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Transmission problems for the fractional

p-Laplacian across fractal interfaces
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Abstract

We consider a parabolic transmission problem, involving nonlinear fractional op-
erators of different order, across a fractal interface X. The transmission condition
is of Robin type and it involves the jump of the p-fractional normal derivatives
on the irregular interface. After proving existence and uniqueness results for the
weak solution of the problem at hand, via a semigroup approach, we investigate

the regularity of the nonlinear fractional semigroup.
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Introduction

Aim of this paper is to study a parabolic nonlocal transmission problem of the form
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(902 (t, ) + (A, ur () = i) in (0,T] x O,
G2 (t,x) + (=Ap)8us(t, x) = fo(t, ) in (0,7] x Qy,
U = Wug on (0,7] x 3,
(P) { N+ blug|P2uy = 0 on (0,7] x &,
NE =, — on (0,T] x 09,
up (0, 2) = uf(x) in Q)
L 12(0,7) = up(2) in Q.

where  C R? is an open bounded polygonal domain and ¥ is a fractal interface of
Koch type which divides € in two subdomains €; and Qy (see Figure 1). Here p > 1,
(—Ap)gl and (—A,)8, are the regional fractional p-Laplacians on €; and €, of order
f and « respectively (see Section 2) and «, 5 € (0,1) such that o > f. /\/',],Dl(l_a) is the
(o, p)-fractional normal derivative on 992 and N'u denotes the jump of the p-fractional
normal derivatives, to be suitably defined (see Section 3). w, b, fi, f2, u{ and u9 are
given functions.

There is a huge literature on fractional operators. This is due to the fact that they
describe mathematically many physical phenomena which exhibit deviations from stan-
dard diffusion. This is the so-called anomalous diffusion, and it is an important topic
not only in physics, but also in finance and probability (see [1, 22, 33, 35]).

This diffusion is present in several models appearing in the literature. Among the
others, we mention the fractional Brownian motion, the continuous time random walk,
the Lévy flight as well as random walk models based on evolution equations of single
and distributed fractional order in time and/or space [13, 19, 32, 35, 37].

The study of transmission problems involving linear fractional diffusion operators has
been considered for the first time in the case of a Lipschitz interface in [18] (see also
[16, 17]). As to the case of irregular interfaces, the first examples in the literature of
transmission problems across fractal interfaces for linear second order operators with
second order transmission conditions can be found in [27, 31, 30]. From the physical
point of view, these latter problems describe, in electrostatics and magnetostatics, the
heat flow across highly conductive thin layers (see [34] and the references listed in).
Further examples can be found in [11].

As to the case of fractional operators in irregular domains, Robin-Venttsel’-type bound-
ary value problems for the regional fractional p-Laplacian in extension domains with

highly irregular boundary have been recently investigated in [8], and their approxi-
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mation in terms of smoother problems has been studied in [10] (see [9] for the linear
case).

In the present paper, we study problem (]5), formally stated above, by a semigroup
approach. We firstly prove existence and uniqueness of the “strong” solution of the
associated abstract Cauchy problem (see Theorem 3.3), then we prove that such strong
solution actually solves problem (P) in a suitable weak sense (see Theorem 3.6). A key
issue is to prove that the jump condition on ¥ is satisfied. These results are achieved by
a suitable characterization of the subdifferential of the nonlinear functional associated
to the problem and by a p-fractional Green formula for irregular domains (see Theorem
2.2).

Finally, in Theorem 4.7 we prove the ultracontractivity of the associated semigroup.
This result deeply relies on a fractional logarithmic Sobolev inequality adapted to the
present framework (see Proposition 4.1).

It turns out that, under our hypotheses on o and /3, the dominant diffusion is the one
in €2;. The case when o < 8 is also investigated in Section 5.

The paper is organized as follows.

In Section 1 we introduce the domain {2 and the functional setting and we recall some
known trace and embedding results.

In Section 2 we recall the definition of regional fractional p-Laplacian and we state a
p-fractional Green formula for irregular domains.

In Section 3 we prove via semigroup theory that problem (P) admits a unique solution
in a suitable weak sense.

In Section 4 we prove that the semigroup associated to our problem is ultracontractive.

In Section 5 we consider the case o < 8 and we discuss some open problems.

1 Preliminaries

1.1 Geometry and functional spaces

Given P, Py € RY, in this paper we denote by |P — Py| the Euclidean distance in RY
and by B(Py,r) = {P € RN : |P — Py| < r}, for r > 0, the Euclidean ball. We also
denote by Ly the N-dimensional Lebesgue measure.

We denote by ¥ the Koch snowflake, i.e. the union of three co-planar Koch curves K7,
K5 and K3 (see [11]). We assume that the junction points A;, A3 and Ajs are the vertices
of a regular triangle with unit side length, i.e. |A; — A3| = |A1 — A5| = |45 — A5| = 1.
For i = 1,2, 3, K; is the uniquely determined self-similar set with respect to a family W
of four suitable contractions wﬁi), . ,wff), with respect to the same ratio 3 (see [17]).

The Hausdorff dimension of the Koch snowflake is given by df = iﬁ—g. One can define,

3



in a natural way, a finite Borel measure y supported on K by

fos 1=+ fl2 + H, (1.1)

where 11; denotes the normalized dy-dimensional Hausdorff measure restricted to K;,
fori=1,2,3.
In this paper we consider a bounded open polygonal domain Q C R? (for simplicity,
one can take a rectangle) which is divided in two subdomains €2; and €, by the Koch
snowflake ¥. More precisely, @ = Q; Uy, = Ny, 00 =X and 02 =T UX
(see Figure 1).

Figure 1: The domain ).

Let G (resp. S) be an open (resp. closed) set of RY. By LP(G), for p > 1, we denote
the Lebesgue space with respect to the Lebesgue measure Ly, which will be left to
the context whenever that does not create ambiguity. By LP(0G, ) we denote the
Lebesgue space on 0G with respect to a Hausdorff measure p supported on 0G. By
D(G) we denote the space of infinitely differentiable functions with compact support
in G. By C(S) we denote the space of continuous functions on S.

