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We consider a magnetostatic problem in a three-dimensional “cylindrical”
domain of Koch type. We prove existence and uniqueness results for both the
fractal and pre-fractal problems and we investigate the convergence of the pre-
fractal solutions to the limit fractal one. We consider the numerical approxima-
tion of the pre-fractal problems via FEM and we give a priori error estimates.
Some numerical simulations are also shown. Our long-term motivation includes
studying problems that appear in quantum physics in fractal domains.

15.1. Introduction

The aim of this chapter is to study a magnetostatic problem in a fractal

domain. Trying to understand the magnetic properties of fractal structures
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is a new challenge from both the practical and theoretical point of views. In

general, mathematical physics on fractals is still a young subject, see [2–6]

for some results; magnetic operators on fractal spaces have been studied

only very recently, [26, 28, 29, 32], as well as heat transfer across fractal

layers or boundaries [8, 12, 13, 27, 37, 38, 40, 53]. Our long-term motivation

includes a possibility to study non-quantized penetration of magnetic field

in the vortex state of superconductors [20] in fractal domains.

A mathematical theory of electrodynamics on domains with fractal

boundary still has to be developed. Although many results are well known in

the case of Lipschitz domains (see, for instance, [15, Chapter IX]), for such

fractal domains even the simplest models and effects have not yet been dis-

cussed. Our considerations here should be regarded as a preliminary step in

a long-term project, which aims to provide theoretical and numerical studies

of related physical phenomena. We believe that, beyond their theoretical

interest, such results may also be useful for the construction of concrete

prototypes in industrial applications, which aim to maximize (or minimize)

physical quantities such as the intensity of the magnetic vector field induced

by a given current density.

In the present chapter, we consider a linear magnetostatic problem in

a cylindrical three-dimensional domain Q = Ω × I, where Ω is the two-

dimensional snowflake domain with Koch-type boundary F and I is the

unit interval. We consider the problem of finding a divergence free mag-

netic vector potential for given time-independent permeability and time-

independent current density, and we assume that the magnetic induction

vanishes outside Q.

Using trace and extension techniques from [34], we establish a gener-

alized Stokes formula, see Theorem 15.5. It involves generalized tangential

traces that can be expressed as a limit of tangential traces along the bound-

aries of “polyhedral” approximations. We establish a Friedrichs inequality,

Theorem 15.10, and establish existence and uniqueness of weak solutions,

Theorem 15.11. For the numerical approximation, we restrict ourselves

to the axial-symmetric case, which in turn brings us to solve the prob-

lem in the snowflake domain. We consider both the fractal and pre-fractal

problems, which we denote with (P̄ ) and (P̄n), respectively. We prove exis-

tence and uniqueness of weak solutions (Propositions 15.17 and 15.19) and

regularity results (Proposition 15.18). We show that, in a suitable sense,

the pre-fractal solutions converge to the limit fractal one, see Theorem

15.20. We consider the numerical approximation of the pre-fractal problem

(P̄n) by an FEM scheme. To obtain an optimal a priori error estimate,
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we rely on the regularity of the weak solution of problem (P̄n) in suitable

weighted Sobolev spaces, see Theorem 15.21. Since the pre-fractal domain

Ωn is not convex, the solution is not in H2(Ωn), hence the rate of conver-

gence is deteriorated. By using a suitable mesh constructed in [10], which is

compliant with the so-called Grisvard conditions [24], we can prove opti-

mal a priori error estimates. These conditions involve the weight exponent

of the weak solution given in Theorem 15.21. We finally present numeri-

cal simulations, which describe the behavior of the magnetic field. It turns

out that the intensity of the magnetic field increases as the length of the

boundary approaches the “length” of F ×I. We believe that this effect may

be useful for potential applications.

15.2. Fractal Domains

We write |P − P ′| to denote the Euclidean distance between two points P

and P ′ in R
N . The Koch snowflake F ⊂ R

2 is the union F =
⋃3
i=1K

(i) of

three co-planar Koch curves K(1), K(2) and K(3), cf. [17, Chapter 8], whose

junction points A, B and C are the vertices of a regular triangle. We assume

this triangle has unit side length, i.e., |A−B| = |A− C| = |B − C| = 1.

The single Koch curve K(1) is the uniquely determined self-similar set

with respect to a family Ψ1 of four contractive similarities ψ
(1)
1 , . . . , ψ

(1)
4 ,

all having contraction ratio 1
3 , see [17, 19]. Let V

(1)
0 := {A,B}, ψi1...in :=

ψi1 ◦ · · · ◦ ψin , V (1)
i1...in

:= ψ
(1)
i1...in

(V
(1)
0 ) and

V (1)
n :=

4⋃

i1...in=1

V
(1)
i1...in

.

We write i|n = (i1, i2, . . . , in) and V
(1)
� :=

⋃
n≥0 V

(1)
n . The closure in R

N of

V
(1)
∗ is just K(1). Now, let K

(1)
0 denote the unit segment whose endpoints

are A and B. We set K
(1)
i1...in

= ψi1...in(K
(1)
0 ) and

K(1)
n :=

4⋃

i1...in=1

K
(1)
i1...in

.

In a similar way, it is possible to approximate K(2) and K(3) by the

sequences (V
(2)
n )n≥0 and (V

(3)
n )n≥0, we denote their unions by V

(2)
� and

V
(3)
� , respectively. The polygonal curves associated with V

(2)
n and V

(3)
n are

denoted by K
(2)
n and K

(3)
n , respectively.
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Fig. 15.1. The pre-fractal curve F4.

Fig. 15.2. The lateral surface S2.

