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Abstract

We consider parabolic nonlocal Venttsel’ problems in polygonal and
piecewise smooth two-dimensional domains and study existence, uniqueness
and regularity in (anisotropic) weighted Sobolev spaces of the solution.
The nonlocal term can be regarded as a regional fractional Laplacian on
the boundary. The regularity results deeply rely on a priori estimates,
obtained via the so-called Munchhausen trick, and sophisticated extension
theorem for anisotropic weighted Sobolev spaces.
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1. Introduction

The aim of this paper is to study the heat equation with nonlocal
Venttsel’ boundary conditions in a bounded polygonal domain Ω ⊂ R

2.
In the cornerstone paper of Venttsel’ [30], a nonlocal term already appears;
only recently, many papers deal with nonlocal evolutionary Venttsel’ prob-
lems both in the case of smooth and irregular domains. Among the others,
we refer to [21], [29], [32], [22] and the references listed in. In this pa-
per, we consider a nonlocal term in the boundary condition which can be
regarded as a suitable version of the regional fractional Laplacian (−Δ)s,
for s ∈ (0, 1). This term has some physical motivations, see e.g. [7] for
details. We remark that the study of nonlocal operators of fractional type
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REGULARITY RESULTS FOR NONLOCAL EVOLUTION... 1417

in bounded domains is a challenging issue. While there is a huge litera-
ture on Dirichlet problems for various definitions of fractional Laplacian in
a bounded domain, problems with fractional Laplacians in the boundary
condition are not so well investigated.

Venttsel’ problems in irregular domains (in particular, domains with
pre-fractal or fractal boundary) have been widely investigated, see, e.g.,
[23, 20], where the reader can find also the motivations. We refer, for local
linear and quasi-linear parabolic Venttsel’ problems, to [1], [2], [3], [25], [5],
[14], [31], [28], [11], [13], [12], [4] and the references listed in.

In this paper, our goal is to prove regularity results in weighted Sobolev
spaces for the weak solution of the problem at hand, thus extending the
results obtained in [10] for the elliptic case. When considering the numerical
approximation of this problem, to prove regularity results is a key issue for
obtaining optimal a priori error estimates. To this regard, see [8, 9] for the
local case, and [7] for the nonlocal case, under stronger assumptions on the
data.

As in the elliptic case [10], it is crucial to prove that the weak solution
of the nonlocal Venttsel’ problem belongs for a.e. t to the space H2(∂Ω);
this is achieved by the so-called Munchhausen trick, see, e.g., [10], [4].
To this aim, we introduce suitable anisotropic weighted Sobolev spaces of
Kondrat’ev type, see [16, 17], where the weight is the distance from the set
of vertices. The techniques used to prove the regularity on the boundary,
in the parabolic case, deeply rely also on sophisticated extension theorem
in anisotropic Sobolev spaces.

We hope that our paper is the first step towards the study of the regular-
ity of solutions to nonlocal evolutionary problems in fractal-type domains.
The regularity of weak solutions to fractional-in-time Venttsel’ problems,
possibly nonlocal, both in smooth or irregular domains, is also an open
problem.

The paper is organized as follows. In Section 2 we define the domain
and the functional spaces appearing in this paper, and state the prob-
lem. In Section 3 we prove a crucial a priori estimate for the solution. In
Section 4 we give an existence and uniqueness result for weak and strong
solutions of the parabolic nonlocal Venttsel’ problem. Appendix A contains
the extension theorem from the broken surface to the whole space, which
is interesting in itself.

2. Statement of the problem

Let Ω ⊂ R
2 be a domain with polygonal boundary ∂Ω with vertices Vj,

for j = 1, . . . , N . Namely, we suppose that ∂Ω is made by N ≥ 3 segments
lj, which form a finite number of angles with opening αj , and let us denote
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1418 S. Creo, M.R. Lancia, A.I. Nazarov

with α the opening of the largest angle in ∂Ω, see Figure 2.1. We denote
by V (∂Ω) the set of vertices Vj .