By W*?(G), where 0 < s < 1, we denote the fractional Sobolev space of exponent s.

We point out that it is a Banach space if we endow it with the following norm:

U\x
[lfyerig) = Il + [ [ M0 dL (o)Lt

gxg
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Moreover, we denote by |u|ys»(g) the seminorm associated to ||u||ws»(g) and, for u,v €
W#P(G), we set

_ u(@) = u(y) P> (u(z) — u(y))(v(z) — v(y)) .
(U, v)sp = // | dLy(z)dLn(y).

T — y|N+SP

Gxg

In the following we will denote by |A| the Lebesgue measure of a measurable subset
A CRY. For fin W*P(G), we define the trace operator ~y, as

wf@) =l e [ ) aen) (12)

B(z,r)NG
at every point x € G where the limit exists. The limit (1.2) exists at quasi every z € G
with respect to the (s, p)-capacity (see [2], Definition 2.2.4 and Theorem 6.2.1 page
159). In the sequel we will omit the trace symbol and the interpretation will be left to
the context.

We recall two trace theorems, one for polygonal domains and one for irregular domains.

We first state the trace theorem in the polygonal case. For the proof we refer to [0].

Proposition 1.1. Let % < s <1 and let G be a polygonal domain. Then WS*%’p(ag)
is the trace space to 0G of W*P(G) in the following sense:

(i) Yo is a continuous and linear operator from W*P(G) to WS*%»P(ag),-

11) there exists a continuous linear operator Ext from WS_%’p 0G) to W*3P(G) such
D

that o o Ext is the identity operator in WS*%»P(ag).

We now state the trace theorem for the case of a domain with fractal boundary. We
recall that the Koch snowflake is a dg-set and the measure puy is a dy-measure in the

following sense (for more details, see [25]).

Definition 1.2. A closed nonempty set M C RY is a d-set (for 0 < d < N) if there
exist a Borel measure p with supppu = M and two positive constants ¢, and co such
that

cr® < u(B(z,r) N M) < cor? Vo e M. (1.3)

The measure p s called d-measure.
From now on we denote the ds-measure on X simply by .
We now recall the definition of Besov space specialized to our case. For generalities on

Besov spaces, we refer to [25].
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Definition 1.3. Let F be a d-set with respect to a d-measure p and v = s — %i.

BZY”’(]:) 18 the space of functions for which the following norm is finite:

Ju(z) — u(y)”
[l = Il + [ [ 220 )t

lz—y|<1

Let p’ be the Holder conjugate exponent of p. In the following, we will denote the dual
of the Besov space BI'P(F) with (BZP(F))'; we point out that this space coincides with
the space Bp P (F) (see [20]).

We now State the trace theorem to the fractal set 3. For the proof, we refer to [25,
Theorem 1, Chapter VIIJ.

Proposition 1.4. Let F denote Qy or Qy. Let =% < s < 1 and y(s) = s — = df > 0.

Bp(};)(E) is the trace space of W*P(F) in the followmg sense:

(i) o is a continuous linear operator from W*P(F) to BI% (¥);

(ii) there exists a continuous linear operator Ext from Bs’(i)(E) to W*P(F) such that
o o Ext is the identity operator in B’;’(’Z)(E).

From now on we set

2 d;
p

v(s) =5 — > 0. (1.4)

If u is a suitable function defined on the whole €, from now on we set u; :=
i=1,2.

We point out that, if u € LP(Q2), then it follows that uy € L(Q) and uy € LI(§2).
Hence, for 1 < ¢ < oo, we have that

[ullg == [l 7o) = lurllzaqy) + lu2llzoq, (1.5)
If ¢ = o0, it holds that
ulloo = [lull (@) = max {|Jurl|o(@y), [luzllze() } -
We now introduce the following Sobolev-type space:
Wg’B(Q) = {u € LP(Q) : up € WHP(Q), ug € W*P(Qy) and u; = wuy on X}, (1.6)

where w is a suitable smooth function defined on ¥. We endow this space with the

following norm:

I Hwaﬁ(m HuHLp(Q + Gy, @) T ’u2‘€va,p(92)- (1.7)

6



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Finally, we recall that the set {2; belongs to the more general class of the so-called (¢, ¢)
domains having as boundary a d-set (for all the details we refer to the seminal paper
of Jones [23]). € is a bounded (€,) domain with boundary an arbitrary closed set
in the sense of [24]. Such domains, even though they can be very irregular, enjoy the
following important extension property; for details, we refer to Theorem 1, page 103

and Theorem 3, page 155 in [25].

Theorem 1.5. Let 0 < s < 1. There exists a linear extension operator

Ext: W*P(Qy) — WHP(R?) such that
HgthH%/s,p(Rz) < C_(SH'LUH?;Vs,p(Qly (1.8)

with Cy depending on s.

The domain ), satisfies an analogous extension property, we refer to Theorem 1 in [2/]
for the details.

Domains satisfying property (1.8) are the so-called W*P-extension domain.

1.2 Sobolev embeddings

We now recall some important Sobolev-type embeddings for fractional Sobolev spaces
on W#P-extension domains, see [12, Theorem 6.7] and [25, Lemma 1, p. 214] respec-
tively.

From now on, we denote the Hausdorff dimension of ¥ simply by d. We set

" 2p
pi(s) = s

Theorem 1.6. Let s € (0,1) and p > 1 be such that sp < 2. Let Q C R? be a
WeP-extension domain. Then W*P(Q) is continuously embedded in L1(S2) for every
q € [1,p*(s)], i.e. there exists a positive constant C' = C(s,p,€)) such that, for every
u e WP(Q),

lullzagey < Cllullwes oy (1.9)

We point out that for every 0 < s < 1 such that sp < 2 it holds p*(s) > p.
From now on, let o, 8 € (Q%d, 1) be two real numbers such that o > 5. We recall that if
u € WeP(Q), then uy € WPP(Qy) and uy € W*P(Qs); from Theorem 1.6, these spaces
are continuously embedded in LP"(®)(Q;) and in LP"(®)(€),) respectively. Moreover, it
holds that p*(a) > p*(3), hence LP"(¥)(Qy) < LP*¥)(Qy,); hence, we have the following
continuous embedding:

Worl(Q) — L7 A)(Q). (1.10)
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We now recall the definition of v(s) given in (1.4). If u € W3#(Q), from Proposition
1.4, we have that
Your € BI () (1.11)

and
Yous € BYL(X). (1.12)

We point out that, since 023 = I'UX and I' is Lipschitz, from Proposition 1.1 we have
that us|r € Wa_%’p(F).