The Koch snowflake F itself is approximated by the sequence (Fn)n≥1

of “pre-fractal” closed polygonal curves Fn, defined by

Fn =
3⋃

i=1

K(i)
n , (15.1)

see Fig. 15.1.

Notation 15.1. By Ωn ⊂ R
2, we denote the bounded open set with

boundary Fn and by Qn, the three-dimensional cylindrical domain having

Sn := Fn× [0, 1] as “lateral surface” and the sets Ωn×{0} and Ωn×{1} as
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bases. We similarly write Ω for the bounded open domain in R
2 with bound-

ary F (“snowflake domain”), define the cylindrical-type surface S := F × I
and let Q denote the open cylindrical domain having S as lateral surface

and the sets Ω× {0} and Ω× {1} as bases, see Fig. 15.2.

15.3. A 3D Magnetostatics Problem

We formulate a linear magnetostatic problem on the fractal domain Q.

To deduce it and to explain its physical meaning we start by recalling

Maxwell’s equations for classical macroscopic electromagnetic fields. We

assume that Q is made up from a linear material, i.e., in a material without

any magnetization or polarization effects, and we assume it is dielectric,

i.e., its conductivity can be neglected (see, for instance, [46, Section 1.2.1]).

Then Ampère’s law, curl(H) = J + ∂D
∂t , tells that the total magnetic field

H induced around a closed loop equals the electric current plus the rate

of change of the electric displacement field D enclosed by the loop, here

J denotes the electric current density, i.e., the vector field describing the

directed flow of electric charges. The corresponding magnetic induction is

B = μH, where μ is a positive and bounded scalar function of space and

time, called the permeability of the material. By Faraday’s law of induction,

curl(E) = −∂B∂t , the voltage induced in a closed loop equals the change of the

enclosed magnetic field. Here E = 1
εD, where ε is a positive and bounded

scalar of space and time referred to as the permittivity of the material.

These assumptions of μ and ε mean we model an inhomogeneous isotropic

material, so practically Q may consist of a mixture of different materials

whose electromagnetic properties may depend on the location in space but

not on the direction of the fields. Gauss’ law, div(D) = ρ, states that the

electric flux leaving a volume equals the charge inside, here ρ ≥ 0 is the

charge density. According to Gauss’ law for magnetism, div(B) = 0, i.e.,

the magnetic flux through a closed surface is zero.

We now make the following assumptions leading to a much simpler

magnetostatic setup:

• the permittivities ε = ε(x) and μ = μ(x) are time-independent ;

• the charge density is zero, ρ = 0;

• the current density J ≡ J(x) is time-independent and real-valued ;

• the fields E ≡ E(x) and H ≡ H(x) are time-independent and real-valued ;

• all the fields vanish outside Q.
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Under these assumptions, Maxwell’s equations on Q read

curl(H) = J, curl(E) = 0, div(D) = 0, div(B) = 0, (15.2)

where D = εE and B = μH.

Our assumption that E vanishes in Qc means that the surrounding

regionQc is a perfect conductor. When passing from one to another medium,

the parallel component of the electric field should be continuous; this can

be seen by taking a small rectangular loop with long sides parallel to ∂Q,

one inside Q, one outside and applying Faraday’s law. Since the field van-

ishes outside Q, this forces to impose what is referred to as the perfectly

conducting boundary condition n×E = 0 on ∂Q.

Since B is divergence free, there exists a magnetic vector potential u =

(u1, u2, u3) such that B = curl(u), and we may choose it to be divergence

free, divu = 0. Note that Gauss’ law for magnetism then becomes trivial.

Also B is supposed to be zero on Qc. Therefore, looking at the flux

of the magnetic field through small closed loops on ∂Q, which should not

differ for the interior and the exterior field, and applying the Kelvin–Stokes

theorem, it follows that we should impose n × u = 0 on ∂Q. See, for

instance, [23, Section 5.4.2] or [58, p. 82].

We now restrict attention to the magnetic field only and pose the fol-

lowing problem: Given μ and J as above, find a magnetic vector potential

u that satisfies

(P )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

curl

(
1

μ
curl(u)

)

= J in Q,

divu = 0 in Q,

n× u = 0 on ∂Q.

(15.3)

Note that if μ is constant then the first equation rewrites

−Δvecu = μJ, (15.4)

where Δvec denotes the vector Laplacian.

15.4. Trace Theorems, Stokes Formula and Gauss–Green

Identity

We discuss measures, function spaces and trace theorems. The latter allow

rigorous definitions of boundary conditions and generalizations of classi-

cal integral formulas. We write B(P, r) = {P ′ ∈ R
N : |P ′ − P | < r},

P ∈ R
N , r > 0, for the Euclidean ball of radius r centered at P . For the
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two-dimensional Lebesgue measure, we write dx1dx2 and for the three-

dimensional one, we write dx = dx1dx2dx3.

On the snowflake curve F =
⋃3
i=1K

(i), we consider the finite Borel

measure μ defined by

μF := μ1 + μ2 + μ3,

where μi denotes the normalized Hausdorff measure of dimensionDf = ln 4
ln 3 ,

restricted to Ki, i = 1, 2, 3. It is well known that c1r
Df ≤ μF (B(P, r)) ≤

c2r
Df , P ∈ F , r > 0, with positive constants c1 and c2. If we endow the

cylindrical type surface S = F × I with the measure

dμS := dμF × dx3,

where dx3 is one-dimensional Lebesgue measure on I, then clearly

c1r
Df+1 ≤ μS(B(P, r)) ≤ c2rDf+1 (15.5)

for all P ∈ S and r > 0.

