layer and the extremes connected to the walls. Therefore, the resistance to heat flow310

along the layer increases. This implies that it is not effective to grow the layer everywhere;311

it is physically more convenient to grow only the parts close enough to the heat source (and312
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therefore to the areas of high temperature in the bulk), in order to outweigh the effect of313

increasing its length. This phenomenon can be observed in Figure 4, where the layer does314

not grow in the parts that are farther from the heat source.315

The numerical results shown in Figure 4 were obtained using f(x, y) = 3000 exp(−5(x−316

0.3)2 − 5(y − 0.4)2) and λs = 1000.317
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(a) (b) (c)

(d) (e) (f)

Figure 4: Iterative growth of the pre-fractal Koch mixture layer to produce the maximum reduction of
temperature (4a - 4f), maximum temperature umax in each bulk and temperature colormap.
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6.2. Dependence on the heat source position318

In this subsection we analyze how the position of the heat source affects the shape of the319

pre-fractal layer according to Algorithm 1 (see Figure 5). When the heat source is centered,320

the layer grows a spike in the center of the layer and then stops growing (see Figure 5a). This321

is because further growing does not benefit heat draining, as the increase of length does not322

translate into an approach to the heat source. On the other hand, when the heat source is323

displaced from the center, the layer begins to grow further to approach the heat source (see324

Figures 5b - 5g). In fact, when the heat source center is located near to the walls, the layer325

grows a second spike (see Figures 5h - 5j) and the central spike even flattens (see Figure 5j).326

These results are sensible from a physical point of view as in Subsection 6.1.327

The numerical results shown in Figure 5 were obtained using f(x, y) = 3000 exp(−5(x−328

x0)2 − 5(y − y0)2), where x0 and y0 vary from Figure 5a to 5j, and λs = 1000.329

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: Dependence of the pre-fractal Koch mixture layer on the heat source position center (x0, y0) to
produce the maximum reduction of temperature.
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6.3. Dependence on the conductivity λs330

In this subsection we study the influence of the the layer conductivity λs on the shape of331

the pre-fractal obtained through Algorithm 1 (see Figure 6). In this figure we observe that,332

the higher the conductivity, the greater the growth of the pre-fractal and the closer it is to333

the heat source (see Figures 6a - 6d).334

This result is sensible from a physical point of view. The heat flux along the layer335

is directly proportional to the conductivity of the layer and the bulk-layer temperature336

gradient. This means that, given two layers 1 and 2 with conductivity values λ1 and λ2337

respectively, λ1 < λ2, the bulk-layer temperature gradient for layer 1 must be larger than338

for layer 2 to obtain the same heat flux value. This implies that layer 1 must reach areas of339

higher bulk temperature than layer 2, i.e., layer 1 must grow more than layer 2. However,340

this means that the resistance of layer 1 is higher than that of layer 2. Therefore, the growth341

of layer 1 is more penalized than that of layer 2 to obtain the same heat flux and hence, the342

lower the conductivity, the lower the growth of the layer.343

The numerical results shown in Figure 6 were obtained using f(x, y) = 3000 exp(−5(x−344

0.65)2 − 5(y − 0.35)2).345

(a) (b) (c) (d)

Figure 6: Pre-fractal Koch mixture that produces the maximum reduction of temperature with conductivity
λs = 1 (6a), λs = 10 (6b), λs = 100 (6c) and λs = 1000 (6d), maximum temperature umax in each bulk and
temperature colormap.

7. Conclusions and open problems346

Not all pre-fractal layers are suitable for draining heat purposes. As we show in Section347

6, the optimal growth dynamics of a pre-fractal Koch-mixture generates pre-fractals which348

have grown only in those areas closest to the heat source. This is the balance between349
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two opposite effects produced when a highly conductive thin layer grows: i) the layer moves350

closer to the heat source and is located in higher temperature areas of the bulk to increase the351

bulk-layer temperature gradient; ii) the layer increases its length and thus its resistance to352

heat transfer. For this reason, pre-fractal growth is only desirable in areas of the bulk whose353

temperature implies a gradient that outweighs the increase in resistance (see Figures 4 and354

5). The extent of these areas depends on the conductivity of the layer itself: the lower the355

conductivity, the higher the temperature and subsequent gradient required to produce the356

same heat flux and thus the lower the extent of these areas and the growth of the pre-fractal357

(see Figure 6).358

The conclusions obtained lead to the question of what type of layer, fractal or not,359

improves the performance of Koch-mixture fractals. The geometry of these mixtures implies360

that their maximum is in the center, which makes them inefficient in problems where the heat361

source is not centered, being preferable a layer whose geometry depends on the position of362

the heat source to approach it as close as possible. In addition, the infinite-length property of363

fractals is counterproductive in those parts far from the highest temperature areas. For this364

reason, in future works we will study the heat-draining capability of layers whose geometry365

is oriented towards the heat source and which also only develop fractal structure in their366

surroundings. Moreover, the results of this paper can be extrapolated to a more realistic 3D367

problem. In some cases, a 3D fractal surface obtained from an extruded 2D fractal has been368

shown by simulations to behave similarly to the two-dimensional case. Nevertheless, the369

general 3D case presents additional challenges that probably require appropriate algorithms370

and theoretical analysis. The study of the general 3D problem is the object of our current371

research activity.372

The results of this work also lead us to study a problem which may be considered as an373

evolution of the present one: an automatic control system in which the growth dynamics374

of a pre-fractal barrier evolves automatically to drain heat from sources in an optimal way.375