2 The regional fractional p-Laplacian and the

Green formula

We recall the definition of the regional fractional p-Laplacian. We refer to [10] and the
references listed in.
Let s € (0,1) and p > 1. For G C RY | we define the space

p—1
LPHG) == { u: G — R measurable : / [u(2)] dLy(z) < oo

(1 fa|)Arep
g
The regional fractional Laplacian (—A,)g is defined as follows, for « € G:

(=8, gu(a) = CrpP V. [ Ju(o) - a(y)p2 D=0 4
g

’x _ y’NJrsp
(2.1)
. _oU(T) —uly
= Cvp,s lim u(x) — u(y)l? 2% dLn(y),

{yeg : |z—y|>e}

provided that the limit exists, for every function u € £¢~1(G). The positive constant

Cn p,s is defined as follows:

S2231’\(ps+p—2|—N—2 )

)

Civ s =
A (- s)

where I' is the Euler function.

We now introduce the p-fractional normal derivative on irregular set. We remark that
the fractional normal derivative for smooth domains has been introduced in [20, 21]

for the case p = 2 and it has then been extended to the case p > 2 in [10].

We recall a p-fractional Green formula for domains with fractal boundary, which, in

turn, allows us to define the p-fractional normal derivative on non-smooth domains,

8
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see [8, Section 2]. A key tool is the use of a limit argument since the fractal domain €y
(resp. §22) can be approximated by an increasing (resp. decreasing) sequence of pre-
fractal domains Q7 (resp. QF). We point out that the sequence of pre-fractal domains

QF for ¢ = 1,2, consists of polygonal non-convex domains.

For i = 1,2, we define the space
V((=Ap)a, ) == {u € WHP(Q) 1 (=4p)q,u € L”(€;) in the sense of distributions},
which is a Banach space equipped with the norm

ullvamz,00 = llullwer@) + [1(=2p)3,ull L q,)-
Analogously, for every n € N, we define the space V((—=A,)gn, {2}') on Q' as follows:
V((=8p)on, ) = {u € W*P(Q) : (=Ap)onu € L7 (Q") in the sense of distributions}.

We now give a notion of p-fractional normal derivative on the boundary of the pre-
fractal domains €27.

Definition 2.1. Let n € N and u € V((=Ap)gn, QF) for either i =1 ori = 2. We

say that u has a weak p-fractional normal derivative in (WS_%’p@Q?))’ if there exists

g€ (W#%’p(ﬁﬁzﬂ))’ such that

<g’ v>(WS*%aP(aQ?))/’WS*%vP(aﬂzz) - /<_Ap)f2;"‘u v d£2 (22)
Qi
Cops o (u(@) —u(y))(v(z) —v(y))
+ " / lu(z) — u(y)|? z — gl ALy (x)dLy(y)

QF xQF

for every v € WP(QF). In this case, g is uniquely determined and we call

C'p,s/\/;f/(l_s)u := g the weak p-fractional normal derivative of u, where

e}

(p — 1)017])75 / ’t — 1|(P—2)+1—Sp _ (t Vi 1)p—sp—1

O == - (=2 - 1) v

dt.

We point out that, when s — 17 in (2.2), we recover the quasi-linear Green formula

for Lipschitz domains [(].

By proceeding as in the proof of Theorem 2.2 in [3] (see also Theorem 3.2 in [10]), we
can prove the following “fractional Green formula” for the fractal domain €2;. We can

proceed analogously for the fractal domain 2.
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Theorem 2.2 (Fractional Green formula). Let v(s) be as defined in (1.4). There exists
a bounded linear operator N&' '™ from V((=Ap)a,: ) to (BYE)(2))"

The following generalized Green formula holds for all u € V((—A,),,21) and v €
Ws,p(Ql)_.

Cs (NP'O=3)y, :—/ —A)) S uvdl
g < 8 >(B§'(§>(E))’733’(2)(E) p (=2, ?
(2.3)
Cops L (u(@) — u(y))(v(z) — v(y))
+ 22 [ ju) - uip A =) 4 o))
Ql XQl
We remark that, when s — 17 in (2.3), we recover the Green formula stated in [31] for

fractal domains. We refer the reader to [10, Remark 3.3] for the detailed proof.

3 Existence and uniqueness results

3.1 The energy functional

From now on, let p > 2 and let b € L*>°(092) be a strictly positive bounded function on
0%). We define the space
H = L*(Q).

We point out that H is a Hilbert space with the scalar product (u,v)g := /ulvl dLo+

O
/ U2V dLQ

Q2
We recall the fractional transmission problem formally stated in the Introduction:

(9011, 2) + (A, ui () = i) in (0,7] x O,
ez (t, ) + (—Ap)a,ua(t, ) = folt,x) in (0,T] x O,
U = Wiy on (0,7] x X,
(P) $ Nu+ blus|P~2uy = 0 on (0,7] x 3,
NP9, — 0 on (0,7] x T,
ui (0, 2) = uf(x) in Q,
| u2(0,7) = u3(2) in Q,

where u € WeF(Q), w € Bf¥(X) for > ~(f) such that § + a — 5 > %, NEE=2) g
the (a, p)-normal derivative defined by the Green formula (2.3), u; := ulg, for i = 1,2

10
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(analogously for f;) and f; and u? are given functions for i = 1,2.
We remark that, under the hypotheses on 0, we have that wu, € BJf (X), see [12].