We equip the boundary ∂Q with the measure

dμ∂Q = χSdμS + χΩ̃dx1dx2, (15.6)

where Ω̃ = (Ω×{0})∪(Ω×{1}) is the union of the two bases of the cylinder

domain Q in Notation 15.1. In particular, suppμ∂Q = ∂Q.

From (15.5) and the quadratic scaling of the two-dimensional Lebesgue

measure it follows that

μ∂Q(B(P, kr)) ≤ c1 kDf+1μ∂Q(B(P, r)) and

μ∂Q(B(P, kr)) ≥ c2 k2μ∂Q(B(P, r)) (15.7)

for all P ∈ ∂Q, r > 0, k ≥ 1 such that kr ≤ 1.

We write L2(Q) and L2(Qn) for the L
2-spaces with respect to the three-

dimensional Lebesgue measure, the spaces L2(Ω), L2(Ωn), L
2(∂Qn) are

taken with respect to the two-dimensional Lebesgue (or Hausdorff) measure

(depending on whether considered in R
2 or R3). For ∂Q, we write L2(∂Q) =

L2(∂Q, μ∂Q), the L
2-space with respect to μ∂Q.

The spaces Hα(RN ) = Hα,2(RN ) denote the usual Bessel potential

spaces (see, for instance, [1]), where they are denoted by Lα,2(RN ). Given

a domain O ⊂ R
N , the notation H1(O) denotes the classical Sobolev space

of square integrable functions with finite Dirichlet integral, usually denoted

by W 1,2(O).
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Since the boundary ∂Q = Ω̃ ∪ S is a closed set composed by sets of

different Hausdorff dimension, in order to consider the trace space ofHα(Q)

on ∂Q, we introduce suitable spaces B̃2,2
α (∂Q) as in [34, p. 356]. For any

1

2
< α < 2− Df

2
, (15.8)

let B̃2,2
α (∂Q) denote the class of functions u on ∂Q such that

‖u‖2
B̃2,2

α (∂Q)
= ‖u‖2L2(∂Q) +

∫∫

|x−y|<1

|u(x)− u(y)|2
|x− y|2α−3(μ∂Q(B(x, |x − y|)))2

× dμ∂Q(x) dμ∂Q(y) (15.9)

is finite.

We remark that μ∂Q defined in (15.6) is not an Ahlfors regular d-

measure on ∂Q. That is, the μ∂Ω-measure of a ball of radius r > 0 cannot

be estimated from above and below, respectively, by a constant times rd.

Therefore, the space B̃2,2
α (∂Q) does not coincide with the usual Besov space

B2,2
α (∂Q) defined in [35, p. 103] or [57].

We denote by |A| the Lebesgue measure of a subset A ⊂ R
N . For f ∈

Hα(O), O ⊂ R
N open, we put

γ0f(P ) = lim
r→0

1

|B(P, r) ∩O|
∫

B(P,r)∩O
f(x) dx (15.10)

at every point P ∈ O where the limit exists. This is a typical form of

restriction operator in the spirit of Lebesgue differentiation.

The following trace theorem is a special case of [34, Theorem 1], see

also [34, Proposition 2].

Proposition 15.2. Let α be as in (15.8). B̃2,2
α (∂Q) is the trace space of

Hα(R3), i.e.,

(i) f �→ γ0f is a linear and continuous operator from Hα(R3) to B̃2,2
α (∂Q);

(ii) there exists a linear and continuous operator Ext: B̃2,2
α (∂Q)→ Hα(R3)

such that γ0 ◦ Ext is the identity operator on B̃2,2
α (∂Q).

Combined with trace and extension results between the spaces H1(R3)

and H1(Q), such as, for instance, [35, Chapter VII, Theorem 1, combined

with Chapter VIII, Proposition 1], we obtain the following Corollary.

Corollary 15.3. The space B̃2,2
1 (∂Q) is the trace space of H1(Q) on ∂Q,

i.e., there exist a continuous linear restriction operator from H1(Q) to

B̃2,2
1 (∂Q) and a continuous linear extension from B̃2,2

1 (∂Q) to H1(Q).
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For the restriction to ∂Q of a function f ∈ H1(Q), we write f |∂Q.
More classical trace and extension results cover the case of Lipschitz

boundaries, such as the sets ∂Qn := Sn ∪ Ω̃n, where Ω̃n := (Ωn × {0}) ∪
(Ωn × {1}). For the following result, see [25, 48].

Proposition 15.4. The space H
1
2 (∂Qn) is the trace space of H1(Qn) on

∂Qn in the following sense:

(i) γ0 is a continuous and linear operator from H1(Qn) to H
1
2 (∂Qn);

(ii) there exists a continuous linear operator Ext from H
1
2 (∂Qn) to H

1(Qn)

such that γ0 ◦ Ext is the identity operator in H
1
2 (∂Qn).

As usual, we write H− 1
2 (∂Qn) to denote the dual space of H

1
2 (∂Qn),

see [21, p. 8].

We pass to vector-valued functions. Consider the space

H(curl, Q) :=
{
u = (u1, u2, u3) : Q→ R

3 : u1, u2, u3 ∈ L2(Q) and

curlu ∈ L2(Q)3
}
.

Endowed with the norm ‖u‖curl,Q = (‖u‖2L2(Q)3 + ‖curlu‖2L2(Q)3)
1/2, it

becomes a Hilbert space; see, for instance, [16, 21] or [56].

We now prove a generalized vector Stokes formula. Suppose u ∈
H(curl, Q). For any v ∈ B̃2,2

1 (∂Q)3 let w ∈ H1(Q)3 be such that w|∂Q = v,

defined component-wise in the sense of Corollary 15.3, and consider the

quantity

γτu(v) :=

∫

Q

u · curl w dx−
∫

Q

w · curl u dx.