Fig. 2.1: A possible example of domain Ω. In this case N = 9 and α = α7.

In the following we denote with L2(Ω) the Lebesgue space with respect
to the Lebesgue measure dx on Ω, and with L2(∂Ω) the Lebesgue space on
the boundary with respect to the arc length d�. By Hs(Ω), for s > 0, we
denote the standard Sobolev–Slobodetskii spaces. By C(∂Ω) we denote the
set of continuous functions on ∂Ω, and by C∞

0 (R×R) we denote the set of
infinitely differentiable functions with compact support in R×R. Moreover,
we denote by B1(0) the unit ball centered in the origin.

By Hs(∂Ω), for 0 < s < 1, we denote the Sobolev–Slobodetskii space
on ∂Ω defined by local Lipschitz charts as in [26]. For s ≥ 1, we define the
space Hs(∂Ω) by using the characterization given by Brezzi-Gilardi in [6]:

Hs(∂Ω) = {v ∈ C(∂Ω) : v| ◦
M

∈ Hs(
◦
M )},

where M denotes a side of ∂Ω and
◦
M denotes the corresponding open

segment (for the general case see Definition 2.27 in [6]).
We fix a counterclockwise orientation on ∂Ω. We denote by Lj the

length of the segment lj , for j = 1, . . . , N , and by L the length of ∂Ω.
We choose V1 as the origin and we parametrize ∂Ω by the arc-length

φ1(�) = φV1(�), φ1(�) : [0, L] → R
2,

with φ1 continuous, injective in [0, L] and such that φ1(0) = φ1(L).
By choosing as origin Vj, we define in a similar way

φj(�) = φVj (�), � ∈ [0, L].
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REGULARITY RESULTS FOR NONLOCAL EVOLUTION... 1419

For every j = 1, . . . , N , we set

∇+
� u(Vj) := lim

h→0+
∇�u(φj(Lj+h)), ∇−

� u(Vj) := lim
h→0−

∇�u(φj(Lj+h)) ,

where ∇� =
∂

∂�
, and define the subspace

H̃2(∂Ω) = {u ∈ H2(∂Ω) and ∇+
� u(Vj) = ∇−

� u(Vj) ∀ j = 1, . . . , N}.
Let r = r(x) be the distance from the set of vertices Vj . For γ ∈ R, and

m = 0, 1, 2, . . . , we denote by Hm
γ (Ω) the Kondrat’ev space of functions for

which the norm

‖u‖Hm
γ (Ω) =

⎛⎝∑
|k|≤m

∫
Ω
r2(γ−m+|k|)|Dku(x)|2 dx

⎞⎠ 1
2

is finite, see [16]. For m = 0, this space evidently coincides with the
weighted Lebesgue space L2

γ(Ω). We also define, for m ∈ N, the space

H
m− 1

2
γ (∂Ω) as the trace space of Hm

γ (Ω) equipped with the norm

‖u‖
H

m− 1
2

γ (∂Ω)
= inf

v=u on ∂Ω
‖v‖Hm

γ (Ω).

We now introduce anisotropic Sobolev spaces on the cylinder QT =
Ω × (0, T ) and its lateral surface ∂′′QT = ∂Ω × (0, T ). For l,m ≥ 0 we
define

H l,m(QT ) = L2([0, T ];H l(Ω)) ∩Hm([0, T ];L2(Ω)),

and by H l,m(∂′′QT ) we denote the analogous space on ∂′′QT , taking into
account the previous definition of the space Hs(∂Ω). Similarly, we define

H̃2,1(∂′′QT ) = L2([0, T ]; H̃2(∂Ω)) ∩H1([0, T ];L2(∂Ω)).