As stated in the Introduction, Nu is the jump of the nonlinear fractional normal
derivative in a suitable weak sense. Let u € W*?(Q). Then, from Theorem 2.2,
Ny =4, and Np * s are defined by (2.3) as elements of the dual spaces of Bpp)(Z)
and BY7) (X) respectively.

Since by hypothesis a > , we have that BY" (X) C Bs’(%)(E). Hence, for u,v €

v(a)
W2 () we set N'u in the following way:

(Nu,v) == Cp,ﬂ</\/5/(1_ﬁ)u1,vl>(3?? (), B2E, () Cp,a<N§/(l_a)U2ﬂﬂz>(3W (2)),BPE (5}
(3.1)

with this definition, Nu is an element of (BY?,(X))".

We define the following energy functional for every u € H:

— — p
C2p6 // |U1|x ) y;;)g)’ dLy(x)dLsy(y) +C;?“ / |u2’§"’)_ y;;%” dLy(x)dLs(y)
leQl Qo x Qo
® 7 u] == +1/b|u2\p du if u e D(®YF),
b >
| +o0 if ue H\ D(®%F),

(3.2)
where the effective domain is D(®57) := Wa#(Q).

The following result follows as in Proposition 3.1 in [%].

Proposition 3.1. (ID;“’B s a weakly lower semicontinuous, proper and convex functional

i H. Moreover, its subdifferential 8@3"3 18 single-valued.

We point out that Proposition 3.1 can be proved also for 1 < p < 2.

3.2 The abstract Cauchy problem

Let T be a fixed positive number. We now consider the abstract Cauchy problem

9u y Aoy = f, te0,T)
P ot P
(P) { u(0) = wo,

where Ag"ﬁ is the subdifferential of @;"5 and f and wug are given functions.

According to [3, Section 2.1, chapter 1], we give the following definition.

11
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Definition 3.2. A function u : [0,T] — H is a strong solution of problem (P) if
u e C([0,T);H), u(t) is differentiable a.e. in (0,T), u(t) € D(—=AYP) a.e. and
9+ A%Py = f for a.e. t €0, T).

From [3, Theorem 2.1, chapter IV] the following existence and uniqueness result for

the strong solution of problem (P) holds.

Theorem 3.3. If ug € D(—A3") and f € L*([0,T); H), then problem (P) has a
unique strong solution u € C([0,T); H) such that w € WY2((5,T); H) for every é €
(0,T). Moreover u € D(—A%P) a.e. fort € (0,T), Vi3t € L*(0,T; H) and ®2°[u] €
LY0,7).

From Theorem 1 and Remark 2 in [5] (see also [3]) we have the following result.

Theorem 3.4. Let ¢ : H — (—00,400] be a proper, convex, lower semicontinuous

functional on a real Hilbert space H, with effective domain D(yp). Then the subdiffer-

ential Op is a mazimal monotone m-accretive operator. Moreover, D(yp) = D(0p) and

—0p generates a nonlinear Cy-semigroup {T(t)}+>0 on D(p) in the following sense: for

each ug € D(y), the function u := T(-)ug is the unique strong solution of the problem

uwe C(Ry; HYNWLX((0,00); H) and u(t) € D() a.e.,

loc
0
a—lz+8g0(u) 50 ae on Ry,

uw(0,2) = up(z).

In addition, —0p generates a nonlinear semigroup {T(t)}tzo on H where, for every

t >0, T(t) is the composition of the semigroup T(t) on D(p) with the projection on

the convex set D(¢p).

From Proposition 3.1 and Theorem 3.4, we have that the subdifferential (9(]?10,“’5 is max-
imal, monotone and m-accretive operator on H, with domain dense in H.

We now denote by Tpa’ﬁ () the nonlinear semigroup generated by —8@;"5. From Propo-
sition 3.2, page 176 in [30] the following result holds.

o . ’6 . . . .
Proposition 3.5. TI? (t) is a strongly continuous and contractive semigroup on H.

3.3 Strong formulation

We now prove that the strong solution of problem (P) actually solves problem (P).

We first need a characterization of the subdifferential of @g’ﬁ.

12



1 Theorem 3.6. Let u belong to Wg‘ﬂ(Q) for a.e. t € (0, 7], and let f € H. Then
» f € 8@2‘76 [u] if and only if u solves the following problem:

(

( A )Qlul fl m Lp’(Ql),
(=Ap)a,us = fo in LV (Qy),
(]5) U] = Wls on X3,

(Nu,v) + (blus|P2us, V2) 1o/ (), 1o(ss) = 0 Vv e 35&@)

Ny — 0 on (W57 (T)).

\

s Proof. Let f € 8@;"57 ie.

@5 o] = @ °fu] = (fiv —w)y for every v € Wy (Q). (3:3)

+ We choose v = u + tz, with z € W3(Q) and 0 < ¢ < 1 in (3.3) and we obtain

t/f121d£2+t/f222d£2§
C (uy +tz) uy +t21)(y)|P — |ui(z) —ui(y)|?
2pﬁ/ |(us 1) (1|x_;)’[§p+)’2 [ur () — ui(y)| ALy (2)dLa(y)
QlXﬂl
I —( YW = us(x) — us(y)| o4
CQpa us + tz9)( ug +t22)(y)|P — Jua(r) — uz(y)?
oo | e ALs(x)ALa(y)
QQXQQ

1
+7 / b(luz + t2]” — usl?) dy

by

We first take z € D(€);) and, by passing to the limit for ¢t — 0% in (3.4), we obtain

/flzldc < CW// [afz) = WP (@) — ny) (@) - () dLy(z)dLa(y).

|[L’ — y|517+2

Ql XQl

s By taking —z in (3.4) we obtain the opposite inequality, and hence we get

/f1z1d/$ _ 02,,5/ Jug (2) — ug () [P (ur () — ua(y))(21(2) — 21(y)) AL ()dLa(y).

|w — y|oP+?