Theorem 15.5. Let Q be the Koch-type pipe.

(i) The map u �→ γτu is well defined as a bounded linear operator from

H(curl, Q) into ((B̃2,2
1 (∂Q))′)3. By setting u× n|∂Q := γτu, we have

| 〈u× n|∂Q,v〉((B̃2,2
1 (∂Q))′)3,B̃2,2

1 (∂Q)3 | ≤ c ‖u‖curl,Q ‖v‖B̃2,2
1 (∂Q)3

(15.11)

for all u ∈ H(curl, Q) and v ∈ B̃2,2
1 (∂Q)3.
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(ii) Moreover, we have

〈u× n|∂Q,w|∂Q〉((B̃2,2
1 (∂Q))′)3,B̃2,2

1 (∂Q)3

= lim
n→∞ 〈u× n|∂Qn ,w|∂Qn〉H− 1

2 (∂Qn)3,H
1
2 (∂Qn)3

(15.12)

and

〈u× n|∂Q,w|∂Q〉((B̃2,2
1 (∂Q))′)3,B̃2,2

1 (∂Q)3

=

∫

Q

u · curlw dx−
∫

Q

w · curlu dx (15.13)

for all u ∈ H(curl, Q) and w ∈ H1(Q)3.

Formula (15.12) provides a suitable approximation of u×n|∂Q in terms

of the tangential traces u × n|∂Qn along the Lipschitz boundaries ∂Qn,

see [21, §2, Theorem 2.11] or [56]. In this sense, u× n|∂Q can be seen as a

generalized tangential trace and (15.13) is a generalized Stokes formula.

Proof. Let u ∈ H(curl, Q). Given v ∈ B̃2,2
1 (∂Q)3, let w ∈ H1(Q)3 be

such that w|∂Q = v in B̃2,2
1 (∂Q)3. Then Cauchy–Schwarz together with

the inclusion H1(Q)3 ⊂ H(curl, Q) and Corollary 15.3 lead to the estimate

| 〈u× n|∂Q,w|∂Q〉 | ≤ ‖u‖L2(Q)3‖ curlw‖L2(Q)3 + ‖w‖L2(Q)3‖curlu‖L2(Q)3

≤ c ‖w‖H1(Q)3‖u‖curl,Q
≤ c ‖v‖B̃2,2

1 (∂Q)3‖u‖curl,Q.
This shows, in particular, that γτu(v) is independent from the choice of

the extension w of v, and that u×n is an element of ((B̃2,2
1 (∂Q))′)3 which

satisfies (15.11).

We now consider the sequence of domains Qn = Ωn × I, which are

bounded Lipschitz domains and satisfy Qn ⊂ Qn+1 and Q =
⋃∞
n=1Qn. By

the vector Stokes formula for Lipschitz domains, cf. [21, §2, Theorem 2.11]

or Appendix I in [56], together with the dominated convergence theorem,

we have

lim
n→∞ 〈u× n|∂Qn ,w|∂Qn〉H− 1

2 (∂Qn)3,H
1
2 (∂Qn)3

= lim
n→∞

∫

Qn

u · curlw dx−
∫

Qn

w · curlu dx

=

∫

Q

u · curlw dx−
∫

Q

w · curlu dx

= 〈u× n,w|∂Q〉((B̃2,2
1 (∂Q))′)3,B̃2,2

1 (∂Q)3
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for all w ∈ H1(Q)3 and n, where u × n|∂Qn is defined as an element of

H− 1
2 (∂Qn)

3. �

Next, consider the space

H(div, Q) :=
{
u = (u1, u2, u3) : Q→ R

3 : u1, u2, u3 ∈ L2(Q) and

divu ∈ L2(Q)
}
,

which is Hilbert when equipped with the norm ‖u‖div,Q = (‖u‖2L2(Q)3 +

‖divu‖2L2(Q))
1/2. Following the same pattern as above, one can establish a

generalized Gauss–Green formula. This can be done as in [39].

Suppose u ∈ H(div, Q). For any v ∈ B̃2,2
1 (∂Q) let w ∈ H1(Q) be such

that w|∂Q = v in the sense of Corollary 15.3 and consider

γνu(v) :=

∫

Q

u · ∇w dx+

∫

Q

(divu)w dx.

By proceeding as in [39, Theorem 3.7], we can prove the following Green

formula.

Theorem 15.6. Let Q be the Koch-type pipe.

(i) The map u �→ γνu is well defined as a bounded linear operator from

H(div, Q) into ((B̃2,2
1 (∂Q))′). By setting u · n|∂Q := γνu, we have

| 〈u · n|∂Q, v〉((B̃2,2
1 (∂Q))′),B̃2,2

1 (∂Q) | ≤ c ‖u‖div,Q ‖v‖B̃2,2
1 (∂Q)

for all u ∈ H(div, Q) and v ∈ B̃2,2
1 (∂Q).

(ii) Moreover, we have

〈u · n|∂Q, w|∂Q〉((B̃2,2
1 (∂Q))′),B̃2,2

1 (∂Q)

= lim
n→∞ 〈u · n|∂Qn , w|∂Qn〉H− 1

2 (∂Qn),H
1
2 (∂Qn)

(15.14)

and

〈u · n|∂Q, w|∂Q〉(B̃2,2
1 (∂Q))′,B̃2,2

1 (∂Q) =

∫

Q

u · ∇w dx−
∫

Q

(divu)w dx

(15.15)

for all u ∈ H(div, Q) and w ∈ H1(Q).