We introduce also the anisotropic Kondrat’ev space H2,1
γ (QT ) of func-

tions for which the following norm is finite (see [17]):

‖u‖H2,1
γ (QT ) =

⎛⎝∫
QT

r2(γ−2)
∑
|ᾱ|≤2

r2|ᾱ||∂α0
t Dα

xu|2 dxdt
⎞⎠ 1

2

,

where ᾱ = (α0, α) and |ᾱ| = 2α0 + |α|.
We denote the trace of u on ∂′′QT with γ0u. Sometimes we will use

the same symbol u to denote the function itself and its trace γ0u. The
interpretation will be left to the context.
We define the composite spaces

V 1,0(QT , ∂
′′QT ) := {u ∈ H1,0(QT ) : γ0u ∈ H1,0(∂′′QT )},

V 1,1(QT , ∂
′′QT ) := {u ∈ H1,1(QT ) : γ0u ∈ H1,1(∂′′QT )},
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1420 S. Creo, M.R. Lancia, A.I. Nazarov

and, for σ ∈ R,

V 2,1
σ (QT , ∂

′′QT ) := {u ∈ H1,0(QT ) : rσD2u ∈ L2(QT ),

rσut ∈ L2(QT ), γ0u ∈ H̃2,1(∂′′QT )}.
We consider the problem formally stated as

ut −Δu+ au = f in QT , (2.1)

ut −Δ�u+
∂u

∂ν
+ bu+ θs(u) = g on ∂′′QT , (2.2)

u(x, 0) = 0 on Ω, (2.3)

where f and g are given functions, Δ� =
∂2

∂�2
, ν is the unit vector of

exterior normal, a ∈ L∞(QT ), b ∈ L∞(∂′′QT ) and, for s ∈ (0, 1), we set
θs : H

s(∂Ω) → H−s(∂Ω) as follows: for every u, v ∈ Hs(∂Ω)

〈θs(u), v〉 =
∫∫

∂Ω×∂Ω

(u(x)− u(y))(v(x) − v(y))

|x− y|1+2s
d�(x) d�(y),

where 〈·, ·〉 denotes the duality pairing between H−s(∂Ω) and Hs(∂Ω). We
remark that the nonlocal term θs(·) can be regarded as an analogue of the
regional fractional Laplace operator (−Δ)s∂Ω on ∂Ω.

We now define the bilinear form E(u, v) as follows:

E(u, v)=

∫
Ω
∇u∇v dx+

∫
∂Ω

∇�u∇�v d�+

∫
Ω
au v dx+

∫
∂Ω

b u v d�+〈θs(u), v〉,
(2.4)

for every u, v ∈ V 1(Ω, ∂Ω) := {u ∈ H1(Ω) : u|∂Ω ∈ H1(∂Ω)}.
We consider the weak formulation of the problem (2.1)-(2.3) (cf. [24]):

Given f and g, find u ∈ V 1,0(QT , ∂
′′QT ) such that

−
∫
QT

u vt dx dt−
∫
∂′′QT

u vt d� dt+

∫ T

0
E(u, v) dt =

∫
QT

f v dx dt

+

∫
∂′′QT

g v d� dt for every v ∈ V 1,1(QT , ∂
′′QT ) such that v(T, x) = 0.

(2.5)

Proposition 2.1. Let u be a weak solution of (2.1)-(2.3). Suppose
that rσD2u ∈ L2(QT ), r

σut ∈ L2(QT ) and γ0u ∈ H2,1(∂′′QT ). Then u
is a strong solution, i.e. equalities (2.1)-(2.3) are satisfied a.e. in QT ,
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REGULARITY RESULTS FOR NONLOCAL EVOLUTION... 1421

on ∂′′QT and in Ω, respectively. Moreover, γ0u ∈ H̃2,1(∂′′QT ), i.e. u ∈
V 2,1
σ (QT , ∂

′′QT ).

This statement follows from integration by parts and the fundamental
lemma of calculus of variations.

In what follows we denote by C all positive constants. The dependence
of constants on some parameters is given in parentheses. We do not indicate
the dependence of C on the geometry of Ω.