Ql XQl

s Since z € D(Q) and p’ < 2, it turns out that in particular f; € L¥ (). Hence, the

7 p-fractional Green formula for fractal domains given by Theorem 2.2 yields that
(—A )Qlul f1 in Lp’(Ql) (35)

13



1 (and in particular in L*(€))).

> We remark that, if we take z € D({)y) and we proceed analogously, we obtain that
s (=A,)8 us = fo in L7 (Q) and in L2(€y).

+ We now go back to (3.4). Dividing by ¢ > 0 and passing to the limit for ¢ — 0%, we

|z — y[Pr

get
[ vt [ mats < Cop2 [ 1) QP (o) D) = 20D o )0,
Q1 Q2

Ql ><Q1

N Czép,a / / |ug () — ua(y)]P~ (f;z(_x?y;pﬁ(y))(@(ﬁ) — =) ALy (x)dLo(y) + / blualP~ugzy dpt.

QQXQQ by

s As above, by taking —z we obtain the opposite inequality, hence we get the equality.
7 Then, by Theorem 2.2 and (3.5) we obtain that
Cp,ﬁ </\[5,(1_6)U1, Zl>

~Cos <N’I’J,(1_a)u2’ Z2> (8Qz)+/ blua|P2ug 25 dpp = 0

(3.6)
s for every z € W2P(Q). Choosing suitably 2 such that it vanishes on X, we obtain that
0 ./\/;f/(l_a)uQ =0in (Wa_%’p(l“))’, while choosing suitably 2z, vanishing on I', and taking

1 into account the definition of Nu given in (3.1), we have that

(BZLP (E))’7B:’

Y4
~(8) 5>

(B3{a (092)) BIG

(Nu, z) + / blus|P2uy 2o dp = 0

3

n holds in (BJ7,(X))". This proves the assertion.

(a

12 In order to prove the converse, let u € W2#(Q) be the weak solution of problem (P).
13 We have to prove that @z"ﬁ[v] — (133’5 [u] > (f,v—wu)pg for every v € W;“’B(Q). By using
1 the inequality

~(lal = 8 = e b

15 and the hypothesis that u is the weak solution of (P), the thesis follows (see e.g. [8,
16 Theorem 3.6)). O

17 Theorem 3.6 implies that the unique strong solution u of the abstract Cauchy problem

18 (P) solves the following Robin-type problem (P) on §2 for a.e. ¢ € (0, 7] in the following

14
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weak sense:

(%(tv x) + (_Ap)glul(tax') = fi(t,z) for a.e. x € (),
%(fﬁ) + (_Ap)?b?m(t,x) = fot, v) for a.e. x € o,
S B B on X,
(P) 2
<NU, U> + <b‘u2’p— u27v2>Lp/(2)’Lp(E) =0 Vv e Bs’(l;) (2),
Ny = 0 in (W »?(I)Y,
u(0,2) = u®(x) in H,

where

u?(x) on Q,
u’(z) = :

u(x) on Q.

4 Ultracontractivity results

We now focus on proving the ultracontractivity of the semigroup Tpa’ﬁ(t).

We first need some preliminary results. From (1.5) and (1.10), it follows that for every

q € [1,p*(B)]
Jully < C (Jlully + [uilwss@,) + [uzlwer@s)) - (4.1)

Moreover, for every € > 0 there exists a constant C. > 0 such that
lully < Ce (ellully + lulwes@,) + [ualwan@y) - (4.2)

We first prove a fractional logarithmic Sobolev inequality tailored to the problem at
hand.

Proposition 4.1. Let p > 2, o, 5 € (Q%d, 1) and Bp < ap < 2. Letu € Wg’ﬁ(ﬂ) be
non-negative on Q and such that ||ul|? = sl 7o) + lNu2lo,) = 1. We set
A(U) = /u1 dﬁg -+ /UQ d£2 (43)
of 0

Then for every e > 0 there exists a positive constant C. depending also on o, (3, p and

Q such that, for every & > 0,

2 R
A(uPlogu) < s [805 (]ul\gw,p(ﬂl) + ]u2|€va,p(92)) —loge +eCeel, (4.4)

where uP log u := (uf log uy, ub log us).
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Proof. We adapt to our aim the proof of Lemma 3.2 in [29]. We apply Jensen’s in-

equality with ¢ = p*(8) —p = f_—l’ﬁzp and we obtain

(4.5)

1
A(uPlogu) < 5log A(uPt9) = 5 — 6) ﬂ —

Moreover, from the properties of the logarithmic function, for every &€ > 0 we have that

log [[ul[7 ) —logé. (4.6)

We then estimate ||u ﬁ*w) in (4.6) using (4.2) with ¢ = p*(3). Hence, since |lu} =1,

we obtain that for every e > 0 there exists a positive constant C. such that
P 2 =
A(uPlogu) < 52 [80 (|u1\Wﬂp o T |2 lfyan i, + 8) — loga} :
and this concludes the proof. O]

We now prove some preliminary lemmas which will allow us to prove the ultracontrac-
tivity of the nonlinear semigroup 7’ [‘f‘ﬁ (t). We adapt to the fractional framework the
results of [29, Section 3.2], see also [39, 10, 41].

We first recall some known numerical inequalities. For more details we refer to [1].

Proposition 4.2. Let a,b € RY. Ifr € (1,00), it holds that
(la["%a—[o""*b) (@ = 0) = (r —1) (lal + b)) [a — 0", (4.7)
If r € [2,00), then for ¢t := min{1/(r — 1),27277377/2} € (0, 1], it holds that

(la|""%a — [b]"7?b) (a — b) > ¢} |a—b|". (4.8)

We remark that (4.8) implies

(la|""%a — [b]""%b) sgn(a — b) > ¢ la—b[""". (4.9)

Lemma 4.3. Let {T;’ﬁ(t)}po be the Markovian semigroup on H generated by —8@;@
Givent >0 and u°, v° € L=(Q), let u(t,z) := T3P (t)u’(z) and v(t, x) := TP (t)v"(x)
be the solutions of the homogeneous problem associated to (P) with initial data u® and

V0 respectively. We set U(t,z) := u(t,z) — v(t, ), i.e.
Ui(t,z) == ui(t,z) —vi(t,z)  on Qy,
U(t,r) =  Up(t,7) := us(t, ) — va(t,x) on Qy,
U, = wlUy on 2.