Similarly as before, formula (15.14) provides a suitable approximation

of u · n|∂Q by normal traces u · n|∂Qn on the Lipschitz boundaries ∂Qn,

which follows again from corresponding results in the Lipschitz case [21, §2,
Theorem 2.5].
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Remark 15.7. We point out that the results of this section hold not only

for the Koch-type pipe. Indeed, these results can be extended to every

domain Q having as boundary ∂Q a d-set or an arbitrary closed set of R3,

under the assumption that Q can be approximated by an invading sequence

of Lipschitz domains {Qn}, as in this case.

15.5. Friedrichs Inequality and Weak Solutions

We discuss (15.3) in terms of weak solutions and the Lax–Milgram theorem,

and to do so we introduce the symmetric bilinear form

a(u,w) =

∫

Q

curl(w) ·
(
1

μ
curl(u)

)

dx, u,w ∈ H(curl, Q),

where, in agreement with the above assumptions, μ is a real-valued mea-

surable function on Q satisfying μ0 ≤ μ ≤ μ1 a.e. in Q with two constants

μ0, μ1 > 0. Given J ∈ L2(Q)3, we consider the linear and continuous func-

tional on H(curl, Q), defined by

f(w) =

∫

Q

J ·w dx, w ∈ H(curl, Q).

The interpretation as an identity in ((B̃2,2
1 (∂Q))′)3 gives a rigorous

meaning to the boundary condition u × n = 0 in (15.3). To encode it

in a suitable function space, we consider the space H0(curl, Q), defined as

the closure in H(curl, Q) of all compactly supported smooth vector fields

C∞
c (Q)3.

Remark 15.8. Taking into account the boundary condition in (15.3), the

natural space would be Ker γτ := {w ∈ H(curl, Q) : n × w = 0 on ∂Q}.
The inclusion H0(curl, Q) ⊂ Ker γτ follows from (15.13). The reverse inclu-

sion is not straightforward, and to keep the present note simple we leave

its investigation to a later forthcoming paper.

If we agree to say that a weak solution in H0(curl, Q) of the equation

curl

(
1

μ
curl(u)

)

= J (15.16)

is a vector field u ∈ H0(curl, Q) such that a(u,v) = f(v) for all v ∈
H0(curl, Q), then test vector fields v can in particular be recruited from

Ker(curl, Q) := {w ∈ H0(curl, Q) : curlw = 0},
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so that a weak solution of (P ) can only exist if J satisfies the compatibility

condition

f(v) =

∫

Q

J · v dx = 0 ∀v ∈ Ker(curl, Q). (15.17)

Moreover, since we are also interested in the uniqueness of weak solutions,

we restrict ourselves to the quotient space H0(curl, Q)/Ker(curl, Q), which

by a simple quadratic variational problem, [21, Corollary 1.2], involving the

quotient space norm, see [30, p. 94–95] or [44, Lemma 3.5], is seen to be

isometrically isomorphic to the space

H0,⊥(curl, Q) :=

{

u ∈ H0(curl, Q) :

∫

Q

u ·w dx = 0

for all w ∈ Ker(curl, Q)

}

. (15.18)

A second requirement to be incorporated in the function spaces is that

a solution u of (P ) should be divergence free. We consider the space

H0(div, Q), defined as the completion in H(div, Q) of C∞
c (Q)3, and its

subspace

Ker(div, Q) := {u ∈ H0(div, Q) : divu = 0}.
This discussion suggests that one possible way to phrase (P ) rigorously

could be to look for a weak solution to equation (15.16) in the space

H0,⊥(curl, Q)∩ Ker(div, Q). The latter space admits a much simpler

description. A proof of the following fact can be found at the end of this

section.

Proposition 15.9. A vector field u ∈ H0(curl, Q) ∩H0(div, Q) is an ele-

ment of H0,⊥(curl, Q) if and only if divu = 0.

As a next step of simplification, the intersection of the spaces

H0(curl, Q) and H0(div, Q) can be determined in a standard way, see [7,

Theorem 2.5] or [21, Lemma 2.5]. As a by-product, we obtain the following

Friedrichs inequality [55], sometimes also referred to as a Maxwell inequal-

ity [49], which provides a suitable coercivity bound for our problem. As

usual, H1
0 (Q) denotes the closure of C∞

c (Q) in H1(Q).

Theorem 15.10. We have H0(curl, Q) ∩H0(div, Q) = H1
0 (Q)3, and there

exists a constant C > 0 such that, for any u ∈ H1
0 (Q)3, we have

‖u‖H1(Q) ≤ C (‖curl u‖L2(Q)3 + ‖div u‖L2(Q)). (15.19)
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In particular, we have ‖u‖curl,Q ≤ C ‖curl u‖L2(Q)3 for all u ∈ H1
0 (Q)3 ∩

Ker(div, Q).

Proof. We follow the cited references to prove H0(curl, Q)∩H0(div, Q) ⊂
H1

0 (Q)3, the other inclusion is trivial. Given u ∈ H0(curl, Q) ∩H0(div, Q)

consider the trivial extension of u to R
3,

ũ =

⎧
⎨

⎩

u in Q,

0 in R
3 \Q.

Since u ∈ H0(curl, Q) ∩ H0(div, Q), it evidently follows that curl ũ ∈
L2(R3)3 and div ũ ∈ L2(R3). By definition ũ has compact support (in the

distributional sense), so that by Schwartz’ Paley–Wiener theorem (see [31,

Theorem 7.3.1]) the Fourier transform û of ũ is analytic. The above prop-

erties can be rewritten algebraically as

(ξ2û3 − ξ3û2, ξ3û1 − ξ1û3, ξ1û2 − ξ2û1) ∈ L2(R3)3 and

ξ1û1 + ξ2û2 + ξ3û3 ∈ L2(R3).