3. A priori estimates

Theorem 3.1. Let u ∈ V 2,1
σ (QT , ∂

′′QT ) be a solution of problem
(2.1)-(2.3). Then there exists a positive constant C = C(σ) such that

‖u‖2H1,0(QT ) + ‖rσD2u‖2L2(QT ) + ‖rσut‖2L2(QT ) + ‖u‖2H2,1(∂′′QT )

≤ C(σ)
(
‖u‖2L2(∂′′QT ) + ‖rσf‖2L2(QT ) + ‖g‖2L2(∂′′QT )

)
,

(3.1)

provided

1− π

α
< σ <

1

2
, σ ≥ −1

2
(3.2)

(recall that α is the opening of the largest angle in ∂Ω).

P r o o f. We use the Munchhausen trick. We move the terms ∂u
∂ν , bu

and θs(u) in (2.2) into the right-hand side and consider them as known
functions. Then we easily have

‖u‖2H2,1(∂′′QT )

≤ C

(∥∥∥∥∂u∂ν
∥∥∥∥2
L2(∂′′QT )

+ ‖u‖2L2(∂′′QT ) + ‖θs(u)‖2L2(∂′′QT ) + ‖g‖2L2(∂′′QT )

)
.

(3.3)

We proceed in several steps.

1) First we estimate ‖θs(u)‖2L2(∂′′QT ). Since u ∈ H̃2,1(∂′′QT ), in par-

ticular u(·, t) ∈ H̃2(∂Ω) for a.e. t. Hence it is sufficient to consider the
local behavior of u near the vertices. Without loss of generality, we can
assume that the vertex is located at the origin. We introduce a smooth
cutoff function η and rectify ∂Ω near the origin. From our hypothesis on
u, we have that for a.e. t ∈ [0, T ] θs(u(·, t)) ∈ H2−2s(∂Ω) and

‖θs(u(·, t))‖2H2−2s(∂Ω) ≤ C(s)‖u(·, t)‖2H2(∂Ω).
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1422 S. Creo, M.R. Lancia, A.I. Nazarov

From the compact embedding of H2−2s(∂Ω) in L2(∂Ω) we deduce that for
every ε > 0 there exists a constant C(ε) such that

‖θs(u(·, t))‖2L2(∂Ω) ≤ ε‖θs(u(·, t))‖2H2−2s(∂Ω) + C(ε)‖θs(u(·, t))‖2H−s(∂Ω),

see Lemma 6.1, Chapter 2 in [26]. Similarly, we have

‖θs(u(·, t))‖2H−s(∂Ω) ≤ C‖u(·, t)‖2Hs(∂Ω) ≤ ε‖u(·, t)‖2H2(∂Ω) + C(ε)‖u‖2L2(∂Ω).

Putting together these estimates, we get

‖θs(u(·, t))‖2L2(∂Ω) ≤ ε‖u(·, t)‖2H2(∂Ω) + C(ε)‖u(·, t)‖2L2(∂Ω). (3.4)

By integrating (3.4) with respect to t ∈ [0, T ] we obtain

‖θs(u)‖2L2(∂′′QT ) =

∫ T

0
‖θs(u(·, t))‖2L2(∂Ω) dt

≤
∫ T

0

(
ε‖u(·, t)‖2H2(∂Ω) +C(ε)‖u(·, t)‖2L2(∂Ω)

)
dt = ε‖u‖2L2([0,T ];H2(∂Ω))

+ C(ε)‖u‖2L2(∂′′QT ) ≤ ε‖u‖2H2,1(∂′′QT ) + C(ε)‖u‖2L2(∂′′QT ).

(3.5)

Therefore we obtain the following estimate using (3.3):

‖u‖2H2,1(∂′′QT )

≤ C

(∥∥∥∥∂u∂ν
∥∥∥∥2
L2(∂′′QT )

+ ‖g‖2L2(∂′′QT ) + ε‖u‖2H2,1(∂′′QT ) + C(ε)‖u‖2L2(∂′′QT )

)
.