This growth dynamics would be guided by the feedback of thermal flows, according to more376

or less flexible rules of an asymmetric mixture to adapt to the extemporaneous conditions377

of any thermal sources located in the bulk. This scenario incredibly lends itself to many378

applications of practical interest. For example, a highly conductive layer could be made379

with deformable material and installed on electronic boards in which it is of particular380

interest to drain heat optimally from variable thermal sources (for instance, microchips or381

other electronic components which are activated and heat up with their usage). In particular,382

the electronic devices (micro actuators) would guide the fractal dynamics of the barrier on383

the basis of the measurement of the thermal field on the electronic board and/or of thermal384

fluxes. We remark that in the formulation of the problem some functional constraints could385

be introduced, such as constraints on the maximum length of the pre-fractal or temperature386

constraints on some points of the barrier. The inclusion of constraints in the optimization387

problem makes the logic of the optimization algorithm more complex and is one of the objects388

of forthcoming papers.389
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Appendix A. Appendix: The mesh algorithm390

In this section we recall the mesh algorithm developed in [10], which is crucial in order391

to obtain an optimal rate of convergence of the numerical solution. Here, n ∈ N and ξ ∈ A N
392

are fixed.393

We denote by Q the set of all reentrant corners. From Theorem 3.3, we have that the394

solution is singular at these reentrant corners, indeed it is not in H2(Ωi
n) as in the case of395

smooth boundaries, and, as it is well known, this lack of regularity deteriorates the rate of396

convergence in the numerical approximation.397

In view of these singularities, in order to get an optimal rate of convergence for the finite398

element approximations, the triangulation of the domains Ωi
n must be suitably refined ac-399

cording to the conditions introduced by Grisvard in [20] (see conditions (c) and (d) below).400

To this aim, a first crucial requirement is to ask that all the vertices of V ξ
n are nodes of the401

family of triangulations {T ξ
n,h}.402

We ask that the mesh refinement process generates a family of triangulations {T ξ
n,h} with403

the following properties:404

(a) any T ξ
n,h is conformal ;405

(b) the family of triangulations {T ξ
n,h} is regular ;406

(c) hS ≤ σh
1

1−µi for every triangle S ∈ T ξ
n,h having at least one reentrant vertex in Q,407

where:408

-) h is the mesh size, i.e., h = maxS∈T ξ
n,h
hS;409

-) hS is the diameter of the triangle S ∈ T ξ
n,h, defined as the length of its longest410

edge;411

-) σ is the regularity constant of the mesh, defined as hS/ρS ≤ σ, ∀S ∈ {T ξ
n,h},412

where ρS is the radius of the biggest circle inscribed in S;413

-) µi is given in Theorem 3.3;414

(d) hS ≤ Cσh infx∈S[rin(x)]µi for any other triangle S ∈ T ξ
n,h, where:415

-) C is a constant greater than 1;416

-) rin(x) is the so-called weighting distance, defined as417

rin(x) =


|x− P | if x ∈ Bηn(P ) for some P ∈ Q

1 if x 6∈
⋃
P∈Q B2ηn(P )

1−ηn
ηn

(|x− P | − ηn) + ηn otherwise ;

(A.1)

-) ηn is equal to a quarter of the shortest distance between any pair of points in Q;418

(e) the mesh size h→ 0 when the iteration number of the mesh algorithm goes to infinity;419

(f) the mesh algorithm produces a sequence of nested refinements, i.e. all the nodes in the420

current triangulation are also nodes of the one obtained after the refinement.421

The first assumption guarantees that the mesh covers exactly the domain Ω and that422

the set of nodes of each triangulation corresponds to the set of vertices of the triangles. The423
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second assumption requires that the shape of any triangle is not altered in an unlimited way424

by the refinement process. This requirement acts as a lower bound of the mesh quality. For425

the definitions of conformal and regular mesh, we refer e.g. to [26]. Hypotheses (c) and426

(d) are required to generate a proper decomposition of the domain around the reentrant427

vertices in order to guarantee an optimal rate of convergence of the numerical solution, and428

they require that the closest triangles to any reentrant vertex are more refined than those429

triangles that are far away.430

The hypothesis (e) is required to guarantee the convergence of the finite element method.431

In the end, the hypothesis (f) is a special case of the so-called h-refinement, which leads to432

a more accurate computation of the numerical solution. In particular, it bounds the growth433

of the complexity of the numerical problems associated to the subsequent refinements.434

The algorithm that we use is a mesh refinement algorithm for fractal mixture interfaces435

and it is an extension of the one in [27]. We remark that the algorithm in [27] produces436

meshes that do not satisfy the requirements (e) and (f); moreover, the present algorithm437

allows to tackle transmission problems taking place across more complex interfaces and438

allows to generate nested refinements.439

We now recall the mesh algorithm I which was introduced in [9]. We summarize the440

properties of the mesh produced by the algorithm I in the following theorem.441

Theorem Appendix A.1. Let n ∈ N and ξ ∈ A N be given. If T ξ
n,h0

is a coarse mesh of442

Ω with the following properties:443

(i) T ξ
n,h0
∩ Ωi

ξ,n is a triangulation of Ωi
ξ,n for i = 1, 2;444

(ii) T ξ
n,h0

is shape regular with aspect ratio σ;445

(iii) h0 <
1
2
− η1,446

then we can apply the algorithm I on T ξ
n,h0

and generate a family of triangulations {T ξ
n,h} of447

Ω which satisfies the properties from (a) to (f) introduced at the beginning of this Appendix.448
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