It then follows that, for i, j = 1, 2, 3,

‖ξiûj‖L2(R3) ≤ ‖curl ũ‖L2(R3)3 + ‖div ũ‖L2(R3). (15.20)

Note that for instance (ξ1û2−ξ2û)2 ≥ (ξ1û2)
2−[(ξ1û1)2+(ξ2û2)

2]+(ξ2û1)
2,

and by rearranging and summing up we obtain (15.20). It follows that

‖∇u‖L2(Q)3 ≤ ‖curlu‖L2(Q)3 + ‖divu‖L2(Q).

Hence u ∈ H1
0 (Q)3, and using Poincaré’ inequality for Q we obtain (15.19).

�

We say that u is a weak solution of (P ) if u ∈ H1
0 (Q)3 ∩ Ker(div, Q)

and a(u,v) = f(v) for all v ∈ H1
0 (Q)3 ∩Ker(div, Q).

Existence and uniqueness of a solution are now easily seen from the

Lax–Milgram theorem (see [52]) together with Theorem 15.10.

Theorem 15.11. For any J ∈ L2(Q)3 satisfying (15.17) there exists a

unique weak solution u of problem (P). Moreover, there exists a positive

constant C = C(Q,μ0, μ1) such that

‖u‖curl,Q ≤ C‖J‖L2(Q)3 .

The rest of this section is devoted to the proof of Proposition 15.9.

The first observation follows from (15.15) by the same arguments as used
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to show [21, Theorem 2.6], we recall them for convenience. Let Ker γν :=

{w ∈ H(div, Q) : n ·w = 0 on ∂Q}.
Theorem 15.12. We have H0(div, Q) = Kerγν .

Proof. It suffices to show that C∞
c (Q)3 is dense in Ker γν . Let l ∈ (Ker γν)

′

and let v ∈ Ker γν be such that

〈l,u〉(Ker γν)′,Kerγν
=

∫

Q

v · u dx+

∫

Q

ṽ divu dx, u ∈ Ker γν ,

where ṽ = div v. Suppose now that l ≡ 0 on C∞
c (Q)3. Then v = ∇ṽ in

distributional sense on Q, and since v ∈ L2(Q)3, it follows that ṽ ∈ H1(Q).

By (15.15), therefore, we have

〈l,u〉(Ker γν)′,Kerγν
= 〈u · n|∂Q, ṽ|∂Q〉(B̃2,2

1 (∂Q))′,B̃2,2
1 (∂Q) = 0, u ∈ Ker γν .

This implies the desired density, see [21, p. 26, property (2.14)]. �

The second item is an adaption of [21, Theorem 2.7] about the comple-

ment of Ker(div, Q), seen as a closed subspace of L2(Q)3. Again, we briefly

recall the classical proof.

Theorem 15.13. The space L2(Q)3 admits the orthogonal decomposition

L2(Q)3 = Ker(div, Q)⊕ {∇q : q ∈ H1(Q)
}
.

Proof. The space X :=
{∇q : q ∈ H1(Q)

}
is a closed subspace of L2(Q)3,

so it suffices to show that X⊥ = H := Ker(div, Q). If u ∈ H , then by

(15.15) and Theorem 15.12 we have
∫

Q

u · ∇q dx = 0, q ∈ H1(Q), (15.21)

so that H ⊂ X⊥. If u ∈ L2(Q)3 satisfies (15.21), then taking q ∈ C∞
c (Q)3

implies divu = 0 and in particular, u ∈ H(div, Q), so that (15.15) may be

applied and yields u ·n = 0, i.e., u ∈ H0(div, Q) and therefore u ∈ H . This

shows X⊥ = H . �

Adaptions of [21, Theorem 2.9 and Corollary 2.9] provide a suitable

version of the classical fact that a curl free differentiable vector field in a

simply connected domain is a gradient field. We interpret curl as an operator

on L2(Q)3 in the sense of distributions on Q.

Theorem 15.14. A vector u ∈ L2(Q)3 satisfies curlu = 0 if and only if

there exists a function q ∈ H1(Q)/R such that u = ∇q.
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Proof. If u = ∇q with some q ∈ H1(Q) then clearly curlu = 0.

Suppose u ∈ L2(Q)3 is such that curlu = 0. Let ũ be the extension of

u to R
3 by zero on Qc and let (
ε)ε>0 ⊂ C∞

c (R3) be a standard mollifier.

Then we have curl
ε ∗ ũ = 
ε ∗ curl ũ and 
ε ∗ ũ ∈ C∞
c (R3)3 for any ε > 0,

and limε→0 
ε ∗ ũ = ũ in L2(Q)3.

Let (On)n be an increasing sequence of simply connected Lipschitz

domains On such that On ⊂ Q for all n and Q =
⋃∞
n=1On. Because the

two-dimensional snowflake domain can be exhausted by increasing simply

connected Lipschitz domains whose closures are contained in the snowflake

domain, see for instance [27, Section 6], it follows easily that such a sequence

(On)n exists.

If now n is fixed and ε > 0 is small enough then
⋃
x∈On

B(x, ε) ⊂ Q

and therefore curl 
ε ∗ ũ = 0 in On. Consequently, there is a function qε ∈
H1(On) such that 
ε ∗ ũ = ∇qε in On. Since limε→0∇qε = ũ ∈ L2(On)

3,

the limit qn := limε→0 qε exists in H1(On)/R, and clearly u = ∇qn in On.