By choosing ε sufficiently small we obtain

‖u‖2H2,1(∂′′QT ) ≤ C

(∥∥∥∥∂u∂ν
∥∥∥∥2
L2(∂′′QT )

+ ‖u‖2L2(∂′′QT ) + ‖g‖2L2(∂′′QT )

)
. (3.6)

2) By Theorem A.1, there is an extension U ∈ H
5
2
, 5
4 (R2×R) such that

(U − u)|∂′′QT
= 0, U |t=0 = 0, and the following estimate holds:

‖U‖
H

5
2 , 54 (R2×R)

≤ C‖u‖H2,1(∂′′QT ). (3.7)

Without loss of generality we can suppose that the support of U is
bounded.

We claim that D2U and Ut belong to the weighted Lebesgue space
L2
− 1

2

(R2 ×R). Indeed, by localizing we need to check it only in a neighbor-

hood of a vertex Vj located at the origin.

The inclusion of U ∈H
5
2
, 5
4 (R2×R) evidently impliesD2U∈L2(R;H

1
2 (R2)).

Furthermore, the Young inequality
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|η||ξ| 12 ≤ |η| 54
5/4

+
|ξ| 52
5

shows that Ut ∈ L2(R;H
1
2 (R2)), and (3.7) gives

‖D2U‖
L2(R;H

1
2 (R2))

+ ‖Ut‖
L2(R;H

1
2 (R2))

≤ C‖u‖H2,1(∂′′QT ). (3.8)

By the fractional Hardy inequality, see [15, Theorem 3.2 and Remark
3.2], for a.e. t we have∫

R2

|D2U(·, t)|2
|x| dx ≤ C‖D2U(·, t)‖2

H
1
2 (R2)

, (3.9)

and a similar inequality holds for Ut. We integrate these estimates with
respect to t, and the claim follows.

3) We now consider the function v = u − U . It solves the Dirichlet
problem

vt −Δv = f − Ut +ΔU ∈ L2
σ(QT ); v|∂′′QT

= 0; v|t=0 = 0. (3.10)

(here we used the last restriction in (3.2)). From Theorem 3 in [18] (with

l = 0) it follows that v ∈ H2,1
σ (QT ) if |σ − 1| < π

α
(we recall that α is the

opening of the largest angle in ∂Ω).
From (3.8) and (3.9), this implies

‖u‖2H1,0(QT ) + ‖rσD2u‖2L2(QT ) + ‖rσut‖2L2(QT )

≤ C(σ)(‖rσf‖2L2(QT ) + ‖u‖2H2,1(∂′′QT ))
(3.11)

(to estimate the first term, we also take into account that (3.2) implies
σ ≤ 1).

4) We are now in the position to estimate
∥∥∂u
∂ν

∥∥2
L2(∂′′QT )

. By rescaling,

we deduce that ∇u ∈ L2
σ− 1

2

(∂′′QT ) and

‖∇u‖2L2

σ− 1
2

(∂′′QT ) ≤ C
(
‖u‖2H1,0(QT ) + ‖rσD2u‖2L2(QT )

)
. (3.12)

Following [10], we define a cutoff function ηδ such that

ηδ(r) = 1 for r > δ, ηδ(r) = 0 for r < δ/2

and we introduce the following trace operator:

u −→ ∂u

∂ν

∣∣∣
∂′′QT

= ηδ
∂u

∂ν

∣∣∣
∂′′QT

+ (1− ηδ)
∂u

∂ν

∣∣∣
∂′′QT

=: K1(δ)u +K2(δ)u.
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1424 S. Creo, M.R. Lancia, A.I. Nazarov

The operator K1(δ) : H
2,1
σ (QT ) → L2(∂′′QT ) is evidently compact. Using

(3.11), we obtain for arbitrary ε > 0

‖K1(δ)u‖2L2(∂′′QT ) ≤
ε

2
(‖rσf‖2L2(QT )+‖u‖2H2,1(∂′′QT ))+C(ε, σ, δ)‖u‖2L2(∂′′QT ).