16



. Then, for every real number r > 2 and for a.e. t > 0, there exists a constant C' =
. C(a,p,p) such that

Sl < 0 // Gt 0) = DT G azay)

|z — y|ort2

91 XQl

Us( — Us(t,y)| P2 ) .
//| o |x_ 2|£p+2)| dLy(z)dLo(y) —Cpbor/|U2(t)| -2,

QQXQQ by

s where ¢, > 0 is the constant given in Proposition 4.2 and by = minb.
Q

Proof. We fix t > 0. We point out that u(t),v(t) € WP(2), hence also U(t) €
We-#(Q). For r > 2, we define the function G, : [0,00) — [0, 00) by

Gr(t) == U@ = 10Oz @) + 102D 0n)-

+ G, is clearly differentiable for a.e. ¢ > 0. Taking into account the characterization of
s the subdifferential 8@;"5 given by Theorem 3.6, since u(t) and v(t) are solutions of the
6 abstract Cauchy problem (P) with f = 0 and initial data u® and v° respectively, we

¢ In order to simplify the notation, we set

1= ‘U1|T_QU1 on Qh
U, = ‘U2|r_2U2 on (5.

U=

o Using the Green formula (2.3), since outward normals to ; and Q at the interface ¥

10 have opposite sign, we get

17



G (1) = _r% / lu (¢, ) — (¢, y)|P~ (m?iai)y—wgigt,y))(‘Ifl(t,:U) — Uy (t,y)) ALa(e)ALs(y)
Q1 x0Q1

oa(t, @) — vi(t, )P (vi(t, @) — 0a(t, ) (Uit 2) — Vi (L))

_Copa / ua(t, 2) — unlt )P (ualt, ) — sl ) (Valti2) = Valtiw)) 4o yqr

2 |z —yl|or+?
QQXQQ

) / lva(t, ) — va(t, y) P2 (va(t, ¥) — va(t, y)) (Wa(t, v) — Ui(t,y)) AL (z)dLa(y)

|z —yl|or+?
QQXQQ
+7Cps [<N5l(lfﬁ)ula Uy) — <N5l(17ﬁ)?}1, Wl)} —1Cpa [</\@D/(17Q)U27 Uy) — </\[5/(17a)v2, Ua)| -
(4.10)

1 We now apply (4.8) and, recalling the definition of A/ given in (3.1), we use the trans-

> mission condition of problem (P). Then, by using the properties of the function b and
s the definition of W, from (4.10) we deduce that

, . [ C U(t,z) — Uy(t,y)| P2
Gi(t) < —rey | —5° / L ,)a;_yl,[(apg)’ dLy(7)dLa(y)

Ql XQl

Copa Us(t, ) — Uy(t, )|+~
+==2 / IUatt, 2) — Ualt, o) dLs(2)dLs(y) | — resbo / b|Us (1) 72 dpu.

|ZE — y|/8p+2
QQXQQ >
+ Setting C := c, max {%, %}, we get the thesis. H
s We remark that, as a consequence of Lemma 4.3, we have that G,.(t) := ||U(t)||] =

o U172y + 10207 (o, 18 non-increasing w.r.t. t.
7 We now recall the following useful result. We refer to [1], Lemma 4.1].

s Lemma 4.4. Let p,r > 2 and s € (0,1). Then, for every u,v € W*P(Q) it holds that

r+p—2 r+p—2

Crp(lul 7 [ul

P p
o where Cr’,p = (7" — 1) (m) .

r=2 | r-2 —
)s7p < Cr7p(|u| v |ul e )8,17 < (u, |ul 2“)8,177 (4.11)

10 The next two lemmas follow by adapting to the fractional setting Lemmas 3.5 and 3.6

u in [29] (see also [8] and [38]).

18



1 Lemma 4.5. Under the same notations and assumptions of Lemma 4.3, if r : [0,00) —

2 [2,00) is an increasing differentiable function, then for a.e. t > 0 and for everye, & > 0
s we have that

d, MO O] O]
a s 1Vl < 0N <||U(t)|yr(t)1 i ||U(t)||r<t)>

e -n (N, lvonies p o\ IT@IY2
. <<t>+p—2) o8 HU()HT? et 1)(T<t>+p—2) @I
- (__p N EPIORGSS (oereer )
eC. <(t>+p—2) 2 U@y A U@ )1g2lg|lU()ll £)+p—2
(4.12)

+ where C- and C are the constants appearing in (4.4) and (4.10) respectively and A is
s defined as in (4.3).

s Proof. From the chain rule and from Lemma 4.3, we have that

d (1) 1 ()
el = S g U)o + mdﬂ' 17 < =S sl Ole
r'(t) 1 (1) D2 C
-+ Ut log |U(t 2 7
O )Y A(ITEr=e U] - HU / v Y werg

// Uit 2) = Uit )P (Ut 2) = Uil ) (UG Ot ) = [GEDOTEY) 3o a0
[ — y[i2 S

Ql ><Q1

// Ualt, @) = Uat, )l (Ualt, @) = Uat, ) (Ualt, @) OUs(t, @) = Ol YOI OVt) 4o i
|z — ylort? T

QQXQQ
(4.13)

7 Recalling the definition of A, using Lemma 4.4 and estimating the term on the fractal
s interface X with zero, we get
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q Pt U@ U(t)
log [U ()l < A( I%HU®Ww>

dt ORNTOTRA
r(t)+p—2 r(t)+p—2 |P
C 1)( p ) //\\Umt,x)\ T Y
———= () - 77— 2(x)dLo(y
IOl mrr=2) \ J] o=y
r(t)+p—2 r(t)+p—2 |P

\IU2<t,x)| = |Ua(ty) e @), U@ U(#)]
Z/g[ @ — ylors? A@)db) | = A(HU@)W(“lOg||U(t)||r<t>>