Varying n, we have ∇qn = ∇qn+1 in On, i.e., qn − qn+1 is constant on

On. We can choose these constants so that qn+1 = qn in On for all n ≥ 1,

and then consistently define q := qn on On for all n ≥ 1 to obtain a function

q with the desired properties. �

Theorem 15.14 implies a description of Ker(curl, Q).

Corollary 15.15. We have

Ker(curl, Q) =
{
w ∈ H0(curl, Q) : w = ∇q for some q ∈ H1(Q)

}
.

We can now easily prove Proposition 15.9.

Proof. If u ∈ H0(curl, Q)∩H0(div, Q) is in H0,⊥(curl, Q), then, by (15.15)

and Corollary 15.15, it satisfies
∫

Q

(divu)q dx =

∫

Q

u · ∇q dx = 0

for all q ∈ H1(Q) such that ∇q ∈ H0(curl, Q), and in particular, for all

q ∈ C∞
c (Q), which implies divu = 0 in L2(Q). The opposite inclusion

follows similarly from (15.15). �

Remark 15.16. Using [61, Theorem 3], one can show thatH1
0 (Q) coincides

with the space of all elements of H1(Q) having zero trace on ∂Q. With

Remark 15.8 and Theorem 15.12 in mind, one can therefore view Theorem

15.10 as a rough paraphrase of the statement that if in the formal identity
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u|∂Q = n(u · n)|∂Q + n× u|∂Q both summands on the right-hand side are

zero, then we have u|∂Q = 0 in the sense of traces.

15.6. Weak Solutions and Hölder Regularity in 2D

We now reduce the three-dimensional problem (P ) to a magnetostatic prob-

lem in 2D. If J(x) = (0, 0, J(x1, x2)) and μ = μ(x1, x2), then it is reasonable

to assume that also the magnetic induction B does not depend on the x3
coordinate. Therefore, it is possible to choose a magnetic vector potential of

form u = (0, 0, u(x1, x2)). Problem (P ) then reduces to finding a function

u = u(x1, x2) on Ω such that

(P̄ )

⎧
⎨

⎩

− div

(
1

μ
∇u
)

= J in Ω,

u = 0 on ∂Ω.

(15.22)

From this two-dimensional problem, we obtain a magnetic induction of form

B = (ux2 ,−ux1, 0). The domain Ω = {(x1, x2) ∈ R
2 : (x1, x2, 0) ∈ Q} is

a cross-section of Q, i.e., Ω × {0} = Q ∩ {x ∈ R
3 : x3 = 0}, and the

differential operator ∇u (applied to the scalar function u) operates only on

the variables x1 and x2, i.e., ∇u = (ux1 , ux2).

The energy form associated with (P̄ ) is

a(u, v) =

∫

Ω

1

μ(x)
∇u∇v dx, u, v ∈ H1

0 (Ω), (15.23)

where, as usual, H1
0 (Ω) denotes the closure in H1(Ω) of the smooth func-

tions with compact support in Ω.

Proposition 15.17. For every given J ∈ L2(Ω), there exists a unique weak

solution in H1
0 (Ω) of problem (P̄ ), i.e., a function u ∈ H1

0 (Ω) such that

a(u, v) =

∫

Ω

J v dx, v ∈ H1
0 (Ω).

We recall some regularity results for the weak solution of problem (P̄ ).

Proposition 15.18. Suppose that μ is constant. Then the weak solution u

of problem (P̄ ) belongs to W 1,3
0 (Ω) ∩ C0,1/3(Ω). Moreover ∇2u ∈ L2(Ω, d),

where d is the distance from the boundary. In particular, it follows that

B ∈ (L3(Q))3.
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Here W 1,3
0 (Ω) and C0,1/3(Ω) denote, respectively, the usual Sobolev

space and the space of Hölder continuous functions of exponent 1
3 , while

∇2u denotes the Hessian of u. The statement ∇2u ∈ L2(Ω, d) means that
∫

Ω

|∇2u|2d(x, ∂Ω)2 dx <∞.

For the proof of Proposition 15.18, we refer to Theorem 1.3 (part B) and

Proposition 7.1 in [50] (which is also related to [51]). These references also

explain the appearance of the exponents 1/3 and 3 in this proposition in

relation to the geometry of the Koch snowflake. The proof of Nystrom’s

result is very technical and it is strictly related to the Koch snowflake and

to certain sophisticated estimates. We mentioned this result only for the

sake of completeness, since we do not use it for our results in the paper and

do not need this type of a deeper analysis.

We now consider the approximating problems on the pre-fractal domains

Ωn introduced in Section 15.2.

Let us assume that μ is a positive constant and J ∈ L2(Ω). For every

fixed n ∈ N, we consider the following problems (P̄n):

(P̄n)

⎧
⎪⎨

⎪⎩

−div
(
1

μ
∇un

)

= J in Ωn,

un = 0 on ∂Ωn.

(15.24)

We set H1
0 (Ωn) := {w ∈ C1

0 (Ω) : suppw ⊂ Ωn}
H1(Ω)

. For every un, v ∈
H1

0 (Ωn), let

an(un, v) =

∫

Ωn

1

μ
∇un∇v dx

be the energy form associated with problem (P̄n).

Proposition 15.19. For every given J ∈ L2(Ω), there exists a unique weak

solution un ∈ H1
0 (Ωn) of problem (P̄n).

The following result states the convergence of the pre-fractal solutions

un to the solution u of problem (P̄ ) in a suitable sense. We recall that,

for any compact subset E ⊂ Ω, its relative capacity with respect to Ω is

defined by

cap2,Ω(E) = inf{‖ϕ‖2H1(Ω) : ϕ ∈ C∞
c (Ω) and ϕ ≥ 1 on E},

see [47, p. 531].
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Theorem 15.20. Let u and un be the solutions of problems (P̄ ) and (P̄n),

respectively. Then un strongly converges to u in H1
0 (Ω) as n→∞.