From (3.11) and (3.12) we deduce

‖K2(δ)u‖2L2(∂′′QT ) ≤ C(σ)δ
1
2
−σ(‖rσf‖2L2(QT ) + ‖u‖2H2,1(∂′′QT )).

By choosing δ(σ, ε) sufficiently small we get∥∥∥∥∂u∂ν
∥∥∥∥2
L2(∂′′QT )

≤ ε(‖rσf‖2L2(QT ) + ‖u‖2H2,1(∂′′QT )) + C(ε, σ)‖u‖2L2(∂′′QT ).

Substituting the above inequality into (3.6) we have

‖u‖2H2,1(∂′′QT )

≤ C
(
ε(‖rσf‖2L2(QT ) + ‖u‖2H2,1(∂′′QT )) +C(ε, σ)‖u‖2L2(∂′′QT ) + ‖g‖2L2(∂′′QT )

)
.

By choosing ε sufficiently small we obtain

‖u‖2H2,1(∂′′QT ) ≤ C
(
‖rσf‖2L2(QT ) + C(σ)‖u‖2L2(∂′′QT ) + ‖g‖2L2(∂′′QT )

)
.

Taking into account (3.11), we get (3.1). �

4. Strong solvability of the Venttsel’ problem

We begin with the existence and uniqueness of the weak solution. By
standard Galerkin methods (cf. [19]), the following result holds.

Lemma 4.1. Let f ∈ L2(Ω), g ∈ L2(∂Ω), a ∈ L∞(QT ) and b ∈
L∞(∂′′QT ). Then there exists a unique weak solution u in V 1,0(QT , ∂

′′QT )
of problem (2.5). Moreover,

‖u‖V 1,0(QT ,∂′′QT ) ≤ C(‖f‖L2(QT ) + ‖g‖L2(∂′′QT )), (4.1)

where C depends on T , a and b.

We finally prove the desired regularity for the weak solution of the
parabolic nonlocal Venttsel’ problem.

Theorem 4.1. Let σ be subject to condition (3.2). Suppose that
g, a and b are as in Lemma 4.1 and that f ∈ L2

σ(Ω). Then the problem
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(2.1)-(2.3) has a unique solution u ∈ V 2,1
σ (QT , ∂

′′QT ), and the following
inequality holds:

‖u‖2H1,0(QT ) + ‖rσD2u‖2L2(QT ) + ‖rσut‖2L2(QT ) + ‖u‖2H2,1(∂′′QT )

≤ C
(
‖rσf‖2L2(QT ) + ‖g‖2L2(∂′′QT )

)
,

(4.2)

where C depends on σ, T , a and b.

P r o o f. We proceed similarly to the proof of [10, Theorem 3.3]. We

introduce the set of operators Lμ : V
2,1
σ (QT , ∂

′′QT ) → L2
σ(QT )×L2(∂′′QT )

as follows:

Lμu :=

(
ut −Δu+ μau,

(
ut −Δ�u+ μ

(
∂u

∂ν
+ bu+ θs(u)

)) ∣∣∣
∂Ω

)
.

We claim that the operator L0 is invertible. Indeed, it corresponds to
the boundary value problem

ut −Δu = f in QT , ut −Δ�u = g on ∂′′QT , u(x, 0) = 0 on Ω.

Here the equation in QT and the equation on ∂′′QT are decoupled. So
we can first solve the boundary equation and then use its solution as the
Dirichlet datum for the equation in the domain. The estimates similar to
Theorem 3.1, combined with Proposition 2.1, show that the solution belongs
to V 2,1

σ (QT , ∂
′′QT ) and inequality (4.2) holds. So the claim follows.

The estimates in Theorem 3.1 show that the operator

Lμ − L0 : V
2,1
σ (QT , ∂

′′QT ) → L2
σ(QT )× L2(∂′′QT );

Lμu− L0u = μ

(
au,

∂u

∂ν
+ bu+ θs(u)

)
is compact. Since Ker(L1) is trivial by Lemma 4.1, the operator L1 is also
invertible, and the proof is complete. �

If Ω is a convex polygon, then α < π. Hence, we can choose σ = 0 and
we obtain the following result.