) P T @) oo
—C@@%J)Qﬁ)p )||(N i (Wﬂﬂ%mmﬂ+MMM%w@D>

tp—2 ol
(4.14)
where for 1 = 1,2
r(t)+p 2
Ui ()]
Ei(t,x) == W-
NU ) p—2

If we define F' = F(t,z) to be equal to F; on §; for ¢ = 1,2, then F fulfills the
hypotheses of Proposition 4.1. Thus, since it holds that

oo gy T D=2 (U@ U
A log F) P A(||U(t)|| +p21g||U<t>||r<t>+p_2>’

t)+p—2

the thesis follows. O

Lemma 4.6. Under the assumptions of Lemma 4.5, for a.e. t > 0 we have that

Ao |00 < ~A) g [U(1) o — B), (4.15)

where

02 -2)
A = OBt +p—2)° (4.16)

B(t) — T/(t)(p - 2)<2 — ﬁp> 1ng . C’p

r(t)Bp(r(t) +p —2)

(1) () B oV
D) +p—2) [rf(t) - Cr0-0 (1253 ]

= C(a, B,p,Q) is a positive constant and w = max {|Qy|, |Qa]}.
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1 Proof. We choose ¢ > 0 as follows:

owe PR el LA
S= 0w o @< ® -1 <r(t)+p—2) U@l

|
—~
~+
~—
®

> Hence from (4.12) we get

vore  wol \_, (oreer o)
Agwmy WWM>AQWMWWJMWWWHH

r(t)+p—2

(1) > [rt) g2 € p U)o
0 [ ERAAR (r(t)—) —]

R OCOETED) B

d T
g [U(1)o <

r(t) 2 C. +p—2 IIU()IIT@
. PU@I
—i—eC(r(t)—l)( P ) iRt
r(t) +p—2 HU()HW
(4.18)

3 We now choose (t)

IOl

wmnﬁi

and we point out that, since r(¢) > 2 and p > 2, it holds that

00 (s5=s) <»

» Hence, for a suitable positive constant C depending on «a, 3, p and €, from (4.18) we

5 get

vere o wol o, veree U()]
A(nU(t)H:gglgl!U(t)l\rm) A(HU(t)H +PngHU()II B)+p— 2>]

t)+p—2

i B I Nl L) e
+®—mwwﬂpmwmbmzc“wlwmwwﬂ> me>]'

(4.19)

We now set

\U|9 |U| |U1|? |U1 |Us? |Us|
K(q,U) :=A ( log dLly + dL
1oz =101, wm S0, rwq|wq2
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1 The functional K(q,U) satisfies the following property: for every go > ¢; > 1 and for

2 every U € L™(Q) I
q1

1Ulg,
Applying (4.20) with ¢; = r(¢) and ¢ = (r(t) + p — 2), from (4.19) and using the

+ properties of the logarithmic function, we get

K(g2,U) = K(q1,U) = log (4.20)

w

d ' (t) 2 - (1) 2r(t)
FEITOo < 8 (1= 2 gl Olhagepa + Co = 5 (1= 2 og |00

r{#) 2 Jog [ﬂ%ﬁé(r(ﬂ - 1) (7" § )”‘ ] ‘

) +p—2)Bp | (1) (t)+p—2
(4.21)

s We remark that, since fp < 2, 1 — % < 0. Thus, from Holder inequality we have that

d () 22-p) (02— Gp  p-2
alOgHU(t)”r(t) < () Bl (D) £ p—2) log [[U (&) lr) + O r(t)+p—210gw
I TR LY R
e r<t><r<t>+p—2>@plg[r'<t> -Cr - (5 =3)
(4.22)

s Hence, taking into account the definitions of A(t) and B(t) in (4.16) and (4.17) respec-
7 tively, estimate (4.15) follows. O

s We now prove the ultracontractivity of the semigroup 77 (t).

o Theorem 4.7. Let p > 2 and Bp < ap < 2. In the notations of the above lemmas, if
0 G € [2,00], then there exist two positive constants Cy,Cy depending on «, 5, p, q and
u ) such that

TP (8)u® — TP (£)0° | oo < Ch(max{|], [ Qs )M P22 |00 — )23 (4.23)
1 for every u®,v° € LY(Q) and for every t > 0, where

w2 () | ot e (=)

2

(4.24)
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Proof. We first take ug, vg € L*(£2) and we use the same assumptions and notations of
Lemma 4.6. In particular, we consider an increasing differentiable function r: [0, 00) —
[2,00) and we define A(t) and B(t) as in (4.16) and (4.17) respectively.
We set

y(t) :=log [|U()]r);

then, from (4.15), y(t) satisfies the following ordinary differential inequality:
y'(t)+ Alt)y(t) + B(t) < 0. (4.25)
We now consider the following ODE:
o' (t) + A(t)x(t) + B(t) = 0,
z(0) = y(0).

The unique solution z(t) of (4.26) can be written in the following way:

(4.26)

t t T
x(t) = exp —/A(T) dr | |y(0) — /B(T) exp /A(J) do | dr|; (4.27)
0 0 0
hence, the solution y(t) of the ordinary differential inequality (4.25) is such that y(¢) <
x(t) for every t € [0, 00).
We now fix ¢ > 0, for any given ¢ > 2 and for 7 € [0,t) we set

r(r) = -2 (4.28)

Ct—7
The function r(-) satisfies the hypotheses of Lemma 4.5, i.e. it is increasing and differ-
entiable on [0,¢) and r(7) > 2 for every 7 € [0,1).
Using (4.28), we obtain that

_ 2 p—2
A = B =2 ==
and
_ 2-8p)p-2) 1 ogw— Cpt 2.
B(m) = B Hatp_2) 12 YT Py,
1 Bp? p(t—1) ot
=g ™| 3 O (i ) ]

where C' and C' are the constants in Lemma 4.3 and Lemma 4.6 respectively.