Proof. The result follows from [47] since Ωn is an increasing sequence of

sets invading Ω and cap2,Ω(Ω
′\Ωn) → 0 when n → ∞ for any compact

subset Ω′ of Ω. �

15.7. Numerical Approximation in 2D

In this section, we perform a numerical approximation of problem (P ) by

a finite element method. For the sake of simplicity, we put μ = 1. Hence,

problem (P̄n) reduces to the following form:

(P̃n)

⎧
⎨

⎩

−Δun = J in Ωn,

un = 0 on ∂Ωn.
(15.25)

In order to obtain the optimal rate of convergence of the numerical

scheme, we use the theory of regularity in weighted Sobolev spaces devel-

oped by Grisvard. Let us introduce the weighted Sobolev space

H2
η (Ωn) = {v ∈ H1(Ωn) : rη Dβv ∈ L2(Ωn), |β| = 2},

where r = r(x) is the distance from the vertices of ∂Ωn whose angles are

“reentrant”.

This space is endowed with the norm

‖u‖H2
η(Ω) =

⎛

⎝‖u‖2H1(Ω) +
∑

|β|=2

∫

Ω

r2η|Dβu(x)|2 dx
⎞

⎠

1
2

.

From Kondrat’ev results [36; 33, Proposition 4.15] and Sobolev embed-

ding theorem we deduce the following.

Theorem 15.21. Let un be the weak solution of problem (P̃n). Then un ∈
H2
η (Ωn) for η > 1

4 . Moreover, un ∈ Hs(Ωn) for s < 7
4 and un ∈ C0,δ(Ωn)

for δ = 3
4 − ε for every ε > 0.

We point out that un /∈ H2(Ωn) since it has a singular behavior in

small neighborhoods of the reentrant corners of ∂Ωn. Hence, we have to

construct a suitable mesh compliant with the so-called Grisvard conditions

[24] in order to obtain the optimal rate of convergence. We refer to [9, 10],

where such mesh algorithm was developed (see [11] for the case of fractal
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mixtures). We point out that this mesh algorithm produces a sequence of

nested refinements.

The mesh refinement process generates a conformal and regular family

of triangulations {Tn,h}, where h = max{diam(S), S ∈ Tn,h} is the size

of the triangulation, which is also compliant with the Grisvard conditions

(see [10, Section 5] for the case of interest). We define the finite-dimensional

space of piecewise linear functions

Xn,h := {v ∈ C0(Ωn) : v|T ∈ P1 ∀T ∈ Tn,h}.
We set Vn,h := Xn,h ∩H1

0 (Ωn). Hence Vn,h is a finite-dimensional space of

dimension Nh = {number of inner nodes of Tn,h}. The discrete approx-

imation problem is the following: given J ∈ L2(Ωn), find un,h ∈ Vn,h
such that

(∇un,h,∇vh)L2(Ωn) = (J, vh)L2(Ωn) ∀vh ∈ Vn,h. (15.26)

The existence and uniqueness of the semi-discrete solution un,h ∈ Vn,h
of the variational problem (15.26) follows from the Lax–Milgram theorem

(see, e.g., [52]).

Theorem 15.22. Let un be the solution of problem (P̃n) and un,h be the

solution of the discrete problem (15.26). Then

‖un − un,h‖2H1
0 (Ωn)

≤ C h2‖J‖2L2(Ωn)
, (15.27)

where C is a suitable constant independent of h.

For the proof, see [24, Theorem 8.4.1.6].

We now show some numerical simulations for problem (P̃n). We choose

the source J as follows:

J(x1, x2) = 105 e−5((x1−x̄1)
2+(x2−x̄2)

2),

where (x̄1, x̄2) are the center coordinates of the domain (Fig. 15.3).

In our simulations, Ω0 is the circle of radius 1
2 , while Ωn, n = 1, . . . , 5,

are the domains having as boundary the nth approximation of the Koch

snowflake. We suppose that all the domains are centered at the same point.

Denoting by un the solution of problem (P̃n), we define the vector un =

(0, 0, un) and we compute the magnetic field B generated by the current

J := (0, 0, J(x1, x2)). In other words, B = curlun = ∇× un.

In Table 15.1, we write in the second column the value of the L∞-norm

of B in Ωn, while in the third column we write the length �(n) of the
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Fig. 15.3. The source J .

Table 15.1. The values obtained in
our simulations.

Ωn ‖B‖∞ �(n)

Ω0 17.946 π
Ω1 26.688 4

Ω2 35.575 16
3

Ω3 47.124 64
9

Ω4 63.504 256
27

Ω5 85.43 1024
81

boundary ∂Ωn. In the first column, we write the domain we consider in the

simulation.

As one can notice from Table 15.1, the magnetic field increases as the

length of the boundary of the domain increases.

Remark 15.23. We note that our numerical results (see Fig. 15.4) compare

well with numerical results of Lapidus et al. [14, 22, 42] on eigenfunctions

of the scalar Dirichlet Laplacian in the Koch snowflake domain, and with

some earlier physics results, such as [54]. In particular, one can expect that

the localization and other properties of the electromagnetic fields can be

analyzed using similar methods as for the scalar Laplacian (see, for instance,
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Fig. 15.4. The magnetic field generated by J in Ω2, Ω3, Ω4.
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[18, 41, 43, 45, 59, 60]). This connection lies outside of the scope of our

chapter and will be the subject of future research.
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