Corollary 4.1. Let Ω be a convex polygon. Suppose that f ∈
L2(QT ), g ∈ L2(∂′′QT ), a ∈ L∞(QT ) and b ∈ L∞(∂′′QT ). Then the
problem (2.1)-(2.3) has a unique solution u ∈ H2,1(QT ) ∩ H2,1(∂′′QT ),
and the following inequality holds:

‖u‖2H2,1(QT ) + ‖u‖2H2,1(∂′′QT ) ≤ C(‖f‖2L2(QT ) + ‖g‖2L2(∂′′QT )),

where C depends on T , a and b.
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If Ω is not convex, then π < α < 2π. In this case the solution in
general does not belong to H2,1(QT ) even for f = 0, see e.g. [18] for the
asymptotics of solution to the Dirichlet problem.

Remark 4.1. In [10] we considered the elliptic case, in particular
we proved that the solution of the elliptic problem belongs to H2(∂Ω).

Actually, similarly to Proposition 2.1, we have that u ∈ H̃2(∂Ω). In turn,
this implies that the hypothesis s < 3

4 is not needed in [10, Theorem 2.1].

Remark 4.2. All our results easily hold for an arbitrary piecewise
smooth domain Ω ⊂ R

2 without cusps.

Appendix A. The extension theorem

Theorem A.1. Let u ∈ H2,1(∂′′QT ) and u|t=0 = 0. Then there exists

an extension U ∈ H
5
2
, 5
4 (R2 × R) such that U |t=0 = 0, U |∂′′QT

= u, and

‖U‖
H

5
2 , 54 (R2×R)

≤ C‖u‖H2,1(∂′′QT ). (A.1)

P r o o f. By localization, we can consider separately the extension
from a face lj × (0, T ) and the extension from a neighborhood of a cor-
ner. Using standard extension from a face to the plane containing this
face

H2,1(lj × (0, T )) → H2,1(R× R),

we reduce the first operation to the extension from a plane and the second
one to the extension from a pair of half-planes intersecting on the t-axis.
Using a proper linear coordinates transform, we can assume that these
half-planes are orthogonal. Since u|t=0 = 0, we can suppose without loss
of generality that the extended function is odd w.r.t. t. Moreover, in what
follows all extensions are supposed compactly supported.

We now denote

Π1 = {(x1, x2, t) ∈ R
2 × R : x2 = 0}; Π2 = {(x1, x2, t) ∈ R

2 ×R : x1 = 0};
Πj

± = {(x1, x2, t) ∈ Πj : xj ≷ 0}, j = 1, 2.

We introduce a mollifier φ(x1, t) ∈ C∞
0 (R × R) such that φ is radially

symmetric, supp(φ) ⊂ B1(0), and

∫
R×R

φdx1 dt = 1. The extension from

the plane Π1 is defined in a standard way [27] via the 2D Fourier transform
(here (ξ1, τ) are the variables dual to (x1, t)):

Û(ξ1, x2, τ) = (P̂1u)(ξ1, x2, τ) := φ̂
(
(1 + ξ41 + τ2)

1
4 |x2|

) · û(ξ1, τ).
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Direct (and standard) calculation using the Parseval identity provides the
estimate (A.1). Moreover, since u is odd w.r.t. t, P1u is also odd w.r.t. t.
In the same way we define the extension operator P2 from the plane Π2.

To manage the extension from Π1
+ ∪Π2

+, we first extend

H2,1(Π1
+) ∩H2,1(Π2

+) → H2,1(Π1) ∩H2,1(Π2)

and we apply the operator P2 to u|Π2 . It remains to extend the function

v =
(
u− P2(u|Π2)

)
Π1

so that the extension V vanishes on Π2
+.