We now write x(t) more explicitly. From standard calculations, we have that

lim exp | — / A(o)do | = (L)ﬁ (4.29)

Tt q+p—2
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Moreover, again from standard calculations, we can prove that

T g 2
2 — — 92\ B .

lim [ B(o)exp /A(,g) ac | do = —2=PP), (“L) 1| -t
Tt~ 2 q

0 0

1 —2
- (q“’ ) [log (ﬁpp >+1ogt] + 10 4 1@ 1)

p—2 q
(4.30)

where C' is a suitable positive constant depending on 8, p, Q and ¢ and I, 1 and
I®) are integral terms which do not depend on ¢ and can be explicitly computed as in
[7, proof of Lemma 3.9].

From (4.29) and (4.30) it follows that

2 2
: q o 2—Pp q o
1 =——— 0 1 1—(———
) (q +p—2) v+ s [ (q +p—2)

1 q £ BpP -

2
B Bp
where Cy = (5745 ) " € and €y = ()™ (19 — 10 - 1),
We now point out that, as a consequence of Lemma 4.3, for every 0 < 7 < t it holds

IO llrry = ) = 0O lrry < Mu(r) = 0(P)lory = 1Tl = 17 < 7. (4.32)
Since y(0) = log [|[U(0) ||,y = log [|u® — v°||4, from (4.31) and (4.32) we obtain

+ Ot

(4.31)

+1 X2(B)
lim (| U(#)]r) < hm &) — = ||u’ — 0"23(6) WM (B) (Cat y=A2(B) (,Bpp C) ¢,
Tt

2
(4.33)
where the constants Ai(3), A\2(5) and A3(5) are as defined in (4.24).
Finally, we remark that

lim r(7) = 4o0.
Tt~

Therefore, from the definition of w, there exists a suitable positive constant C; depend-

ing on «, 3, p, {2 and ¢ such that
IO loo = 1T (=T ()0l < Cr(max{[ ], [ 1)1 P 222|000 25

thus the thesis follows in the case u®,v° € L>(Q).
The proof in the case u°,v° € L(Q) is then achieved by a density argument as in the
proof of [38, Theorem 3.2.7]. O

We remark that also in the linear case, i.e. p = 2, the semigroup Ty 8 (t) is ultracon-

tractive. The proof follows by adapting the techniques of [1&, Theorem 2.16].
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5 The case a < § and some remarks

We briefly comment on the case when the fractional exponents are such that a < § < 1.

In this case, the transmission conditions on ¥ in the formal problem (P) read as follows:

wuy; = ug on (0,7] x X, Nu + blug[P?u; =0 on (0,T] x %,

where @ € By”(X) for 0 > v(a) such that  —a+ 5 > % and the operator AV is a linear
and continuous operator on BY% (X) which is defined as in (3.1).

We introduce the Sobolev space
WZ"B(Q) ={u € LP(Q) : up € WPP(Q), uy € W*P(Qy) and wu; = up on X}, (5.1)

which is endowed with the norm given by (1.7). This space is the effective domain of

the following energy functional on L*(£2):

_ p _ p
(Cana / / |u1|x ) y;;ﬂ)l A.Ls(2)dLs(y) +0§Za / ‘uf)— yﬁi@' AL (x)dLs(y)
~ Ql><Ql Qo xQ9
0[] = +1/b|u1\pdu if u € WeA(Q),
b by
| +00 if u € L2(Q) \ We4(Q).

(5.2)
Moreover, we point out that (1.11) and (1.12) hold also for the space Wg,ﬂ (), while
the continuous embedding (1.10) is replaced by the following

Wol (Q) — LP"(@(Q). (5.3)

The functional &ij’ﬁ enjoys the same properties of the functional (IJ;“’B , namely it is
weakly lower semicontinuous, proper and convex on L*(€) and its subdifferential 8@375
is single-valued.

We now study the following abstract Cauchy problem

P) u y AsPu=f, t€[0,T]
u(0) = uyp,

involving flgﬂ = 8@;"6 . As in Theorem 3.3, we can prove that the above abstract
Cauchy problem admits a unique strong solution in the sense of Definition 3.2. In
addition to that, we also have that the nonlinear semigroup 7T po"ﬁ (t) generated by —Ag’ﬁ
is strongly continuous and contractive on L?(2).

By means of a suitable characterization of 8@375 analogous to the one given in Theorem

3.6, we have that the unique strong solution of problem (P) actually solves the following
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problem on €2 for a.e. t € (0,7 in the following weak sense:

)
%(tﬁ) + (_Ap)gllh(t,l‘) = fl(t, $) for a.e. x € Qq,
%(tﬁ) + (—Ap)%QUQ(tJ) = folt, v) for a.e. x € o,

| wur = uy on X,

(P)q . 2
(Nu,v) + Ol [P~ ur, v1) o () oy =0 Vv € BYG (X),
N =0 in (W ().
u(0,z) = u’(z) in L*(Q).

\

Finally, one can easily adapt all the results of Section 4 and obtain the ultracontractivity
of Tpa’ﬁ(t). We state the main result for the sake of clarity.

Theorem 5.1. Let p > 2 and ap < fp < 2. If ¢ € [2, 0], then there exist two positive
constants C1, Cy depending on o, B, p, q and 2 such that

T3P ()u’ = TP (00 oo < Cr(max{[Qul, Qe[ Vet [0 — 2@ (5.4)

for every u®,v° € LI(Q) and for every t > 0, where

/\l(a):2—2ap [1_(Q+;%2)a21’]’ ,\2(04):]9%2[1_<Q+;%2)°‘2”],

We conclude the paper by pointing out that the results of this paper can be adapted

to more general frameworks.

First of all, one can replace the Koch snowflake with the so-called fractal mixtures (for
details on such structures see e.g. [28]). Moreover, one can study fractional operators
involving more general kernels, under suitable growth conditions.

Finally, by proceeding as in [3], we can consider the case of a domain Q C RY for
N > 2 such that Q = Q; U Qy U, where the domains §2; are (e, d) domains satisfying
the hypotheses of [3, Section 1.2] and ¥ is a general d-set or an arbitrary closed set in

the sense of [24].
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