We split v into the sum v = v0 + v+ + v−, where

v0(x1, t) =
v(x1, t)− v(−x1, t)

2
and

v±(x1, t) =
v(x1, t) + v(−x1, t)

2
· χ(±x1)

(χ stands for the Heaviside function). Since v0 is odd w.r.t. x1, the function
V0 = P1v0 is also odd w.r.t. x1 and thus vanishes on Π2

+.
Next, we notice that the function v(x1, t) + v(−x1, t) is even w.r.t. x1

and vanishes on the line x1 = 0. Therefore, v± ∈ H2,1(Π1).
Since v+ is supported in Π1

+, we immediately obtain that the support
of the function P1v+ lies in the wedge x1 ≥ −|x2|. Hence, the function

V+(x1, x2, t) = (P1v+)(x1 − x2, x2, t)

is an extension of v+ having the required smoothness and vanishing on Π2
+.

In a similar way, we define

V−(x1, x2, t) = (P1v−)(x1 + x2, x2, t).

Setting V = V0 + V+ + V−, the thesis follows. �
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[11] S. Creo, M.R. Lancia, A. Vélez-Santiago, P. Vernole, Approximation of
a nonlinear fractal energy functional on varying Hilbert spaces. Com-
mun. Pure Appl. Anal. 17, No 2 (2018), 647–669.

[12] S. Creo, M.R. Lancia, P. Vernole, Convergence of fractional diffusion
processes in extension domains. J. Evol. Equ. 20, No 1 (2020), 109–139.

[13] S. Creo, V. Regis Durante, Convergence and density results for para-
bolic quasi-linear Venttsel’ problems in fractal domains. Discrete Con-
tin. Dyn. Syst. Ser. S 12, No 1 (2019), 65–90.

[14] G. Goldstein Ruiz, Derivation and physical interpretation of general
boundary conditions. Adv. Differential Equations 11, No 4 (2006), 457–
480.

Auth
or'

s c
op

y

https://arxiv.org/abs/1907.03017


REGULARITY RESULTS FOR NONLOCAL EVOLUTION... 1429

[15] V.P. Il’in, Some integral inequalities and their applications in the the-
ory of differentiable functions of several variables. Mat. Sbornik (N.S.)
54 (96) (1961), 331–380.

[16] V.A. Kondrat’ev, Boundary value problems for elliptic equations in
domains with conical or angular points. Trans. Moscow Math. Soc. 16
(1967), 209–292.

[17] V.A. Kozlov, Coefficients in the asymptotics of the solutions of initial-
boundary value parabolic problems in domains with a conic point.
Siberian Math. J. 29, No 2 (1988), 222–233.

[18] V.A. Kozlov, V.G. Maz’ya, Singularities of solutions of the first bound-
ary value problem for the heat equation in domains with conical points,
II. Izv. Vyssh. Uchebn. Zaved. Mat. No 3 (1987), 37–44.

[19] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical
Physics. Springer-Verlag, New York (1985).

[20] M.R. Lancia, V. Regis Durante, P. Vernole, Asymptotics for Venttsel’
problems for operators in non divergence form in irregular domains.
Discrete Contin. Dyn. Syst. Ser. S 9, No 5 (2016), 1493–1520.
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[22] M.R. Lancia, A. Vélez-Santiago, P. Vernole, A quasi-linear nonlocal
Venttsel’ problem of Ambrosetti-Prodi type on fractal domains. Dis-
crete Cont. Dyn. Syst. 39, No 8 (2019), 4487–4518.

[23] M.R. Lancia, P. Vernole, Venttsel’ problems in fractal domains. J. Evol.
Equ. 14, No 3 (2014), 681–712.

[24] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems
and Applications. Vol. I. Springer-Verlag, New York-Heidelberg (1972).

[25] A.I. Nazarov, On the nonstationary two-phase Venttsel problem in the
transversal case. J. Math. Sci. (N.Y.) 122, No 3 (2004), 3251–3264.
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